Uogólnione wektory własne
|
|
- Czesław Mucha
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do wartości własnj λ4 macirzy A Wktory własn do wartości własnj λ4: M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5- m 3 dt( A λ I) ( 3 λ )( 4 λ ) λ 3 λ λ 4 oraz,, v Wybiramy v T a drugi wktor znajdujmy jako ortogonalny do v v v + v 3 T A więc do potrójnj wartości własnj λ4 istniją tylko dwa wktory własn. Jst to przyczyna z powodu którj ni potrafimy zdiagonalizować macirzy A. m
3 Uogólnion wktory własn Znajdzimy traz uogólniony wktor własny rzędu do wartości własnj λ4: ( A I) ( A I) np. Natomiast ni istnij uogólniony wktor własny rzędu 3 do wartości własnj λ4, poniważ musiałyby zachodzić jdnoczśni warunki: 3 ( A I) A I czyli składowa 4 wktora musiałaby być jdnoczśni równa zro i różna od zra, co jst nimożliw. M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-3
4 Ciągi uogólnionych wktorów własnych,,... ( A I) j - λ j+ gdzi j m-, m-,..., Dfinicja: Ciągim gnrowanym przz uogólniony wktor własny rzędu m stowarzyszony z wartością własną λ nazywamy zbiór wktorów okrślony przz: Przykład: Znajdź ciąg gnrowany przz uogólniony wktor własny rzędu do wartości własnj λ4 z poprzdnigo przykładu. A wic gnrowany ciąg ma postać m M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-4 m { } m m- A I 4 T { } T {, } ( ),( ) Twirdzni: Jśli jst uogólnionym wktorm własnym rzędu m macirzy A do j wartości własnj λ, wtdy okrślon rlacją (*) jst uogólnionym wktorm własnym rzędu j do tj samj wartości własnj. m Dowód: Mamy m A I oraz ( A I) λ m λ m ( A I) m j ( A I) j λ j+ λ j m m A λ I j A λ I m j u.w.w. j m ( A I) λ ( A λ I) rzędu j j m (*)
5 Ciągi uogólnionych wktorów własnych Twirdzni: Każdy ciąg uogólnionych wktorów własnych jst układm wktorów liniowo nizalżnych. Dowód (indukcyjny): Dla ciągu o długości uogólniony wktor własny jst po prostu wktorm własnym, a więc, dlatgo M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-5 c c Załóżmy, ż wszystki ciągi zawirając dokładni k- wktorów są liniowo nizalżn i rozważmy ciąg złożony z k wktorów. Chcmy pokazać, ż c + c c c c... c k k k k - k k Mnożymy od lwj strony przz (A-λI) k-. Dla wszystkich j < k zachodzi: ( A I) k ( A I) k j c ( A I) j ( A I) k j - λ j j c j - λ - λ j c j - λ k Stąd mamy c k ( A I) - λ k k ( A I) c k al - λ k A więc zachodzi ck k c k-,..., c c... c Al układ wktorów jst ciągim o długości k-, który z założnia jst zbiorm wktorów liniowo nizalżnych. A więc mamy k k
6 Baza kanoniczna Dfinicja: Bazą kanoniczną dla macirzy A stopnia n nazywamy układ n liniowo nizalżnych uogólnionych wktorów własnych złożony całkowici z ciągów (tzn. ż jśli uogólniony wktor rzędu m pojawia się w bazi to równiż w bazi występuj cały ciąg gnrowany przz tn wktor). Uwaga: Najprostszą bazą kanoniczną (jśli istnij) jst baza złożona z liniowo nizalżnych wktorów własnych (ciągów o długości ). Taka baza istnij zawsz kidy wartości własn macirzy są różn. ( 3 5 ) Przykład: Znajdź bazę kanoniczną dla macirzy Wartości własn i wktory własn dan są przz: λ : u A 4 ( 5) : u λ T A więc baza kanoniczna macirzy A to ( 5 ),( ) { T} M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-6
7 Baza kanoniczna Znajdowani ciągów gnrowanych przz uogólnion wktory własn do wilokrotnych wartości własnych macirzy kwadratowj A stopnia n: oznaczamy krotność wartości własnj λ przz m i znajdujmy najmnijszą całkowitą liczbę dodatnią p dla którj rząd macirzy (A-λI) p jst równy n-m, k dla każdj wartości znajdujmy liczbę uogólnionych wktorów własnych rzędu k okrślonych przz: N k p k rz( A λ I) rz( A λ I) znajdujmy uogólniony wktor własny rzędu p i konstruujmy ciąg gnrowany przz tn wktor (każdy z tych wktorów nalży do bazy kanonicznj). zmnijszamy wartość każdj z liczb N k o jśli wszystki N k są równ zro, wtdy procdura znajdowania wktorów bazy kanonicznj jst zakończona, w przciwnym wypadku przchodzimy do następngo kroku. znajdujmy uogólniony wktor własny rzędu k, liniowo nizalżny od wszystkich wczśnij znalzionych uogólnionych wktorów własnych, do wartości własnj λ, gdzi k jst największą wartością dla którj N k ni jst równ zro. Wktor tn dołączamy do bazy i wracamy do punktu poprzdnigo. M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-7 k
8 Znajdowani bazy kanonicznj Przykład: Znajdź bazę kanoniczną dla macirzy A. 4 Wartości własn macirzy A to λ4 (o krotności 5) oraz 4 A 4 pojdyncza wartość własna λ7. 4 Dla wartości własnj λ4 mamy: n 6, m 5 oraz n-m 4 7 szukamy najmnijszj liczby p takij z rz(a-4i) p n-m A - 4I A - 4I 3 A - 4I rz(a-4i) 4 rz(a-4i) rz(a-4i) 3 dla każdj liczby k p 3 znajdujmy liczbę uogólnionych wktorów własnych rzędu k: 3 N rz( A I) rz( A I) N rz( A I) rz( A I) N rz( A I) rz( A I) M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-8
9 Znajdowani bazy kanonicznj znajdujmy uogólniony wktor rzędu p3. Nich 3 3 ( A - 4I) 3 6 ( A - 4I) np T Wktor 3 gnruj pozostał wktory ciągu: ( A - 4I) ( ) T A - 4I 3 T T obniżamy wszystki wartości N k o otrzymując: N 3, N i N. y y y y y y y ( A - 4I) y y3 y6 np T y A - 4I y y lub y5 Wktor gnruj pozostał wktory ciągu: y A - 4I y znajdujmy uogólniony wktor własny rzędu. Nich T y T obniżamy wszystki wartości N k o otrzymując: N 3, N i N, a więc zostały znalzion już wszystki wktory bazy kanonicznj do wartości własnj λ4. Ostatnim wktorm bazy kanonicznj jst wktor do wartości własnj λ7. Jst to wktor własny, który możmy wybrać jako z ( ) T Płna baza kanoniczna dla macirzy A to zbiór wktorów {,,, y, y, z } M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-9 3
10 Macirz modalna Dfinicja: Macirzą modalną M dla macirzy A nazywamy macirz tgo samgo stopnia co macirz A, którj kolumnami są wktory bazy kanonicznj macirzy A. Uwaga: Macirz modalna jst odwracalna (zbudowana z wktorów liniowo nizalżnych). Uwaga: Macirz modalna M ni jst jdnoznaczna. Będzimy stosować konwncję, ż: wszystki ciągi o długości poprzdzają dłuższ ciągi, wktory każdgo z ciągów dłuższych niż umiszczamy obok sibi, przy czym rząd wzrasta od lwj do prawj. Przykład: Znajdź macirz modalną M dla macirzy A z poprzdnigo przykładu. Baza kanoniczna dla macirzy A składa się z jdngo ciągu o długości 3: ( ) ( ) ( ) T y ( ) y ( ) z ( ) T T T T 3 T z jdngo ciągu o długości : i z jdngo ciągu o długości : Macirz modalna M ma wic postać: M z y y 3 M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-
11 M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5- Postać kanoniczna Jordana Dfinicja: Klatką Jordana nazywamy macirz kwadratową którj lmnty diagonaln są taki sam, lmnty bzpośrdnio nad diagonalą są równ, a wszystki pozostał lmnty to : J λ λ λ λ λ λ λ λ λ Dfinicja: Mówimy, ż macirz jst w postaci kanonicznj Jordana jśli jst macirzą diagonalną lub ma jdną z następujących postaci blokowych (D macirz diagonalna): D J J J k 3 J J J J k Uwaga: Elmnty diagonaln macirzy D mogą być różn. Uwaga: Choć każda klatka Jordana musi mić jdnakow lmnty na diagonali, to różn klatki Jordana J i (i,, k) mogą mić różn lmnty diagonaln.
12 Postać kanoniczna Jordana Twirdzni: Każda macirz kwadratowa A jst podobna do jakijś macirzy J będącj w postaci kanonicznj Jordana, a transformacja podobiństwa okrślona jst przz macirz modalną M dla macirzy A: - A MJM,,..., r Dowód: (dla pojdynczgo ciągu o długości r złożongo z wktorów ) Każdy z wktorów (i,,, r) jst uogólnionym wktorm własnym rzędu i macirzy i A do tj samj wartości własnj λ. r A λ I r A r λ r ( A I) A λ + r λ r A r λ r A 3 λ 3 + ( A λ I) 3 A 3 λ 3 ( A λ I) A r λ r + r A λ Poniważ jst wktorm własnym, więc dodatkowo mamy: A λ Korzystając z powyższych związków otrzymujmy: AM A[,, 3,..., r] [ A, A, A 3,..., A r] A MJM λ, λ +, λ +,..., λ +,,,..., J MJ [ ] [ ] 3 r r 3 r M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5- -
13 Postać kanoniczna Jordana Przykład: Znajdź macirz J w postaci kanonicznj Jordana, która jst podobna do macirzy A z poprzdnich przykładów. 4 4 A 4 4 M ( z 3 y y ) Macirz w postaci kanonicznj [ ] J M AM J 4 Jordana znajdujmy stosując J 4 transformację podobiństwa: 4 Uogólniony wktor z 4 odpowiadający wartości własnj 7 gnruj macirz diagonalną [7] Ciąg wktorów {,, 3} o długości 3 odpowiadający wartości własnj 4 gnruj klatkę Jordana J, natomiast ciąg wktorów { y, y } odpowiadający tj samj wartości własnj 4 gnruj klatkę Jordana J. M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-3
14 Postać kanoniczna Jordana Przykład: Znajdź postać kanoniczną Jordana dla macirzy: Macirz A ma dwi różn wartości własn: 3 5 λ (krotność m 4) n-m A λ - (krotność m ) n-m rz(a-i) 4 N 3 rz A I rz A I 3,, rz(a-i) 3 N rz( A I) rz( A I) 4 3 rz(a-i) 3 N rz( A I) rz( A I) { y } 6 4 rz(a+i) 4 { z N ( ) rz( A + I) rz( A + I) } { } { t } J J J J 3 J 4 M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-4
15 Funkcj macirzy W przypadku macirzy diagonalizowalnych okrśliliśmy funkcj macirzy przz: ( λ ) ( λ ) Do dfinicji funkcji macirzy dających się przdstawić w postaci kanonicznj Jordana można wykorzystać rozwinięci funkcji w niskończony szrg Taylor a: n d f z n ( f λ f z z λ f λ + f λ )( z λ ) + z λ +... n n n! dz zλ! λ ( k ) f A Sf D S S diag f I,..., f I S Dla pojdynczj klatki Jordana dfiniujmy: - - f λ J I J I ( J I ) f λ f f f ( J I ) 3 λ + λ λ + λ + λ +...! 3! Dfiniujmy macirz N JλI, dla którj mamy: N, N,..., N k - M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-5
16 Funkcj macirzy ( k A więc ) ( k ) f λ f λ f λ f λ f ( λ )!!!! k k! ( k ) ( k ) 3 f λ f λ f λ f ( λ )!! ( k )! ( k )! λ 3 ( k ) ( k ) 4 3 k i f f f i ( J) f λ λ λ λ f f N!! ( k )! ( k )! i i 4 3 λ f ( λ ) f ( λ )!! f ( λ)! Dla dowolnj macirzy kwadratowj A mamy ( k ) f A Mf J M M diag f J I,..., f J I M - - gdzi J i oznaczają różn klatki Jordana, natomiast M to macirz modalna sprowadzająca przz transformację podobiństwa macirz A do postaci kanonicznj Jordana. Uwaga: Aby istniała funkcja f (A) muszą istnić wszystki nizbędn pochodn (,,..., k i λ λ ) ( λ ) f f f i i i M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-6
17 M. Przybyciń Matmatyczn Mtody Fizyki I Wykład 5-7 Funkcj macirzy Przykład: Znajdź A gdzi macirz A dana jst przz: A J M AM Najpirw obliczymy J : M J / Traz możmy już znalźć A : A J M M - 4 3
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska
Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła
2. Architektury sztucznych sieci neuronowych
- 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak
Sieci neuronowe - uczenie
Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
ZASTOSOWANIA POCHODNEJ
ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Rozwiązanie równania różniczkowego MES
Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl
Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI
GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g
X, K, +, - przestrzeń wektorowa
Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi
Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz
1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Przykład 1 modelowania jednowymiarowego przepływu ciepła
Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.
EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Q n. 1 1 x. el = i. L [m] q [kn/m] P [kn] E [kpa], A [m 2 ] n-1 n. Sławomir Milewski
Ćwiczni a: Statyka rozciągango pręta - intrpolacja liniowa Dany jst pręt o długości L, zamocowany na lwym końcu, obciążony w sposób jdnorodny ciągły (obciążni q) i skupiony (siła P na prawym swobodnym
OCHRONA PRZECIWPOŻAROWA BUDYNKÓW
95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani
Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)
Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych
Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.
A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna
Temat: Pochodna funkcji. Zastosowania
Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Rachunek Prawdopodobieństwa MAP1064, 2008/09
1 Rachunk Prawdopodobiństwa MAP1064, 008/09 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 10-1 Opracowani: dr hab. Agniszka Jurlwicz Litratura: [1] A. Plucińska, E. Pluciński,
Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
( t) UKŁADY TRÓJFAZOWE
KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Zadania przygotowawcze, 3 kolokwium
Zadania przygotowawcze, 3 kolokwium Mirosław Sobolewski 8 grudnia. Niech φ t : R 3 R 3 bedzie endomorfizmem określonym wzorem φ t ((x, x, )) (x +, tx + x, x + ), gdzie parametr t R. a) Zbadać dla jakiej
Analiza danych jakościowych
Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.
Ekscytony Wanniera Motta
ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują
ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ
Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application
Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)
11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij
Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek
1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka
ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH
ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH Mimo, ż przstrznn konstrkcj kratow znan yły od dawna (por.[17]), to do nidawna stosowan yły stosnkowo rzadko, co yć moż spowodowan yło sporymi kłopotami oliczniowymi,
MACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
R k v = 0}. k N. V 0 = ker R k 0
Definicja 1 Niech R End(V ). Podprzestrzeń W przestrzeni V nazywamy podprzestrzenią niezmienniczą odwzorowania R jeśli Rw W, dla każdego w W ; równoważnie: R(W ) W. Jeśli W jest różna od przestrzeni {0}
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
x y x y y 2 1-1
Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
lim lim 4) lim lim lim lim lim x 3 e e lim lim x lim lim 2 lim lim lim Zadanie 1 Wyznacz dziedziny następujących funkcji: log x x 6x
Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7) 8) 9) 5 5 7 7 7 6 0) 6 ) ) 9) 0)
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
4) lim. lim. lim. lim. lim. x 3. e e. lim. lim x. lim. lim. lim. lim 2. lim. lim. lim. Zadanie 1 Wyznacz dziedziny następujących funkcji: log x.
Zastosowania matmatyki w konomii Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7)
Swobodny spadek ciał w ośrodku stawiającym opór
Ryszard Chybici Swobodny spad ciał w ośrodu stawiający opór (Posłuiwani się przz osoby trzci ty artyuł lub jo istotnyi frantai bz widzy autora jst wzbronion) Milc, 005 Swobodny spad ciała ośrodu stawiający
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
13. Optyka Polaryzacja przez odbicie.
13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.
Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
COMMUNITY AND SERVICE
COMMUNITY AND SERVICE Co to jst Community and Srvic (Wspólnota i służba)? Ściżka Wspólnota i służba od Cibi nia w życi społczn w szkol i poza ni. Ma uwrażliwić Cię na potrzby inny, nauczyć pomagania i
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałości Matriałów i Mtod Komputrowych Mchaniki Rozprawa doktorska Tytuł: Optymalizacja układów powirzchniowych z wykorzystanim
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień
Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
Własności i zastosowania wybranych macierzy punktu siodłowego
UNIWERSYE im.. MICKIEWICZ WYDZIŁ MEMYKI I INFORMYKI adusz Ostrowski Własności i zastosowania wybranych macirzy punktu siodłowgo Praca z zakrsu matmatyki przygotowana pod kirunkim prof. UM dra hab. omasza
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Zagadnienie statyki kratownicy płaskiej
Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
1 Grupa SU(3) i klasyfikacja cząstek
Grupa SU(3) i klasyfikacja cząstek. Grupa SU(N) Unitarne (zespolone) macierze N N można sparametryzować pzez N rzeczywistych parametrów. Ale detu =, unitarność: U U = narzucają dodatkowe warunki. Rozważmy
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.
Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Średnie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.
modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli
Autor: Dariusz Piwczyński :07
Autor: Dariusz Piwczyński 011-1-01 14:07 Analiza danych jakościowych tsty opart o statystykę χ. Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły
6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia
PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25
Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO
I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.
XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa
Przetwarzanie sygnałów biomedycznych
Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w