Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
|
|
- Alojzy Biernacki
- 5 lat temu
- Przeglądów:
Transkrypt
1 Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014
2 Metoda momentów
3 Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
4 Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty teoretyczne: µ 1 = EX 1, µ 2 = EX 2 1, µ 3 = EX 3 1,..., µ k = EX k 1
5 Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty teoretyczne: µ 1 = EX 1, µ 2 = EX 2 1, µ 3 = EX 3 1,..., µ k = EX k 1 Momenty empiryczne: m 1 = 1 n X i, n i=1 m 2 = 1 n n i=1 X 2 i, m 3 = 1 n n i=1 X 3 i,..., m k = 1 n n i=1 X k i
6 Momenty zmiennych losowych Momenty empiryczne są nieobciążonymi estymatorami momentów teoretycznych E(m 1 ) = E E(m 2 ) = E E(m k ) = E ( 1 n ( 1 n ( 1 n ) n X i = EX 1 = µ 1 i=1 ) n Xi 2 = EX1 2 = µ 2 i=1. n i=1 X k i ) = EX k 1 = µ k.
7 Momenty zmiennych losowych Niech X 1, X 2,..., X n oznacza próbę losową z rozkładu o gęstości f θ (x), gdzie θ = (θ 1, θ 2,..., θ n ) jest wektorem nieznanych parametrów rozkładu.
8 Momenty zmiennych losowych Niech X 1, X 2,..., X n oznacza próbę losową z rozkładu o gęstości f θ (x), gdzie θ = (θ 1, θ 2,..., θ n ) jest wektorem nieznanych parametrów rozkładu. Momenty µ j - funkcje nieznanych parametrów θ 1, θ 2,..., θ n postaci µ j = g j (θ 1, θ 2,..., θ n ).
9 Momenty zmiennych losowych Przykład 1 Niech X 1, X 2,..., X n, będzie próbą losową z rozkładu normalnego ze średnią θ 1 i wariacją θ 2 2, wówczas momenty teoretyczne µ 1 i µ 2 są funkcjami tych parametrów postaci: µ 1 = EX 1 = θ 1 µ 2 = EX 2 1 = θ2 1 + θ2 2
10 Momenty zmiennych losowych Przykład 1 Niech X 1, X 2,..., X n, będzie próbą losową z rozkładu normalnego ze średnią θ 1 i wariacją θ 2 2, wówczas momenty teoretyczne µ 1 i µ 2 są funkcjami tych parametrów postaci: µ 1 = EX 1 = θ 1 µ 2 = EX 2 1 = θ2 1 + θ2 2 Drugą z równości otrzymaliśmy korzystając z tego, że EX 2 1 = (EX 1) 2 + Var(X 1 ).
11 Metoda Momentów Estymatorem ( ˆθ 1, ˆθ 2,..., ˆθ n ) wektora parametrów θ = (θ 1, θ 2,..., θ n ) nazywamy rozwiązanie układu równań: m 1 = g 1 (θ 1, θ 2,..., θ n ) = µ 1 m 2 = g 2 (θ 1, θ 2,..., θ n ) = µ 2. m k = g k (θ 1, θ 2,..., θ n ) = µ k.
12 Metoda Momentów - przykłady Przykład 2 Niech X 1, X 2,..., X n bedzie próbą z rozkładu Normalnego N(µ, σ 2 ). Szukamy estymatorów wektora (θ 1, θ 2 ) = (µ, σ 2 ). Momenty teoretyczne są postaci: µ 1 = g 1 (θ 1, θ 2 ) = g 1 (µ, σ 2 ) = µ, µ 2 = g 2 (θ 1, θ 2 ) = g 2 (µ, σ 2 ) = µ 2 + σ 2. Momenty otrzymane z próby są postaci: m 1 = 1 n ni=1 X i m 2 = 1 n ni=1 X 2 i
13 Metoda Momentów - przykłady Przykład 2 - cd A zatem przyrównując do siebie odpowiednie momenty otrzymujemy układ równań postaci: { m1 = 1 ni=1 n X i = µ = µ 1 m 2 = 1 ni=1 n Xi 2 = µ 2 + σ 2 = µ 2 Rozwiązując powyższy układ równań ze względu na µ i σ 2 otrzymujemy: ˆµ = 1 n ni=1 X i = X ˆσ 2 = 1 n ni=1 X 2 i [ 1 n ] ni=1 2 X i = 1 ni=1 n (X i X ) 2, gdzie ˆµ i ˆσ 2 oznaczają odpowiednio estymatory średniej µ i wariancji σ 2.
14 Metoda Momentów - przykłady Przykład 2 - cd Widzimy zatem, że estymatorem średniej w rozkładzie normalnym otrzymanym MM jest średnia z próby, natomiast estymatorem wariancji obciążona wariancja próbkowa.
15 Metoda Momentów Uwaga Estymatory wyznaczone metodą momentów w ogólności nie są wyznaczone jednoznacznie.
16 Metoda Momentów - przykłady Przykład 3 Niech X 1, X 2,..., X n bedzie próbą z rozkładu Poissona Poi(λ).
17 Metoda Momentów - przykłady Przykład 3 Niech X 1, X 2,..., X n bedzie próbą z rozkładu Poissona Poi(λ). I. Wyznaczamy estymator parametru λ w oparciu o pierwszy moment. Ponieważ µ 1 = EX 1 = λ otrzymujemy: ˆλ = 1 n n X i = X. i=1
18 Metoda Momentów - przykłady Przykład 3 - cd II. Wyznaczamy estymator parametru λ w oparciu o pierwsze dwa momenty. Ponieważ µ 2 = EX1 2 = (EX 1) 2 + Var(X 1 ) = λ 2 + λ otrzymujemy: { 1 ni=1 n X i = λ ni=1 Xi 2 = λ 2 + λ, 1 n
19 Metoda Momentów - przykłady Przykład 3 - cd II. Wyznaczamy estymator parametru λ w oparciu o pierwsze dwa momenty. Ponieważ µ 2 = EX1 2 = (EX 1) 2 + Var(X 1 ) = λ 2 + λ otrzymujemy: { 1 ni=1 n X i = λ ni=1 Xi 2 = λ 2 + λ, 1 n a stąd otrzymujemy estymatory ˆλ 1 = X ˆλ 2 = 1 2 ( X 2 1)
20 Metoda Momentów - przykłady Przykład 3 - cd II. Wyznaczamy estymator parametru λ w oparciu o pierwsze dwa momenty. Ponieważ µ 2 = EX1 2 = (EX 1) 2 + Var(X 1 ) = λ 2 + λ otrzymujemy: { 1 ni=1 n X i = λ ni=1 Xi 2 = λ 2 + λ, 1 n a stąd otrzymujemy estymatory ˆλ 1 = X ˆλ 2 = 1 2 ( X 2 1) Estymator ˆλ 1 jest najlepszym estymatorem nieobciążonym, estymator ˆλ 2 jest obciążony.
21 Metoda Momentów - przykłady Przykład 3 - cd II. Wyznaczamy estymator parametru λ w oparciu o pierwsze dwa momenty. Ponieważ µ 2 = EX1 2 = (EX 1) 2 + Var(X 1 ) = λ 2 + λ otrzymujemy: { 1 ni=1 n X i = λ ni=1 Xi 2 = λ 2 + λ, 1 n a stąd otrzymujemy estymatory ˆλ 1 = X ˆλ 2 = 1 2 ( X 2 1) Estymator ˆλ 1 jest najlepszym estymatorem nieobciążonym, estymator ˆλ 2 jest obciążony. Przykład ten pokazuje, że MM może prowadzić do bezsensownych estymatorów.
22 Metoda Momentów - przykłady Przykład 4 Niech X 1, X 2,..., X n bedzie próbą z rozkładu jednostajnego na przedziale (a, b), U(a, b). Wyznaczymy estymaroty MM parametrów a i b.
23 Metoda Momentów - przykłady Przykład 4 Niech X 1, X 2,..., X n bedzie próbą z rozkładu jednostajnego na przedziale (a, b), U(a, b). Wyznaczymy estymaroty MM parametrów a i b. Momenty teoretyczne z rozkładu jednostajnego są postaci: µ 1 = EX 1 = a+b 2 µ 2 = Var(X 1 ) + (EX 1 ) 2 = (b a) ( ) 2 a+b 2 = a 2 +ab+b 2 3
24 Metoda Momentów - przykłady Przykład 4 Niech X 1, X 2,..., X n bedzie próbą z rozkładu jednostajnego na przedziale (a, b), U(a, b). Wyznaczymy estymaroty MM parametrów a i b. Momenty teoretyczne z rozkładu jednostajnego są postaci: µ 1 = EX 1 = a+b 2 µ 2 = Var(X 1 ) + (EX 1 ) 2 = (b a) ( ) 2 a+b 2 = a 2 +ab+b 2 3 Przyrównując do siebie odpowiednie momenty dostajemy układ równań postaci: m 1 = 1 n ni=1 X i = a+b 2 = µ 1 m 2 = 1 n ni=1 X 2 i = a2 +ab+b 2 3 = µ 2
25 Metoda Momentów - przykłady Przykład 4 - cd Co dalej prowadzi do: { a = 2 X b b 2 2 X b + 4( X ) 2 3 X 2 = 0
26 Metoda Momentów - przykłady Przykład 4 - cd Co dalej prowadzi do: { a = 2 X b b 2 2 X b + 4( X ) 2 3 X 2 = 0 Dla równania drugiego wyznaczamy deltę = 4( X ) 2 16( X ) X 2 = 12( X 2 ( X ) 2 ), a następnie pierwiastki równania.
27 Metoda Momentów - przykłady Przykład 4 - cd Co dalej prowadzi do: { a = 2 X b b 2 2 X b + 4( X ) 2 3 X 2 = 0 Dla równania drugiego wyznaczamy deltę = 4( X ) 2 16( X ) X 2 = 12( X 2 ( X ) 2 ), a następnie pierwiastki równania. Ostatecznie otrzymujemy estymatory MM parametrów a i b postaci: â = X + ˆb = X 3( X 2 ( x) 2 ) 3( X 2 ( x) 2 )
28 Metoda kwantyli
29 Metoda Kwantyli Estymatorem ( ˆθ 1, ˆθ 2,..., ˆθ k ) wektora parametrów θ = (θ 1, θ 2,..., θ k ) nazywamy rozwiązanie układu równań: F 1 θ (p 1 ) = Z p1,n F 1 θ (p 2 ) = Z p2,n. Fθ 1 (p k ) = Z pk,n, gdzie Fθ 1 (p) oznacza kwantyl teoretyczny rzędu p, natomiast Z p,n = X [np]+1: n, p (0, 1) jest kwantylem z próby.
30 Metoda Kwantyli - przykłady Przykład 5 Niech X 1, X 2,..., X n bedzie próbą z rozkładu normalnego N(µ, σ 2 ), µ R, σ > 0 i niech Fθ 1 (p) bedzie kwantylem rzędu p, p (0, 1), θ = (µ, σ 2 ).
31 Metoda Kwantyli - przykłady Przykład 5 Niech X 1, X 2,..., X n bedzie próbą z rozkładu normalnego N(µ, σ 2 ), µ R, σ > 0 i niech Fθ 1 (p) bedzie kwantylem rzędu p, p (0, 1), θ = (µ, σ 2 ). Oznaczmy przez u p kwantyl rzędu p ze standardowego rozkładu normalnego N(0, 1), wówczas F 1 θ (p) = u p σ 2 + µ.
32 Metoda Kwantyli - przykłady Przykład 5 Niech X 1, X 2,..., X n bedzie próbą z rozkładu normalnego N(µ, σ 2 ), µ R, σ > 0 i niech Fθ 1 (p) bedzie kwantylem rzędu p, p (0, 1), θ = (µ, σ 2 ). Oznaczmy przez u p kwantyl rzędu p ze standardowego rozkładu normalnego N(0, 1), wówczas F 1 θ (p) = u p σ 2 + µ. Niech p q oraz Z p,n i Z q,n oznaczają odpowiednie kwantyle próbkowe rzedu p i q. W calu znalezienia estymatorów MK wektora parametrów θ = (µ, σ 2 ) należy rozwiązac układ równań: { F 1 θ (p) = u p σ 2 + µ = Z p,n F 1 θ (q) = u q σ 2 + µ = Z q,n
33 Metoda Kwantyli - przykłady Przykład 5 - cd Rozwiązując układ równań ze względu na µ i σ 2 dostajemy estymatory MK postaci: ˆµ = Zp,nuq Zq,nup u ( q u p ) ˆσ 2 Zp,n Z 2 = q,n u p u q.
Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego
Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Metody probabilistyczne
Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Metoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Metody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Metoda największej wiarygodności
Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna
O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 9 7.04.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Metoda największej wiarygodności ierównosć informacyjna Metoda
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Prawdopodobieństwo i statystyka
Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
WYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.
Hipotezy proste Zadanie 1. Niech X ma funkcję gęstości f a (x) = (1 + a)x a, dla 0 < x < 1, Testujemy H 0 : a = 1 przeciwko H 1 : a = 2. Dysponujemy pojedynczą obserwacją X. Wyznaczyć obszar krytyczny
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW
ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy
Statystyczna analiza danych
Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Statystyczna analiza danych (molekularnych) estymacja bayesowska i MLE
Statystyczna analiza danych (molekularnych) estymacja bayesowska i MLE Anna Gambin 0 kwietnia 01 Spis treści 1 Estymacja bayesowska 1 Paradoks więźnia.1 Rozkład a priori.................................
Wykład z analizy danych: estymacja punktowa
Wykład z analizy danych: estymacja punktowa Marek Kubiak Instytut Informatyki Politechnika Poznańska Cel wykładu Model statystyczny W pewnej zbiorowości (populacji generalnej) obserwowana jest pewna cecha
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Estymatory nieobciążone
Estymatory nieobciążone Zadanie 1. Pobieramy próbkę X 1,..., X n niezależnych obserwacji z rozkładu Poissona o nieznanym parametrze λ. Szacujemy p 0 = e λ za pomocą estymatora ˆp 0 = e X, gdzie X jest
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący