MODELOWANIE STATYCZNEJ PĘTLI HISTEREZY MATERIAŁU MAGNETYCZNIE MIĘKKIEGO
|
|
- Krzysztof Krzemiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zszyty Naukow WSInf Vol 9, Nr 3, 21 Zbigniw Gmyrk Wydział Informatyki I Zarządzania Wyższa Szkołą Informatyki w Łodzi MODELOWNIE STTYCZNEJ PĘTLI HISTEREZY MTERIŁU MGNETYCZNIE MIĘKKIEGO Strszczni Modlowani statycznj pętli histrzy matriału magntyczngo jst problmm, którym naukowcy zajmują się od wilu lat. W tym czasi powstało wil różnych modli matmatycznych, uwzględniających spcyfikę budowy matriału magntyczngo. Niktór z tych modli mają ograniczony zakrs stosowalności, inn zaś pozwalają na modlowani pętli histrzy podczas dużych zmian wartości maksymalnj indukcji. rtykuł przntuj opis matmatyczny kilku najbardzij popularnych modli statycznj pętli histrzy matriału magntyczni miękkigo. 1 Wprowadzni do modlu Jils-thrtona Tworząc matmatyczny modl Jils-thrtona autorzy wykorzystali widzę dotyczącą procsu magntyzacji matriału składającgo się z domn magntycznych, zaproponowango w postaci funkcji Langvina [1]. Używając tj torii stwirdzono, ż nrgię jaką posiada dipol magntyczny, posiadający momnt magntyczny m, umiszczony w zwnętrznym polu magntycznym można przdstawić w postaci E = µ m cos β (1) H gdzi: H natężni zwnętrzngo pola magntyczngo, β - kąt pomiędzy wktorm momntu magntyczngo m oraz wktorm natężnia zwnętrzngo pola magntyczngo. Langvin zakładał, ż w matriałach paramagntycznych momnty dipoli ni oddziaływają wzajmni. Używając statystyki Maxwlla- Boltzmana, okrślającj prawdopodobiństwo przyjęcia przz lktron okrślongo stanu nrgtyczngo, można napisać wyrażni okrślając liczbę cząstk magntycznych (domn) w jdnostc 141
2 Modlowani statycznj pętli... objętości, znajdujących się pomiędzy kątm α oraz α+dα w stosunku do zwnętrzngo pola magntyczngo ( µ βα n Πn o mh cos ) / kt = 2 sin β dβ (2) gdzi: n jst okrślony stosunkim liczby wszystkich cząstk obcnych w objętości V, odnisiony do tj objętości V, k jst stałą Boltzmana, T jst tmpraturą bzwzględną Tak więc magntyzacja rozumiana jako suma wktorowa momntów magntycznych w jdnostc objętości, równolgłych do wktora zwnętrzngo pola magntyczngo, moż być opisana zalżnością M = Π m cos β dn = N m Π Π ( µ mh cos β ) ( µ mh cos β ) / kt / kt cos β sin β dβ sin β dβ (3) Wprowadzając zminn okrślon jako = mh / kt, = cosβ, d= -sinβdβ można powyższ równani µ zapisać w innj formi M Mn 1 1 = 1 1 a x dβ dβ (4) Po wykonaniu nizbędnych przkształcń otrzymujmy ostatczną postać wzoru okrślającgo magntyzację paramagntyczngo matriału, w postaci M 1 = Nm coth (5) Funkcja w nawiasi znana jst pod nazwą funkcji Langvina. Poniważ dla wartości = posiada niciągłość więc w praktyc zapisuj się ją w postaci pirwszgo członu szrgu Taylora 142
3 Z. Gmyrk L ( ) coth = dla 3 1 dla dla > < (4) Funkcja Langvina jst wykorzystywana do gnracji przbigu krzywj anhistrzowj, opisując matriał magntyczny ni posiadający histrzy. Rzczywist matriały magntyczn stosowan do budowy maszyn i urządzń, są matriałami frromagntycznymi a ni paramagntycznymi. Tak więc aby lpij opisywać zachowani matriału frromagntyczngo podczas procsu przmagnsowania, nalży uwzględnić wnioski wynikając z torii Wissa. W tj torii, w matriałach frromagntycznych, sąsiadując momnty magntyczn oddziaływają na sibi tworząc tzw. pol wymiany [2]. Jżli założymy, ż wzajmn oddziaływania wszystkich momntów jst idntyczn i nizalżn od odlgłości, wtdy pol wymiany można opisać wzorm H wym = α m j = α M (5) j Wtdy całkowita wartość magntyzacji zostani opisana zalżnością H = H + αm (6) Uwzględniając powyższ zalżności i wstawiając do równania (3) oraz przyjmując M s =Nm, otrzymamy M = M gdzi a=kt/µ m s H + αm a coth (7) a H + αm Uwzględniając fakt występowania w ralnym matrial bardzij skomplikowango zjawiska fizyczngo stwirdzono, ż cały procs magntyzacji nalży podzilić na dwi części. W pirwszj części uwzględnimy magntyzację odwracalną, ni wywołującą strat Joul a, oraz na magntyzację niodwracalną, związaną w powstawanim strat mocy. Tak więc opis matmatyczny przyjmi nową formę 143
4 Modlowani statycznj pętli... M = M ir + M rv (8) gdzi M ir jst magntyzacją niodwracalną zaś M rv jst magntyzacją odwracalną. Pod pojęcim magntyzacji odwracalnj rozumimy zjawisko fizyczn polgając na tym, ż ściana Blocha powraca do pirwotngo położnia gdy znikni przyczyna jj przsunięcia (zwnętrzn pol magntyczn). Magntyzacja niodwracalna to zjawisko fizyczn w którym ściana Blocha ni powraca do pirwotngo położnia po zaniku przyczyny przsunięcia. Jst to spowodowan występowanim lokalnych minimów nrgtycznych związanych np. z nimtalicznymi wtrącniami występującymi w rzczywistj strukturz frromagntyka. Tak więc straty nrgii podczas ruchu ściany Blocha związan są z magntyzacją niodwracalną. Gęstość strat nrgii wynikającą z niodwracalngo ruchu ściany Blocha można okrślić wzorm dm dw= µ kδ (9) dh ir dh gdzi k jst współczynnikim pinningu będącym miarą gęstości dfktów struktury magntycznj. Paramtr δ przyjmuj wartości +1, -1 w zalżności od znaku pochodnj dh /dt. Wprowadzając pojęci magntyzacji anhystrzowj (czyli takij dla którj szrokość pętli histrzy wynosi zro) można napisać równani nrgtyczn w postaci dm ( = kδ dh (1) dh M an H ) dh µ M ( H dh + µ µ ) gdzi M an jst magntyzacją anhystrzową. W praktyc przyjmuj się ponadto, ż magntyzacja odwracalna jst pwną częścią różnicy między magntyzacją anhystrzową a magntyzacją niodwracalną, wyrażoną przz wartość współczynnika c. Można wtdy przdstawić koljną zalżność M rv ( M M ) = c (11) an ir W fkci prowadzi to do koljnj zalżności pozwalającj na opisani magntyzacji 144
5 Z. Gmyrk ( c) M ir cm an M = 1 + (12) W litraturz spotyka się więc znaną postać matmatyczną modlu Jilsa-thrtona zapisaną w postaci różniczkowj [3] dm dh M an M ir dm an = ( 1 c) + c kδ α (13) ( M M ) dh an ir Rys. 1. Statyczn pętl histrzy przykładowgo matriału magntyczngo 2 Inn popularn modl matmatyczn statycznj pętli histrzy Okazuj się, ż w pwnych szczgólnych przypadkach ni musimy stosować modlu Jilsa-thrtona aby wyznaczyć statyczną pętlę histrzy. Np. w obszarz niwilkich indukcji doskonal sprawdza się modl Rayligha [5]. Modl tn wykorzystuj paraboliczn przybliżni kształtu pętli histrzy. Obszar zastosowania takigo podjścia jst oczywiści ograniczony do warunków w których można przyjąć, ż prznikalność jst sumą prznikalności początkowj oraz składnika proporcjonalngo do zwnętrzngo pola wymuszającgo. µ = µ + ν H (14) a i 145
6 Modlowani statycznj pętli... gdzi µ a jst amplitudą prznikalności, µ i jst początkową prznikalnością, ν jst współczynnikim histrzy. Ostatczna postać równania opisującgo statyczną pętlę histrzy można przdstawić w postaci ν 2 2 B = µ ( µ i + νh ) H ± ( H H max ) } (15) 2 Rys. 2. Pętla histrzy modlowana opism Rayligha Podobni uproszczoną formę przyjmuj modl Chana-Vladimirscu [6]. W tym przypadku pętla histrzy jst okrślona przz dwa wyrażnia 146 H + H c B + ( H ) = Bs Bs H + H + 1 c Hc Br H H c B ( H ) = Bs (16) Bs H H + 1 c Hc Br gdzi B s jst indukcją nasycnia, H c jst natężnim korcji, B r jst indukcją rmnncji.
7 Z. Gmyrk Nico zbliżoną formę modlowania do tj jaką przntuj modl Jilsa-thrtona, jst modl Hodgdona [7]. Modl opisany jst równanim bh dt db db db = α [ f ( B) H ] + g B, (17) dt dt dt gdzi α jst stałym paramtrm, f oraz g są funkcjami zalżnymi od indukcji oraz jj pochodnj względm czasu. Dziląc obi strony równania przz db/dt otrzymamy bardzij znaną postać równania opisującgo tn modl gdzi funkcję s dfiniujmy jako dh db db =α s [ f ( B H )] + g( B, dt ) (18) db dt db 1 dla > db dt s = (19) dt db 1 dla < dt gdzi H max jst maksymalną wartością natężnia pola magntyczngo. Funkcj f oraz g mogą być zdfiniowan jako D1 f = D2B D1 g = D ( B + B ) ( B B ) ( 1+ D ) 1 3 D 2 D B : : D B : B < B : : B B B B B > B B > B gdzi D 1, D 2, D 3 oraz B są paramtrami modlu. (2) Modl Prisacha jst koljnym modlm frromagntyka, znanym i stosowanym od wilu lat. Zakłada on, ż matriał magntyczny zawira niskończoną liczbę magntycznych dipoli opisanych wyidalizowaną pętlą histrzy. Przskok an pętli histrzy następuj po osiągnięciu 147
8 Modlowani statycznj pętli... progowych wartości natężnia pola magntyczngo, oznaczonych jako x oraz y. Rys. 3. Pętla histrzy magntyczngo dipola, stosowana w modlu Prisacha. Przyjmując fakt indywidualngo zachowania dipoli magntycznych ragujących na lokalną wartość pola magntyczngo, można wskazać znormalizowaną wartość indukcji, otrzymaną jako całkę obliczoną na płaszczyźni przkroju, z uwzględninim statystyczngo charaktru funkcji przskoku po pętli histrzy. F ( x, y) dx dy = 1 (21) Wartość indukcji w okrślonym stani wzbudznia można opisać zalżnością uwzględniającą obcność rgionów o okrślonym kirunku położnia dipoli magntycznych. 148 B = B F( x, y) dx dy B F( x, y) dx dy (22) sat sat M + M Funkcja F(x,y) moż zostać użyta, wykorzystując całkę Evrtta lub rozkład Gausa.
9 Z. Gmyrk Litratura [1] Jils D., Introduction to Magntism and Magntic Matrial. Chapman and Hall, London,1991. [2] Bozorth R. M., Frromagntism. D. Van Nostrand Co. Pricton, Nw Jrsy, [3] Jils D. C., Tholk J. B., Dvin M., Numrical dtrmination of hystrsis paramtrs for th modling of magntic proprtis using th thory of frromagntic hysttrsis, IEEE Trans. Magn., vol. 28, no. 1, pp , January [4] Jils D. C. Tholk J. B., Thory of frromagntic hystrsis: Dtrmination of modl paramtrs from xprimntal hystrsis loops, IEEE Trans. Magn., vol. 25, no. 5, pp , Sptmbr 1989 [5] Rayligh, Nots on Elctricity and Magntism, III, Phil. Mag., Vol 23, p225, 1887 [6] Chan J.H., Vladirimscu., Gao X.C., Libmann P., Valainis J., Nonlinar transformr modl for circuit simulation, IEEE Transactions on Computr idd Dsign, Vol. 1, No 4, pril 1991, pp [7] Hodgdon M.L., Mathmatical Thory and Calculations of magntic hystrsis curvs, IEEE Transactions on Magntics, Vol. 24, No. 6, Nov 1988, [8] Boly C.D., Hodgdon M.L., Modl and Simulations of hystrsis in magntic cors, IEEE Transactions on Magntics, Vol. 25, No. 5, Sp 1989, pp [9] Hodgdon M.L., pplications of a thory of frromagntic hystrsis, IEEE Transactionson Magntics, Vol. 27, No 6, Nov 1991, pp [1] Evrtt D.H., gnral approach to hystrsis-part 4, Transactions of th Faraday Socity, Vol. 51, 1955, pp
10 Modlowani statycznj pętli... MODELING OF STTIC HYSTERESIS OF SOFT MGNETIC MTERIL Summary Modling th static hystrsis of magntic matrial is a problm of which scintists ar taking car for many yars. t that tim a lot of diffrnt mathmatical modls appard, taking into account th spcificity of th structur of magntic matrial. Som of ths modls hav th rducd scop of th applicability, whras othrs lt for modling th hystrsis undr wid chang of maximum valu of th induction. Th papr introducs th mathmatical dscription of a fw most popular modls of th static hystrsis of soft magntic matrial. 15
Laboratorium Nowoczesna Diagnostyka Materiałowa Pomiar materiałów magnetycznie miękkich
Laboratorium Nowoczsna Diagnostyka Matriałowa Pomiar matriałów magntyczni miękkich I. Zagadninia do przygotowania:. Podstawow wilkości opisując pol i matriały magntyczn: natężni pola magntyczngo, indukcja
Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)
11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij
Ekscytony Wanniera Motta
ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują
Uogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych
Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i
Szeregowy obwód RC - model matematyczny układu
Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony
Wykład VIII: Odkształcenie materiałów - właściwości sprężyste
Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Sieci neuronowe - uczenie
Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani
Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.
XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa
2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
ĆWICZENIE J15. Celem ćwiczenia jest zbadanie efektu Comptona poprzez pomiar zależności energii rozproszonych kwantów gamma od kąta rozproszenia.
ĆWICZNI J15 Badani fktu Comptona Clm ćwicznia jst zbadani fktu Comptona poprzz pomiar zalżności nrgii rozproszonych kwantów gamma od kąta rozprosznia. Wstęp fkt Comptona to procs nilastyczngo rozprosznia
Przykład 1 modelowania jednowymiarowego przepływu ciepła
Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych
Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i
ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ
Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application
MODELOWANIE HISTEREZY W MATERIAŁACH MAGNETYCZNYCH
Zeszyty Naukowe WSInf Vol 5, Nr 1, 006 Zbigniew Gmyrek Wyższa Szkoła Informatyki, Katedra Inżynierskich Zastosowań Informatyki, 93-008 Łódź, ul Rzgowska 17a email: gmyrek@wsinf.edu.pl MODELOWANIE ISTEREZY
Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek
1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka
Podstawy fizyki subatomowej
Podstawy fizyki subatomowj Wykład marca 09 r. Modl Standardowy Modl Standardowy opisuj siln, słab i lktromagntyczn oddziaływania i własności cząstk subatomowych. cząstki lmntarn MS: lptony, kwarki, bozony
Wykład 4: Termy atomowe
Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział
Masy atomowe izotopów. turalabundance.pdf
Rozpady Masy atomow izotopów https://chmistry.scincs.ncsu.du/msf/pdf/isotopicmass_na turalabundanc.pdf Rozpady radioaktywn dn = λndt N( t) = N 0 λt A(t) aktywność = dddd dddd λ ilość rozpadów na skundę
Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny
Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E
Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.
A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna
w rozrzedzonych gazach atomowych
w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal
6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły
6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü
CHARAKTERYSTYKA OBCIĄŻENIOWA
Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i
2. Architektury sztucznych sieci neuronowych
- 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak
KONSTRUKCJE DREWNIANE I MUROWE
POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 2 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska POKRYCIE DACHU gont bitumiczny, papa na dskowaniu, dachówka karpiówka,
WYKORZYSTANIE PODSTAWOWYCH PRAW FIZYKI W MODELOWANIU WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁU
MODELOWANIE INśYNIERSKIE ISSN 896-77X 5 s. -8 Gliwic 8 WYKORZYSTANIE PODSTAWOWYCH PRAW FIZYKI W MODELOWANIU WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁU TADEUSZ WEGNER DARIUSZ KURPISZ Instytut Mchaniki Stosowanj
Model Atomu Bohra. Część 2
Część Modl Atomu Bohra.1: Modl atomu Thomsona i Ruthrforda.: Modl Ruthrforda.3: Klasyczny Modl Atomu.4: Modl Bohra atomu wodoru.5: Liczby atomow a rntgnowski widma charaktrystyczn.6: Zasada korspondncji..7:
13. Optyka Polaryzacja przez odbicie.
13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.
Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.
Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości
Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski
Optymaln rozmiszczani tłumików lpkosprężystych na rami płaskij Macij Dolny Piotr Cybulski Poznań 20 Spis trści. Wprowadzni 3.. Cl opracowania...3.2. Znaczni tłumików drgań.3 2. Omówini sposobu rozwiązania
Michał Brzozowski Wykład 40 h Makrokonomia zaawansowana Część I: Ekonomia Montarna Dyżur: onidziałki.30 2.45, p. 409 E-mail: brzozowski@wn.uw.du.pl http://coin.wn.uw.du.pl/brzozowski lan wykładu. Czym
Zjawisko Zeemana (1896)
iczby kwantow Zjawisko Zana (1896) Badani inii widowych w siny pou agntyczny, prowadzi do rozszczpini pozioów nrgtycznych. W odu Bohra, kwantowani orbitango ontu pędu n - główna iczba kwantowa n = 1,,
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
gdzie: E ilość energii wydzielona z zamiany masy na energię m ubytek masy c szybkość światła w próŝni (= m/s).
1 Co to jst dfkt masy? Ŝli wskutk rakcji chmicznj masa produktów jst mnijsza od masy substratów to zjawisko taki nazywamy dfktm masy Ubytkowi masy towarzyszy wydzilani się nrgii ówimy Ŝ masa jst równowaŝna
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM
POLITECHNIKA GDAŃSKA Wydział Elktrotchniki i Automatyki Katdra Enrgolktroniki i Maszyn Elktrycznych LABORATORIUM SYSTEMY ELEKTROMECHANICZNE TEMATYKA ĆWICZENIA MASZYNA SYNCHRONICZNA BADANIE PRACY W SYSTEMIE
11. Zjawiska korpuskularno-falowe
. Zjawiska korpuskularno-falow.. Prominiowani trmizn Podstawow źródła światła: - ogrzan iała stał lub gazy, w który zaodzi wyładowani lktryzn. misja absorpja R - widmowa zdolność misyjna prominiowania
Zagadnienie statyki kratownicy płaskiej
Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych
Przedmiotowy system oceniania z fizyki w klasie II rok szkolny 2016/2017
objmujący trści nauczania zawart w podręczniku Spotkania z fizyką" cz. 3 (a takż w programi nauczania) Elktrostatyka (6-7 godz. + 2 godz. (łączni) na powtórzni matriału (podsumowani działu i sprawdzian)
( t) UKŁADY TRÓJFAZOWE
KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni
DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH
LABORATORIUM DYNAMIKI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mchaniki Stosowanj Zakład Wibroakustyki i Bio-Dynamiki Systmów Ćwiczni nr 3 Cl ćwicznia: DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH
EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.
EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Fotometria i kolorymetria
. odstawow wilkości radio- i fotomtryczn (jdnostki nrgtyczn i świtln). rawa i zalżności fotomtrii (Lambrta, fotomtryczn, prawa odlgłości). http://www.if.pwr.wroc.pl/~wozniak/fotomtria Mijsc i trmin konsultacji:
ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH
ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH Mimo, ż przstrznn konstrkcj kratow znan yły od dawna (por.[17]), to do nidawna stosowan yły stosnkowo rzadko, co yć moż spowodowan yło sporymi kłopotami oliczniowymi,
y(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)
Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych
Oddziaływanie elektronu z materią
Oddiaływani lktronu matrią p p X-ray p wt wt A wt p - lktron pirwotny, 0-3000V. wt - lktron wtórny, 0-0 V. A- lktron Augr a, 0-000V. X-ray- proiowani X, 000-000V. - plamon, 0-80 V. - fonon, 0,0-0,5V. Zdrni
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Źródła promieniotwórcze. Zjawisko promieniotwórczości
Źródła prominiotwórcz Zjawisko prominiotwórczości Układ okrsowy pirwiastków chmicznych zawira obcni 11 pirwiastków o przypisanych nazwach. Ostatnim jst Coprnicium, którgo nazwa została oficjalni zatwirdzona
.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk
Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży
Rozwiązanie równania różniczkowego MES
Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl
SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM
SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM 7. DIAGNOSTYKA PLAZMY - WYZNACZANIE GĘSTOŚCI ELEKTRONOWEJ (opracowani: Jolanta Borkowska-Burncka, Zakład Chmii Analitycznj i Mtalurgii Chmicznj, Wydział
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne
Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,
OBLICZANIE EFEKTYWNEJ PRZEWODNOŚCI CIEPLNEJ KOMPOZYTÓW WŁÓKNISTYCH W PRZYPADKU NIEUSTALONEGO PRZEPŁYWU CIEPŁA
KOMPOZYTY (COMPOSITES) 5(005)4 Natalia Rylko Akadmia Pdagogiczna im. KEN, Instytut Tchniki, ul. Podchorążych, 30-084 Kraków OBLICZANIE EFEKTYWNEJ PRZEWODNOŚCI CIEPLNEJ KOMPOZYTÓW WŁÓKNISTYCH W PRZYPADKU
Ćw. 27. Badanie właściwości statystycznych elektronów emitowanych z katody lampy próżniowej
Ćw. 7. Badani właściwości statystycznych lktronów itowanych z katody lapy próżniowj Michał Urbański 1. Wprowadznia Kintyczna toria gazów i atrii została sforułowana pod konic XIXw. i spowodowała rwolucję
Wprowadzenie Nieparametryczne metody analizy widmowej: periodogram (Schustera) i periodogram ważony Literatura uzupełniająca z analizy widmowej
LIZ WIDMOW Wprowadzni iparamtryczn mtody analizy widmowj: priodogram (Schustra) i priodogram ważony Litratura uzupłniająca z analizy widmowj Ewa Hrmanowicz, p.6, konsultacj: ponidziałk godz. :3 do 5:3,
Wielomiany Legendre a
grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
PORÓWNANIE INŻYNIERSKICH METOD ESTYMACJI STRAT W CIENKICH BLACHACH FERROMAGNETYCZNYCH
Zeszyty Naukowe SInf Vol 10, Nr, 011 Zbigniew Gmyrek ydział Informatyki i Zarządzania yższa Szkoła Informatyki w Łodzi PORÓNANIE INŻYNIERSKICH METOD ESTYMACJI STRAT CIENKICH BLACHACH FERROMAGNETYCZNYCH
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Zastosowanie promieniowania synchrotronowego w spektroskopii mössbauerowskiej. Artur Błachowski
Zastosowani prominiowania synchrotronowgo w spktroskopii mössbaurowskij Artur Błachowski Zakład Spktroskopii Mössbaurowskij Instytut Fizyki Akadmia Pdagogiczna w Krakowi - Prominiowani synchrotronow (PS)
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21
PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1 p (mb) 1 C Fusion iquid Solid 113 6.11 Vapor 1 374 (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty
Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz
1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,
Wykład 25. Kwantowa natura promieniowania
1 Wykład 5 Kwantowa natura prominiowania 1.1 Prominiowani cipln. Ciała, któr podgrzwan są do dostatczni wysokich tmpratur świcą. Świcni ciał, któr spowodowan jst nagrzwanim, nazywa się prominiowanim ciplnym
Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1
Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY
Nr zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr Etapy rozwiązania zadania czynności Obliczenie wyróżnika oraz pierwiastków trójmianu
Reguła de L Hospitala. Reguła de L Hospitala - odpowiedzi. Różniczka funkcji. Różniczka funkcji - odpowiedzi. Styczna i normalna
REGUŁA DE L HOSPITALA Rguła d L Hospitala Oblicz granicę: a lim b lim + f lim ln+ k lim l lim p u lim z lim + ln ln c lim g lim ln h lim ln sin q lim + v lim lim arc ctg π ln sin lnln sin d lim lim i lim
ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH
Strona z 9 ENERGETYCZNE KRYTERUM STANÓW GRANCZNYC DA MATERAŁÓW KOMÓRKOWYC Piotr Kordzikowki Małgorzata Janu-Michalka Ryzard B. Pęchrki Katdra Wytrzymałości Matriałów ntytut Mchaniki Budowli Wydział nżynirii
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Analiza danych jakościowych
Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.
Zadania optymalizacyjne
Zadania optymalizacyjne Zadania optymalizacyjne, to zadania, w których należy obliczyć, jakie warunki muszą być spełnione, aby pewna wielkość osiągała największą lub najmniejszą wartość Żeby żądane warunki
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś
Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w
A L (nh) zmierzone w kombinacji z połówką rdzenia bez szczeliny / A L (nh) measured in combination with ungapped core half
ll right strictly rsrvd. Przgląd / Survy ETD9/6/ - 3C9 Rdzń podstawowy / asic cor 43 399 Waga / Wight 4 [g] Szczlina powitrzna ; opis produktu / ir gap ; dscription L (nh) zmirzon w kombinacji z połówką
3. Struktura pasmowa
3. Strutura pasmowa Funcja Blocha Quasi-pęd, sić odwrotna Przybliżni prawi swobodngo ltronu Dziura w paśmi walncyjnym Masa ftywna Strutura pasmowa (), przyłady Półprzwodnii miszan ltron w rysztal sformułowani
Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych
Obsrwacj świadcząc o dyskrtyzacji widm nrgii w strukturach niskowymiarowych 1. Optyczn Widma: - absorpcji wzbudzani fotonami o coraz większj nrgii z szczytu pasma walncyjngo do pasma przwodnictwa maksima
ZESPÓŁ B-D ELEKTROTECHNIKI
ZESÓŁ B-D ELEKTOTECHNIKI Laboratorium Elktrotchniki i Elktroniki Samochodowj Tmat ćwicznia: Badani rozrusznika Opracowani: dr hab. inż. S. DUE 1. Instrukcja Laboratoryjna 2 omiary wykonan: a) omiar napięcia
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałości Matriałów i Mtod Komputrowych Mchaniki Rozprawa doktorska Tytuł: Optymalizacja układów powirzchniowych z wykorzystanim
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2
Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony
Zjonizowana cząstczka wodoru H - lktron i dwa protony Enrgia potncjalna lktronu w polu lktrycznym dwu protonów ˆ pˆ H = m pˆ 1 m p pˆ m p 1 1 1 4πε 0 r0 r1 r Hamiltonian cząstczki suma nrgii kintycznj
Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.
modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:
Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego
Ćwiczni 4 Ralizacja programowa dwupołożniowj rgulacji tmpratury pica lktryczngo. Cl ćwicznia Clm ćwicznia jst zaznajomini z podstawami rgulacji obiktów ciągłych na przykładzi strowania dwupołożniowgo komputrowgo
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Rachunek Prawdopodobieństwa MAP1064, 2008/09
1 Rachunk Prawdopodobiństwa MAP1064, 008/09 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 10-1 Opracowani: dr hab. Agniszka Jurlwicz Litratura: [1] A. Plucińska, E. Pluciński,
JANOWSCY. Wielkości geometryczne i statyczne figur płaskich. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski
anowsc s.c. ul. Krzwa /5, 8-500 Sanok NIP:687-1--79 www.janowsc.com ANOSCY projktowani w budownictwi ilkości gomtrczn i statczn figur płaskich ZESPÓŁ REDAKCYNY: Dorota Szafran akub anowski incnt anowski
Wykład FIZYKA II. 9. Optyka - uzupełnienia. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 9. Optyka - uzupłninia Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politchniki Wrocławskij http://www.if.pwr.wroc.pl/~wozniak/ PRZYRZĄDY OPTYCZNE - LUPA Lupa najprostszy przyrząd,
ZASTOSOWANIA POCHODNEJ
ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym