Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych"

Transkrypt

1 Obsrwacj świadcząc o dyskrtyzacji widm nrgii w strukturach niskowymiarowych 1. Optyczn Widma: - absorpcji wzbudzani fotonami o coraz większj nrgii z szczytu pasma walncyjngo do pasma przwodnictwa maksima odzwircidlają strukturę obu pasm (w szczgólności CB) gęstości stanów - PL, fotoluminscncja obsrwacja intnsywności misji po wzbudzniu głęboko do CB (najsilnijsza misja zwykl dla ni zabroniongo przjścia z dna CB do szczytu VB) - PLE, widma wzbudznia obsrwujmy misję (maksimum) al w funkcji zminiającj się nrgii wzbudznia odzwircidla t sam struktury CB co absorpcja wzbudznia do szczgólnych stanów w CB

2

3 własności lktryczn

4 Rzonansow tunlowani przz DBS

5 Fotoprąd w suprsiciach

6 Pojdyncz htrozłącz Położni poziomu Frmigo a. mtal: nrgia najwyższgo obsadzongo poziomu w tmpraturz 0 K; b. półprzwodnik samoistny: E F = 1 2 E g m T ln ( ) m (licząc od szczytu pasma walncyjngo; E g szrokość przrwy; m /h - masy lktronów/dziur ) dowód: obsadzni poziomów nrgtycznych frmionów (lktronów, dziur) rozkład Frmigo-Diraca: k B h dla E>>E F, f ( E) = ( E E F 1 ) / kt + 1 ( E F E) / kt zakładając paraboliczną, na dni pasma przwodnictwa, rlację dysprysjną E(k), to ilość stanów lktronowych (w 3D) o nrgiach z przdziału pomiędzy E i E+dE wynosi (na jdnostkę objętości) 3 / 2 1/ 2 2 g ) 1 2m n( E) de = ( E E 2 2π (gdyż n(k)dk=n(e)de, a n(k)~k 2 dk, oraz dk/de~(e-e g ) -1/2 ) natomiast liczba wszystkich lktronów (w paśmi przwodnictwa) (to jst liczba lktronów/jdn.obj = koncntracja) n = E g 2πm kt n( E) f ( E) de = / 2 de ( E F E g ) / kt

7 podobni p = 2πmh kt 2 2 h 3 / 2 E F / kt koncntracja dziur (poniważ dziury w paśmi walncyjnym powstają przz obcność lktronów w paśmi przwodnictwa) f d = 1 f ( E E F ) / kt iloczyn n*p wyraża tzw. prawo działania mas; (iloczyn koncntracji ni zalży od E F, zalży tylko od iloczynu m *m h i od E g ) dla samoistngo półprzwodnika n=p zatm co daj ( ) 2E F / kt m = m h 3 / 2 E g / kt al tak jst tylko w najprostszym modlu - CB i VB nizdgnrowan i opisan najprostszym modlm n(e) w rzczywistości VB jst na ogół zdgnrowan, każd z pasm (i) składających się na VB ma inną gęstość n i (E) c. przwodniki domiszkowan (nisamoistn): Tu obraz jst bardzij skomplikowany; w T= 0 K, E F ~ pomiędzy poziomm donorowym/akcptorowym a dnm odpowidnigo pasma (dla płytkich domiszk, E d << E g, E F ~ E d )

8 Dwa różn ośrodki przd połącznim (złącz w postaci idalnj płaszczyzny (prostopadłj do kir. Z) Jdynym poziomm odnisinia jst poziom próżni względm tgo poziomu wyznaczon są - potncjały jonizacyjn - powinowactwa lktronow - położni poziomów Frmigo po złączniu ośrodków wyrównani poziomu Frmigo (traz z df. dla układu 2 ośrodków) mtal: przpływ swobodnych nośników aż do wyrównania E F ; moż pojawić się skok potncjału na złączu półprzwodniki samoistn (zawsz istniją niintncjonaln domiszki umożliwiając przpływ ładunków z donorów i akcptorów zmirzający do wyrównania E F ) dla idalnych półprzwodników: przsunięci ładunku na złączu związan z wiązanim w sić kryst., powodując lokalny skok potncjału i częściow wyrównani E F inaczj: charaktr kowalncyjno-jonowy wiązań jst inny po obu stronach złącza, co będzi prowadziło do przsunięcia ładunku na złączu

9 charaktr wiązania na złączu ulgni zmiani (ni jst zrównoważon), nastąpi przsunięci (czyli polaryzacja) na złączu (tu: atomy As po obu stronach złącza mają inn otoczni niż w macirzystym krysztal) analogia do wiązania chmiczngo w cząstczkach htroatomowych - polarność wiązań molkularni: E V = nrgia ostatnigo zajętgo orbitala molkularngo HOMO E C = nrgia pirwszgo niobsadzongo orbitala molkularngo LUMO względn położnia HOMO i LUMO mogą być oszacowan na podstawi kwantowo-chmicznych obliczń półmpirycznych lub ab initio

10 z HOMO i LUMO powstają pasma, walncyjn i przwodnictwa rguła wspólngo anionu (Harrison, 1977) z dokładnością do kilku dzisiątych V, dwa półprzwodniki posiadając wspólny anion (np. GaAs, AlAs), tę samą strukturę krystaliczną, oraz podobną stałą sici, mają prawi zrowy tzn. na ogół znaczni mnijszy -

11 (rzędu kilku dzisiątych V) offst położń brzgów pasma walncyjngo np.: GaAs / InAs, przrwa GaAs Eg 1.5 V przrwa InAs - Eg 0.5 V offst Ec 0.8 V, offst Ev 0.2 V można tż wyznaczać band offsts ksprymntalni Rodzaj htrozłącz: I rodzaju II rodzaju prznisini ładunku - złącz przwodząc studni kwantow: jśli szrokość studni, d, jst mzoskowpowych rozmiarów to ruch wntualnych nośników (lktronów na dni pasma przwodnictwa czy dziur w paśmi walncyjnym), który jst kwazi-swobodny w litym jdnorodnym ośrodku 3D, moż zostać istotni ograniczony w kirunku prostopadłym do płaszczyzny złącz w obszarz ośrodka tworzącgo studnię

12 A B A W obszarz A ni mogą istnić lktrony o nrgiach z dna pasma obszaru B Jśli szrokość studni jst b. mała to kwazi-swobodny ruch nośników w obszarz B (o nrgiach bliskich dna pasma) staj się kwazi-dwuwymiarowy przstrznn ograniczni klasyczngo ruchu cząstki prowadzi do kwantyzacji (dyskrtyzacji) widma nrgii bariry potncjału: B A B Potncjał próżni zwykl głęboko w paśmi przwodnictwa => W litych kryształach lktrony obsadzając dno pasmo przwodnictwa (w półprzwodnikach, lub nrgtyczny obszar blisko E F w mtalach) stanowią kwaziswobodny gaz 3D

13 W bardzo cinkich studniach kwantowych gaz jst kwazi-2d W układach 1-wymiarowych ograniczni kwaziswobodngo ruchu lktronów w 2 wymiarach => gaz kwazi-1d W układach 0-wymiarowych: lktrony (w pwnych zakrsach nrgii) ograniczon w swobodnym ruchu w wszystkich kirunkach przstrznnych = gaz-0d = całkowita dyskrtyzacja nrgii Gęstość stanów gazu nd w układach niskowymiarowych Ilość stanów w przdzial (E, E+dE) ρ(e)de = jdnostkę objętości 1. 3D; swobodn cząstki o masi m nałóżmy warunki priodyczności Borna-von Karmana (L X = L Y = L Z ) k x 3 n2π 8π = Ω0 = ρ( k ) = 3 L L x 1 3 8π Ω 0 - obj. lmntarnj komórki w przstrzni k nrgia zalży tylko od modułu k, zatm wszystki stany o tj samj nrgii (z przdz. E, E+dE) lżą na sfrz o prominiu k, i grubości dk, 2 3 / 2 3 4πk m 2 ρ ( k) d k = dk = E 1/ de = ρ( E) de π π 2 gdyż E=h 2 k 2 /2m => zatm w 3D

14 3/ 2 m ρ ( E) = E 2 3 π 2 1/ D swobodn cząstki w 2 wymiarach 2 2πk m m ρ( k ) d k = dk = de ρ( E) = 2 4π π π stała! 3. 1D gaz 1-wymiarowy 4. 0D widmo dyskrtn m / 2 ρ( E) = E π 1/ 2 ρ( E ) = k δ ( E ) i i E i Co nas będzi intrsowało? Przjścia optyczn (widmo nrgii [gęstości]) w obszarz bliskim brzgów pasm Własności lktryczn: transport (nrgi bliski brzgom pasm) Wpływ przstrznngo ogranicznia na widma domiszk i kscyt. Wpływ zwnętrznych pól Cntraln zadani: Znajomość E(k) blisko brzgów pasm

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

Przejścia kwantowe w półprzewodnikach (kryształach)

Przejścia kwantowe w półprzewodnikach (kryształach) Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

3. Struktura pasmowa

3. Struktura pasmowa 3. Strutura pasmowa Funcja Blocha Quasi-pęd, sić odwrotna Przybliżni prawi swobodngo ltronu Dziura w paśmi walncyjnym Masa ftywna Strutura pasmowa (), przyłady Półprzwodnii miszan ltron w rysztal sformułowani

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0 Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowj Wykład marca 09 r. Modl Standardowy Modl Standardowy opisuj siln, słab i lktromagntyczn oddziaływania i własności cząstk subatomowych. cząstki lmntarn MS: lptony, kwarki, bozony

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1) 11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony Zjonizowana cząstczka wodoru H - lktron i dwa protony Enrgia potncjalna lktronu w polu lktrycznym dwu protonów ˆ pˆ H = m pˆ 1 m p pˆ m p 1 1 1 4πε 0 r0 r1 r Hamiltonian cząstczki suma nrgii kintycznj

Bardziej szczegółowo

Indywidualna Pracownia Elektroniczna 2013/2014. Indywidualna Pracownia Elektroniczna Badanie diod półprzewodnikowych 8-X

Indywidualna Pracownia Elektroniczna 2013/2014. Indywidualna Pracownia Elektroniczna Badanie diod półprzewodnikowych 8-X ndywidualna Pracownia Elktroniczna 03/04 http://p.fuw.du.pl/ Wojcich DOMNK ndywidualna Pracownia Elktroniczna 03 Wykłady sala 7 na Pastura Badani diod -X-03-4 półprzwodnikowych Tranzystor bipolarny. Wzmacniacz

Bardziej szczegółowo

w rozrzedzonych gazach atomowych

w rozrzedzonych gazach atomowych w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Wprowadzenie do struktur niskowymiarowych

Wprowadzenie do struktur niskowymiarowych Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu

Bardziej szczegółowo

Półprzewodnikowe elementy aktywne.

Półprzewodnikowe elementy aktywne. Wykład 2 Półprzwodnikow lmnty aktywn. 17 kwitnia 2018 Wstęp 1. Półprzwodniki 2. Złącz p-n 2.1 Diody prostując 2.2 misja światła 2.3 fkt tunlowy i Znra 3. Tranzystory 3.1 Zasada działania 3.2 Obwody 4.

Bardziej szczegółowo

Elektron, atom, kryształ w polu magnetycznym

Elektron, atom, kryształ w polu magnetycznym Właściwości magnetyczne ciał stałych Podstawowe pojęcia: Diamagnetyzm - zjawisko polegające na indukcji w ciele stałym znajdującym się w zewnętrznym polu magnetycznym - pola przeciwnego do pola zewnętrznego;

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone.

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. Podsumowani W Obsrw. przjść wymusz. przz pol EM tylko, gdy różnica populacji. Tymczasm w zakrsi fal radiowych poziomy są ~ jdnakowo obsadzon. Nirównowagow rozkłady populacji pompowani optyczn (zasada zachowania

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

3. Struktura pasmowa

3. Struktura pasmowa 3. Stutua pasmowa Funcja Blocha Quasi-pęd, sić odwotna Pzybliżni pawi swobodngo ltonu Dziua w paśmi walncyjnym Masa ftywna Stutua pasmowa (), pzyłady Półpzwodnii miszan lton w ysztal sfomułowani poblmu

Bardziej szczegółowo

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków Sygnał Analiza składu chmiczngo powirzchni Analiza składu chmiczngo powirzchni Sposoby analizy Rjstrujmy cząstki mitowan z powirzchni Tchniki lktronow -molkuł - fragmntów Emisja: -atomów - lktronów - fotonów

Bardziej szczegółowo

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Elektrony i dziury obsadzenie stanów

Elektrony i dziury obsadzenie stanów Wyład 14 ltrony i dziury obsadzni stanów Rozład Frmigo-Diraca f 1+ Prawdopodobiństwo obsadznia stanu wantowgo o nrgii F potncjał cmiczny F F 1 U T F n i F TS F - nrgia swobodna Hlmoltza J. Gintr Półprzwodni

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

ĆWICZENIE J15. Celem ćwiczenia jest zbadanie efektu Comptona poprzez pomiar zależności energii rozproszonych kwantów gamma od kąta rozproszenia.

ĆWICZENIE J15. Celem ćwiczenia jest zbadanie efektu Comptona poprzez pomiar zależności energii rozproszonych kwantów gamma od kąta rozproszenia. ĆWICZNI J15 Badani fktu Comptona Clm ćwicznia jst zbadani fktu Comptona poprzz pomiar zalżności nrgii rozproszonych kwantów gamma od kąta rozprosznia. Wstęp fkt Comptona to procs nilastyczngo rozprosznia

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

Fizyka w doświadczeniach

Fizyka w doświadczeniach Matriały do wykładu 11. Elktrony wwnątrz matrii 11.1 Wstęp Fizyka w doświadczniac Krzysztof Korona Arcolodzy mają zwyczaj dzilić poki wdług matriałów, któr były najważnijsz w danyc czasac dla człowika.

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

W5. Rozkład Boltzmanna

W5. Rozkład Boltzmanna W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został

Bardziej szczegółowo

Temat: Pochodna funkcji. Zastosowania

Temat: Pochodna funkcji. Zastosowania Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Wykład VI. Teoria pasmowa ciał stałych

Wykład VI. Teoria pasmowa ciał stałych Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Model Atomu Bohra. Część 2

Model Atomu Bohra. Część 2 Część Modl Atomu Bohra.1: Modl atomu Thomsona i Ruthrforda.: Modl Ruthrforda.3: Klasyczny Modl Atomu.4: Modl Bohra atomu wodoru.5: Liczby atomow a rntgnowski widma charaktrystyczn.6: Zasada korspondncji..7:

Bardziej szczegółowo

Zjawisko Zeemana (1896)

Zjawisko Zeemana (1896) iczby kwantow Zjawisko Zana (1896) Badani inii widowych w siny pou agntyczny, prowadzi do rozszczpini pozioów nrgtycznych. W odu Bohra, kwantowani orbitango ontu pędu n - główna iczba kwantowa n = 1,,

Bardziej szczegółowo

Masy atomowe izotopów. turalabundance.pdf

Masy atomowe izotopów.   turalabundance.pdf Rozpady Masy atomow izotopów https://chmistry.scincs.ncsu.du/msf/pdf/isotopicmass_na turalabundanc.pdf Rozpady radioaktywn dn = λndt N( t) = N 0 λt A(t) aktywność = dddd dddd λ ilość rozpadów na skundę

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

NC6 Pomiary widma efektu fotoelektrycznego

NC6 Pomiary widma efektu fotoelektrycznego 1. Efkt fotolktryczny C6 Pomiary widma fktu fotolktryczngo Fotony padając na matriał w pirwszj koljności przkazują swoją nrgię lktronom. Jżli wzbudzon lktrony zostaną wyrzucon z matriału w próżnię, będzimy

Bardziej szczegółowo

WYKŁAD 4. W atomach elektrony mogą przyjmować dyskretne wartości energii - mówimy, że mogą znajdować się na pewnych poziomach energetycznych.

WYKŁAD 4. W atomach elektrony mogą przyjmować dyskretne wartości energii - mówimy, że mogą znajdować się na pewnych poziomach energetycznych. 31 WYKŁAD 4 Przwodnicwo kryszałów. W aomach lkrony mogą przyjmować dyskrn warości nrgii - mówimy, ż mogą znajdować się na pwnych poziomach nrgycznych. ATOM KRYSZTAŁ nrgia aom zjonizowany pasmo przwodnicwa

Bardziej szczegółowo

4. Statystyka elektronów i dziur

4. Statystyka elektronów i dziur 4. Statystya ltroów i ziur Gęstość staów Koctracja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i acptory Półprzwoi omiszoway, zalżość octracji swoboyc ośiów i poziomu

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo

Materia skondensowana

Materia skondensowana Matria skondnsowana Jack.Szczytko@fuw.du.pl http://www.fuw.du.pl/~szczytko/nt Podziękowania za pomoc w przygotowaniu zajęć: Prof. dr hab. Pawł Kowalczyk Prof. dr hab. Dariusz Wasik Uniwrsytt Warszawski

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

PTPN ćwiczenie 3. (NC6) Pomiary widma efektu fotoelektrycznego

PTPN ćwiczenie 3. (NC6) Pomiary widma efektu fotoelektrycznego PTP ćwiczni 3. (C6) Pomiary widma fktu fotolktryczngo 1. Efkt fotolktryczny Fotony padając na matriał w pirwszj koljności przkazują swoją nrgię lktronom. Jżli wzbudzon lktrony zostaną wyrzucon z matriału

Bardziej szczegółowo

Projektowanie materiałów i struktur

Projektowanie materiałów i struktur Projktowani matriałów i struktur Marta Gładysiwicz-Kudrawic, p. 9 A-1 Warunki zalicznia: Zaliczni wykładu na podstawi tstu. Zaliczni laboratorium na ocnę dostatczną na podstawi trzch projktów Proram tablicujący

Bardziej szczegółowo

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO wyprowadzenie bez mechaniki kwantowej. Opracował mgr inż. Herbert S. Mączko Celem jest wyznaczenie objętościowej gęstości energii ρ T promieniowania w równoległościennej,

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Fizyka Laserów wykład 10. Czesław Radzewicz

Fizyka Laserów wykład 10. Czesław Radzewicz Fizyka Laserów wykład 10 Czesław Radzewicz Struktura energetyczna półprzewodników Regularna budowa kryształu okresowy potencjał Funkcja falowa elektronu. konsekwencje: E ψ r pasmo przewodnictwa = u r e

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

4. Statystyka elektronów i dziur

4. Statystyka elektronów i dziur 4. Statystya ltroów i ziur Gęstość staów Kotraja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i aptory Półprzwoi omiszoway, zalżość otraji swoboy ośiów i poziomu

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Krawędź absorpcji podstawowej

Krawędź absorpcji podstawowej Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Fizyka w doświadczeniach

Fizyka w doświadczeniach Matriały do wykładu 12. Elktrony wwnątrz matrii 12.1 Wstęp Fizyka w doświadczniac Krzysztof Korona Arcolodzy mają zwyczaj dzilić poki wdług matriałów, któr były najważnijsz w danyc czasac dla człowika.

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Statystyki kwantowe. P. F. Góra

Statystyki kwantowe. P. F. Góra Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Wykład 4: Termy atomowe

Wykład 4: Termy atomowe Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

ELEKTRONIKA I ENERGOELEKTRONIKA

ELEKTRONIKA I ENERGOELEKTRONIKA ELEKTRONIKA I ENERGOELEKTRONIKA wykład 2 PÓŁPRZEWODNIKI luty 2008 - Lublin krzem u ej n o z r o w t rze i p o ytk d u pł m rze k Od m ik ro pr oc es or ET F S MO p rzy rząd Od p iasku do Ten wykład O CZYM

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

Równanie Shockley a. Potencjał wbudowany

Równanie Shockley a. Potencjał wbudowany Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja

Bardziej szczegółowo

stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują

stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują Strszczni W8: stany nistacjonarn nistacjonarn suprpozycj stanów lktronowych prominiują polaryzacja składowych zmanowskich = wynik szczgólnj wolucji stanów nistacjonarnych w polu B przjścia wymuszon przz

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Zastosowanie promieniowania synchrotronowego w spektroskopii mössbauerowskiej. Artur Błachowski

Zastosowanie promieniowania synchrotronowego w spektroskopii mössbauerowskiej. Artur Błachowski Zastosowani prominiowania synchrotronowgo w spktroskopii mössbaurowskij Artur Błachowski Zakład Spktroskopii Mössbaurowskij Instytut Fizyki Akadmia Pdagogiczna w Krakowi - Prominiowani synchrotronow (PS)

Bardziej szczegółowo

Spektroskopia oscylacyjna

Spektroskopia oscylacyjna Spktroskopia oscylacyjna Typ zmian kwantowych Zmiana: spinu orintacji konfiguracji rozkładu lktronowgo konfig. jądrowj Rodzaj spktroskopii Rotująca molkuła Jak szybko cząstczka obraca się? E J=1 (CO) =

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

Wykład V Złącze P-N 1

Wykład V Złącze P-N 1 Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO.

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. Funkcja rozkładu Fermiego-Diraca T=0K T>0K 1 f ( E ) = 0 dla dla E E F E > EF f ( E, T ) 1 = E E F kt e + 1 1 T>0K Funkcja rozkładu Fermiego-Diraca

Bardziej szczegółowo