MODELE MATEMATYCZNE W UBEZPIECZENIACH
|
|
- Ksawery Domagała
- 5 lat temu
- Przeglądów:
Transkrypt
1 MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób w chwili urodzin otrzymała losowy czas życia T o ustalonym, ale jednakowym rozkładzie opisanym funkcja przeżycia Jeżeli spełniony jest warunek st = PT > t PT x > t = PT > x + t T > x dla wszystkich x, t, to mówimy, że populacja ta spełnia hipotezę jednorodnej populacji HJP Warunek ten oznacza, że przyszły czas życia T x osoby, która dożyła wieku x jest taki sam jak rozkład T x przy warunku T > x Zauważmy jeszcze, że PT > x + t T > x = PT > x + t PT > x HJP jest równoważna warunkowi = x+t p, tp x = x+t p dla wszystkich x, t Inaczej mówiąc, przy założeniu HJP, rozkład T x dla x, wyraża się przez rozkład T wzorem tp x = sx + t sx Niech µ t = s t, t, st będzie natężeniem zgonów związanym ze zmienną T Wiemy już, że t st = exp µ u du Twierdzenie 1 Hipoteza HJP jest równoważna następującym warunkom: tp [x]+u = t p x+u * lub µ [x]+t = µ x+t ** 1
2 2 WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA Dowód Jeśli zachodzi HJP, to W drugą stronę jeśli t p [x]+u = t p x+u, to tp x+u = x+u+t p = x+u+tp / x p x+up x+up / x p tp [x]+u = t+u p x up x, = t+up x up x = t p [x]+u tp x+u = t+u p x up x Kładąc x = otrzymujemy HJP Zatem warunek jest równoważny HJP Dalej mamy jeżeli zachodzi HJP, to µ [x]+t = x p d x+tp dt Z drugiej strony, jeżeli µ [x]+t = µ x+t, to tp x = exp µ [x]+t = 1 d t p x tp x dt x+tp = 1 d x+tp x+tp dt = exp = exp t t x+t Zatem jest również równoważny HJP x µ [x]+u du µ x+u du µ u du = x+t p = µ []+x+t = µ x+t Wniosek 1 Jeżeli zachodzi HJP, to oraz tp x = exp x+t µ u du x e x = 1 sydy sx x Dowód Pierwszą równość wykazaliśmy w dowodzie Tw 1 Druga równość wynika z następujących przekształceń e x = tp x dt = sx + t dt = 1 sx + tdt sx sx Hipoteza HJP nie zawsze musi być spełniona Jeśli bowiem zachodzi np HA, to na mocy powyższego twierdzenia mamy na przykład p [5]+1 = p 51, PT 5 > 2 T 5 > 1 = PT 51 > 1
3 MODELE MATEMATYCZNE W UBEZPIECZENIACH 3 Na pierwszy rzut oka wydaje się, że równość taka powinna zachodzić w każdej populacji, gdyż w obydwu przypadkach chodzi o przeżycie od 51 do 52 roku życia Ale pierwsze z tych prawdopodobieństwo dotyczy populacji 5-latków, a drugie populacji 51-latków Mogło się tak zdarzyć, że strsze pokolenie 51-latków przeżyło w pierwszym roku życia jakiś kataklizm, który ominął 5-latków, ale zdarzenie to może mieć wpływ na rozkład przyszłego czasu życia 2 Przykłady teoretycznych rozkładów T Rozkład de Moivre a 1729, który postulował istnienie maksymalnego wieku jednostki ω = 1 lat Rozkład T miał być jednostajny na przedziale [, ω], oraz st = 1 t, t ω, ω µ t = 1, t ω ω t Przy dodatkowym założeniu HJP rozkład T x jest rozkładem jednostajnym na [, ω x], tp x = 1 t ω x Rozkład Gompertza 1824, który postulował, że natężenie zgonów jest wykładnicze postaci gdzie B > i c > 1 µ t = Bc t, t >, Rozkład Makehama 186, który zaproponował, że µ t = A + Bc t, t >, gdzie B i c > 1 oraz A B W szczególności dla B = otrzymujemy rozkład o stałym natężeniu śmiertelności, czyli rozkład wykładniczy ćw Rozkład Weibulla 1939, który zakładał, że gdzie k >, n > µ t = kt n, t, 3 Tablice trwania życia Niech K x = T x oznacza obcięty przyszły czas trwania życia Tablicą trwania życia dla zmiennej K x nazywamy zbiór par liczb k, l k, k =, 1, 2,, gdzie l k = l PK x k, k =, 1, 2,,
4 4 WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA oraz l oznacza początkową liczebność populacji x-latków Zatem z TTŻ dla K x można odczytać prawdopodobieństwa kp x = PK x k = l k l, x, k =, 1, 2, Oczywiście w powyższej równości l i l k zależą od x W praktyce podaje się tylko TTŻ dla K, a tablice dla pozostałych wartości x wyznacza się korzystając z hipotezy HJP Mamy wtedy kp x = PK x k = PK x + k K x = PK x + k PK x = +k/l /l kp x = +k = +k, Liczby l k interpretujemy wtedy jako oczekiwaną liczbę członków danej populacji noworodków, którzy dożyją do wieku k lat W praktyce w TTŻ dla K oprócz liczb l k, k =, 1, 2,, ω 1, gdzie ω jest wiekeim granicznym w populacji, wypisuje się inne wielkości które można wyrazić za pomocą l k, np p k, q k, e k oraz d k = l k l k+1, czyli oczekiwaną liczbę osób z początkowej populacji, które umarły w wieku k lat Twierdzenie 2 Niech k, l k, k =, 1, 2,, będzie TTŻ dla zmiennej losowej K przy założeniu HJP Wtedy q x = d x = +1 ; p x = +1 ; e x = = Dowód Wzór na p x wynika z poprzedniego twierdzenia z k = 1 Dalej Ponadto e x = 1 q x = 1 p x = 1 +1 = +1 k=x+1 kp = l k=x+1 = d x l k l =
5 MODELE MATEMATYCZNE W UBEZPIECZENIACH 5 W Polsce tablice trwania życia publikuje corocznie Główny Urząd Statystyczny Z uwagi na znaczne różnice trwania życia mężczyzn i kobiet, podaje się TTŻ osobno dla każdej płci W tablicach tych ω = 1 oraz l = 1 i podane w nich są kolejno: x,, q x, d x, L x, T x oraz e x Wielkości, q x i d x oznaczają to samo co powyżej Wielkość L x zwana ludnością stacjonarną w wieku x obliczona jest ze wzoru Zauważmy, że L x = L x = p x + p x+1 l 2 L x jest oczekiwaną liczbą członków populacji, którzy dożyli do chwili x + 5, przy założeniu HU Wielkość T x zwana skumulowaną ludnością stacjonarną w wieku x obliczona jest ze wzoru T x = y x L y = L x + L x+1 + L x+2 + Wielkość e x zwana przeciętnym dalszym trwaniem życia obliczona jest ze wzoru e x = T x Oznaczmy chwilowo przez ē x obcięty przyszły czas życia Wiemy, że jak łatwo pokazać ē x = 1 k=x+1 l k, e x = ē x = e x Zatem przy założeniu HU wielkość e x występująca w TTŻ GUS jest równa e x, czyli przyszłemu oczekiwanemu czasowi życia 4 Hipoteza jednostajności Załóżmy, że dany jest rozkład zmiennej losowej K x dla każdego x =, 1, 2,, a w szczególności dane są prawdopodobieństwa n p x dla n, x =, 1, 2, Hipoteza jednostajności HU umożliwiają wyznaczenie wartości funkcji t p x dla t [n, n + 1, n =, 1, 2, Oznaczmy przez S x ułamkowy czas życia, tzn S x = T x K x Zauważmy, że jeśli n =, 1, 2, oraz u [, 1, to PT x n + u = PK x + S x n + u = PS x u K x = npk x = n
6 6 WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA n+up x = PS x u K x = n n p x n+1 p x Zatem przyjęcie pewnej hipotezy interpolacyjnej jest równoważne określeniu warunkowego rozkładu S x przy warunku K x = n Definicja 1 Powiemy, że rozkład T x spełnia hipotezę jednostajności HU, jeżeli funkcja t p x zmiennej t jest ciągła i liniowa na przedziałach [n, n + 1 Zatem n+up x = 1 u n p x + u n+1 p x, u < 1, n =, 1, 2, Zauważmy, że interpolacja jest dokonywana zawsze między kolejnymi latami Zatem znajomość 3 p 3 i 5 p 3 nie wystarczy do wyznaczenia 45 p 3 Ale prawdopodobieństwo to można wyznaczyć znając 4 p 3 i 5 p 3, ze wzoru 45 p 3 = 5 4 p p 3 Podstawiając w powyższej definicji n = dostajemy up x = 1 u + u p x przy założeniu HU dla u, 1 mamy up x = 1 uq x, uq x = uq x Twierdzenie 3 Niech będzie dany rozkład K x Wtedy HU jest równoważna warunkowi PS x u K x = n = u, dla u < 1 i n =, 1, 2, Dowód Jeżeli zachodzi HU, to PK x = n, S x u = Pn T x n + u = n p x n+u p x = n p x 1 u n p x u n+1 p x = u n p x n+1 p x = upk x = n Zatem co należało pokazać PS x u K x = n = PK x = n, S x u PK x = n = u, Powyższe twierdzenie mówi, że przy założeniu HU zmienne losowe K x i S x są niezależne i S x ma rozkład jednostajny na przedziale [, 1] stąd nazwa hipotezy W szczególności e x = e x oraz Var T x = Var K x
7 MODELE MATEMATYCZNE W UBEZPIECZENIACH 7 Przykład 1 Zakładając, że zachodzi HJP oraz mając dane p 7 = oraz p 71 = 9812, obliczyć prawdopodobieństwo tego, że osoba 7-letnia przeżyje jeszcze 1 rok i 3 miesiące przy założeniu HU Rozwiązanie Mamy PT 7 > 125 = 125 p 7 = p 7 25 p 71 Przy założeniu HU mamy u p x = 1 uq x, 25p 71 = 1 25 q 71 = p 71 = Zatem PT 7 > 125 = 97822
Tablice trwania życia
ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy
1 Elementy teorii przeżywalności
1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek
1 Elementy teorii przeżywalności
1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek
1. Przyszła długość życia x-latka
Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której
3 Ubezpieczenia na życie
3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 4: UBEZPIECZENIA NA ŻYCIE Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub
Elementy teorii przeżywalności
Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek
Ubezpieczenia na życie
ROZDZIAŁ 4 Ubezpieczenia na życie Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub w ratach), a w zamian za to ubezpieczyciel
Składki i rezerwy netto
ROZDZIAŁ 6 Składki i rezerwy netto 1 Składki netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową Polisa taka zawiera szczegółowe warunki
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 6: SKŁADKI OKRESOWE Składki okresowe netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową
Elementy teorii przeżywalności
Elementy teorii przeżywalności Zadanie 1.1 Przyjmijmy, że funkcja przeżycia s(x) = ax + b dla 0 x ω. Znaleźć medianę zmiennej X, jeśli wiadomo, że wartość oczekiwana E(X) = 60. Zadanie 1.2 Mając funkcje
1. Ubezpieczenia życiowe
1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 80...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji kojarzącej się w sposób losowy, w loci o dwóch allelach A i a 36% osobników tej populacji ma genotyp aa. (a) Jaka cześć
Ubezpieczenia majątkowe
Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień
LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Matematyka ubezpieczeń życiowych r.
. W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Matematyka ubezpieczeń życiowych 17 marca 2008 r.
1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech a będzie recesywnym płciowo skojarzonym genem i załóżmy, że proces selekcji uniemożliwia kojarzenie się osobników płci męskiej o genotypie aa. Przyjmijmy, że genotypy AA, Aa i aa występują
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0
EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka
Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości
MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka
Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Matematyka ubezpieczeń na życie. Piotr Kowalski
Matematyka ubezpieczeń na życie Piotr Kowalski 27 stycznia 212 Spis treści 1 Elementy matematyki finansowej 1 1.1 Oznaczenia.............................. 1 1.2 Związki................................
MODELOWANIE ZMIENNOŚCI CEN AKCJI MODEL ADDYTYWNY MODEL MULTIPLIKATYWNY
MODELOWANIE ZMIENNOŚCI CEN AKCJI MODEL ADDYTYWNY MODEL MULTIPLIKATYWNY Modele zmienności aktywów z czasem dyskretnym / Model addytywny Przyjmijmy następujące oznaczenia: S(0) - cena początkowa akcji S(k)
XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Metody aktuarialne - opis przedmiotu
Metody aktuarialne - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody aktuarialne Kod przedmiotu 11.5-WK-MATP-MA-W-S14_pNadGenEJ6TV Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii
UBEZPIECZENIA NA ŻYCIE
UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)
Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
LX Egzamin dla Aktuariuszy z 28 maja 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28
EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach. x i 0,
Matematyka w ekonomii i ubezpieczeniach Wiedząc, że wektor x 0 = (0,3,0,0,4) jest rozwiązaniem optymalnym zagadnienia programowania liniowego: zminimalizować 3x 1 +2x 2 +5x 3 +3x 4 +4x 5, przy ograniczeniach
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Badamy wpływ dwóch czynników mutagennych na DNA. W tym celu podczas każdej replikacji nić DNA poddawana jest na przemian działaniu pierwszego i drugiego czynnika wywołującego mutacje. Wiemy,
z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X
Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Matematyka ubezpieczeń życiowych r.
1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Wykład z równań różnicowych
Wykład z równań różnicowych Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp. Definicja 1. Operatorem
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA
KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Matematyka ubezpieczeń majątkowych r.
Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w populacji znajdującej się w warunkach Hardy ego-wainberga wynoszą p 2, 2pq i q 2. Wiadomo, że badany mężczyzna należy do genotypu Aa. Wyznacz
XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Analiza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA. Piotr Nowak Uniwersytet Wrocławski
UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA Piotr Nowak Uniwersytet Wrocławski Wprowadzenie X = (X 1,..., X n ) próba z rozkładu wykładniczego Ex(θ). f (x; θ) = 1 θ e x/θ, x > 0, θ >
EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.
Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)