ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH"

Transkrypt

1 Strona z 9 ENERGETYCZNE KRYTERUM STANÓW GRANCZNYC DA MATERAŁÓW KOMÓRKOWYC Piotr Kordzikowki Małgorzata Janu-Michalka Ryzard B. Pęchrki Katdra Wytrzymałości Matriałów ntytut Mchaniki Budowli Wydział nżynirii ądowj Politchnika Krakowka KRAKÓW STOPAD 00

2 Strona z 9. WSTĘP Clm pracy jt zatoowani nrgtyczngo krytrium J. Rychlwkigo [, ] do okrślnia tanu aniczngo w matriałach komórkowych. Przz tan aniczny rozumimy oiągnięci liniowj prężytości. Wykorzytany będzi modl fktywny prężytgo zachowania ię matriałów komórkowych, formułowany w pracy [], dla pianki mtalicznj o lmntarnj komórc w kztałci czworościanu oraz matriałów o lmntarnj komórc w kztałci zścianu, protopadłościanu, pryzmy o podtawi trójkąta równoboczngo i zściokąta formngo. Stanowi to podtawę do przntowanj analizy. Przyjęto truktury komórkow o powtarzającym ię rgularnym układzi prętów połączonych w ztywnym węźl, któr mogą odkztałcać ię prężyści pod wpływm ił oiowych lub momntów gnących i ił poprzcznych.

3 Strona z 9 W omawianj pracy zotani przdtawiony analityczny poób wyznacznia gętości nrgii krytycznych poób wizualizacji zomadzonj nrgii w pozczgólnych tanach włanych przy jdnooiowym rozciąganiu wzdłuż kirunku n zaproponowany przz M. Janu- Michalką Do rozważań przyjęto truktury komórkow o powtarzającym ię lmnci: zścianu, protopadłościanu, pryzmy o podtawi trójkąta równoboczngo i zściokąta formngo. Przprowadzono równiż analizę rozkładu ztywności truktury z punktu widznia gętości nrgii krytycznych. Wtępn wyniki dla komórki zścinnj przdtawiono w []. W pracy wykorzytano podtawy matmatyczn zawart w [5].

4 Strona z 9. TERATURA [] J. Rychlwki: Elatic nrgy dcompoition and limit critria, Upkhi Mkh. - Advanc in Mch., 98, t. 7, (po royjku). [] J. Rychlwki: Unconvntional approach to linar laticity, Arch. Mch., 995, t. 7, [] M. Janu-Michalka, R. B. Pęchrki: Macrocopic proprti of opn-cll foam bad on micromchanical modlling Tchnich Mchanik 00,, - [] P. Kordzikowki, M. Janu-Michalka, R. B. Pęchrki: Analiza wpływu wytrzymałości prętów zścinnj truktury komórkowj na rozkład anicznych nrgii, Rudy i Mtal Niżlazn, R9, No., -0, 00 [5] J. Otrowka-Macijwka, K. Kowalczyk-Gajwka: Matmatyczn podtawy anizotropii prężytj z przykładami, Wykłady w Katdrz Wytrzymałości Matriałów, ntytut Mchaniki Budowli PK, marzc 00.

5 Strona 5 z 9. KRYTERUM ENERGETYCZNE DA STRUKTUR KOMÓRKOWYC Enrgtyczn krytrium wytężnia formułowan przz J. Rychlwkigo [,]: Φ( σ ) Φ( σ ) Φ( σ ) Φ( σ ) Φ( σ ) Φ( σ ) Φ Φ Φ Φ Φ Φ 5 V V V

6 Strona z 9. STANY WŁASNE GĘSTOŚC ENERG KRYTYCZNYC Do rozważań przyjęto modl blkowy o ztywnym węźl dla powtarzalnj komórki KOMÓRKA SZEŚCENNA PRZYJĘTE OZNACZENA - wymiar lmntów blkowych (zkiltu) n - ztywność lmntów blkowych na rozciągani - ztywność lmntów blkowych na zginani

7 Strona 7 z 9 WARTOŚC WŁASNE MACERZY SZTYWNOŚC n 5 n STANY WŁASNE GĘSTOŚC ENERG KRYTYCZNYC AR 0 0 AR 0 0 AR 0 0 A R Φ

8 Strona 8 z 9 AR 0 0 AR 0 0 AR 0 0, A R Φ R R 0 h h R R 0 h h R R 0 h h,5, Φ h R R - anica platyczności, h A - pol przkroju lmntu blkowgo, - momnt bzwładności lmntu blkowgo - makymalna odlgłość włókin górnych lub dolnych lmntu blkowgo,

9 KOMÓRKA PROSTOPADŁOŚCENNA Strona 9 z 9 PRZYJĘTE OZNACZENA,, n n, n5, 5 - wymiary lmntów blkowych (zkiltu), - ztywności lmntów blkowych na rozciągani, - ztywności lmntów blkowych na zginani

10 Strona 0 z 9 WARTOŚC WŁASNE MACERZY SZTYWNOŚC n n n5 5 5 V V + V +

11 Strona z 9 STANY WŁASNE GĘSTOŚC ENERG KRYTYCZNYC AR A R Φ AR A R Φ AR A R Φ

12 Strona z R R V V h R 8 Φ R R V V h R 8 Φ

13 Strona z R R V V h R 8 Φ

14 KOMÓRKA W POSTAC PRYZMY O PODSTAWE TRÓJKĄTA RÓWNOBOCZNEGO Strona z 9 PRZYJĘTE OZNACZENA, n n - wymiary lmntów blkowych (zkiltu), - ztywności lmntów blkowych na rozciągani, - ztywności lmntów blkowych na zginani

15 Strona 5 z 9 WARTOŚC WŁASNE MACERZY SZTYWNOŚC n n 9 ) ( n n + ) ( 5 V + STANY WŁASNE GĘSTOŚC ENERG KRYTYCZNYC AR AR R A Φ

16 Strona z AR Φ 7 A R, AR ( ) AR 0 ( + ha) ( + ha) AR AR ( ) 0 ( + h A) ( + h A) Φ 9 A R ( ( 8 + h A ) ) R h R h R R 0 9 h 9 h 5, Φ V V 7 R h

17 Strona 7 z 9 KOMÓRKA W POSTAC PRYZMY O PODSTAWE SZEŚCOKĄTA FOREMNEGO PRZYJĘTE OZNACZENA, - wymiary lmntów blkowych (zkiltu) n, n - ztywności lmntów blkowych na rozciągani, - ztywności lmntów blkowych na zginani

18 Strona 8 z 9 WARTOŚC WŁASNE MACERZY SZTYWNOŚC n n ) ( n + 5 V + STANY WŁASNE GĘSTOŚC ENERG KRYTYCZNYC AR AR R A Φ

19 Strona 9 z AR 0 0 Φ A R, AR ( n + ) AR ( n + ) 0 ( n + ha) ( n + ha) AR ( n + ) AR ( n + ) 0 ( n + ha) ( n + ha) Φ ( + n 0 ( n + ) R A h A )

20 Strona 0 z 9 R 0 0 h R 0 0 h R R 0 h h 5, Φ V V R h

21 Strona z 9 5. WZUAZACJA ROZKŁADU GĘSTOŚC ENERG W POSZCZEGÓNYC STANAC WŁASNYC PRZY JEDNOOSOWYM ROZCĄGANU WZDŁUŻ KERUNKU n PŁASK STAN NAPRĘŻENA SYMETRA KUBCZNA KOMÓRKA SZEŚCENNA

22 SYMETRA ORTOTROPOWA - KOMÓRKA PROSTOPADŁOŚCENNA Strona z 9

23 Strona z 9 SYMETRA TRANSWERSANE ZOTROPOWA - KOMÓRKA W POSTAC PRYZMY O PODSTAWE TRÓJKĄTA RÓWNOBOCZNEGO.79 (.9).9.9 yx () yx () zx () (.9) 5. x 5.

24 Strona z 9 SYMETRA TRANSWERSANE ZOTROPOWA - KOMÓRKA W POSTAC PRYZMY O PODSTAWE SZEŚCOKĄTA FOREMNEGO (.) y( x) 0 y( x) zx ( ) (.) x

25 Strona 5 z 9. ANAZA ROZKŁADU SZTYWNOŚC STRUKTURY KOMÓRKOWEJ Z PUNKTU WDZENA GĘSTOŚC ENERG STANÓW GRANCZNYC WPŁYW WYTRZYMAŁOŚC PRĘTÓW SZEŚCENNEJ STRUKTURY KOMÓRKOWEJ NA ROZKŁAD GĘSTOŚC KRYTYCZNYC ENERG - STRUKTURA SMUKŁA WPŁYW WYTRZYMAŁOŚC PRĘTÓW SZEŚCENNEJ STRUKTURY KOMÓRKOWEJ NA ROZKŁAD GĘSTOŚC KRYTYCZNYC ENERG - STRUKTURA SMUKŁA 0,05 0,8 gętość nrgii krytycznych [MPa] 0,0 0,05 0,0 0,005 gętość nrgii krytycznj / max. gętość nrgii krytycznych 0,7 0, 0,5 0, 0, 0, 0, 0 0 pol kołowgo przkroju poprzczngo [0^- m^] pol kołowgo przkroju poprzczngo / max. pol kołowgo przkroju poprzczngo STAN WŁASNY STAN WŁASNY STAN WŁASNY STAN WŁASNY STAN WŁASNY STAN WŁASNY

26 Strona z 9 WPŁYW WYTRZYMAŁOŚC PRĘTÓW ORTOTROPOWEJ STRUKTURY KOMÓRKOWEJ NA ROZKŁAD GĘSTOŚC ENERG KRYTYCZNYC WPŁYW WYTRZYMAŁOŚC PRĘTÓW ORTOTROPOWEJ STRUKTURY KOMÓRKOWEJ NA ROZKŁAD GĘSTOŚC ENERG KRYTYCZNYC 0,005 0,5 gętość nrgii krytycznych [MPa] 0,00 0,005 0,00 0,005 0,00 0,005 0,00 0,0005 gętość nrgii krytycznj / max. gętość nrgii krytycznych 0, 0,5 0, 0,5 0, 0, pol kołowgo przkroju poprzczngo [0^- m^] pol kołowgo przkroju poprzczngo / max. pol kołowgo przkroju poprzczngo STAN WŁASNY STAN WŁASNY STAN WŁASNY STAN WŁASNY STAN WŁASNY V STAN WŁASNY STAN WŁASNY V STAN WŁASNY V STAN WŁASNY V STAN WŁASNY V STAN WŁASNY V STAN WŁASNY

27 Strona 7 z 9 WPŁYW WYTRZYMAŁOŚC PRĘTÓW REPREZENTATYWNEJ KOMÓRK PRYZMY O PODSTAWE TRÓJKĄTA RÓWNOBOCZNEGO NA ROZKŁAD GĘSTOŚC ENERG KRYTYCZNYC 0,008 WPŁYW WYTRZYMAŁOŚC PRĘTÓW REPREZENTATYWNEJ KOMÓRK PRYZMY O PODSTAWE TRÓJKĄTA RÓWNOBOCZNEGO NA ROZKŁAD GĘSTOŚC ENERG KRYTYCZNYC 0,5 gętość nrgii krytycznych [MPa] 0,007 0,00 0,005 0,00 0,00 0,00 0,00 gętość nrgii krytycznj / max. gętość nrgii krytycznych 0,55 0,5 0,5 0,5 0,5 0,05 0 pol kołowgo przkroju poprzczngo [0^- m^] -0,05 pol kołowgo przkroju poprzczngo / max. pol kołowgo przkroju poprzczngo STAN WŁASNY STAN WŁASNY STAN WŁASNY V STAN WŁASNY STAN WŁASNY STAN WŁASNY STAN WŁASNY V STAN WŁASNY

28 Strona 8 z 9 WPŁYW WYTRZYMAŁOŚC PRĘTÓW REPREZENTATYWNEJ KOMÓRK PRYZMY O PODSTAWE SZEŚCOKĄTA FOREMNEGO NA ROZKŁAD GĘSTOŚC ENERG KRYTYCZNYC 0,05 WPŁYW WYTRZYMAŁOŚC PRĘTÓW REPREZENTATYWNEJ KOMÓRK PRYZMY O PODSTAWE SZEŚCOKĄTA FOREMNEGO NA ROZKŁAD GĘSTOŚC ENERG KRYTYCZNYC 0,5 gętość nrgii krytycznych [MPa] 0,0 0,0 0,009 0,007 0,005 0,00 0,00 gętość nrgii krytycznj / max. gętość nrgii krytycznych 0,55 0,5 0,5 0,5 0,5 0,05-0,00 pol kołowgo przkroju poprzczngo [0^- m^] -0,05 pol kołowgo przkroju poprzczngo / max. pol kołowgo przkroju poprzczngo STAN WŁASNY STAN WŁASNY STAN WŁASNY V STAN WŁASNY STAN WŁASNY STAN WŁASNY STAN WŁASNY V STAN WŁASNY

29 Strona 9 z 9 7. WNOSK Analityczna potać wzorów dla anicznych nrgii prężytych pozwala modlować rozkłady ztywności truktury z punktu widznia wytrzymałości w zalżności od zadanych paramtrów mikrotruktury i morfologii zkiltu, daj to możliwość projktowania matriałów z uwzględninim przyjętych właności mchanicznych wynikających z założonj funkcji, któr mają płniać.

Instytut Mechaniki Budowli. Wydział Inżynierii Lądowej

Instytut Mechaniki Budowli. Wydział Inżynierii Lądowej - - Politchnika Krakowka Wydział nżynirii ądowj ntytut Mchaniki Budowli Katdra Wytrzymałości Matriałów Podtawy torii wytężnia matriałów komórkowych w oparciu o nrgtyczn krytria tanów granicznych Piotr

Bardziej szczegółowo

COMPARISON OF ENERGY-BASED CRITERIA OF MATERIAL EFFORT FOR COUPLED AND DISJOINT ELASTIC EIGEN STATES ON THE EXAMPLE OF CERTAIN ANISOTROPIC MATERIALS

COMPARISON OF ENERGY-BASED CRITERIA OF MATERIAL EFFORT FOR COUPLED AND DISJOINT ELASTIC EIGEN STATES ON THE EXAMPLE OF CERTAIN ANISOTROPIC MATERIALS POT KODZKOWSK YSZAD B. PĘCESK * POÓWNANE ENEGETYCZNYC KYTEÓW WYTĘŻENA DA SPZĘŻONYC OZŁĄCZNYC SPĘŻYSTYC STANÓW WŁASNYC NA PZYKŁADZE WYBANYC MATEAŁÓW ANZOTOPOWYC Wykorzytano wyniki badań dotęn w litraturz

Bardziej szczegółowo

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka PAN PREZENTACJI. Wprowadzenie.

Bardziej szczegółowo

ANALIZA WPŁYWU WYTRZYMAŁOŚCI PRĘTÓW SZEŚCIENNEJ STRUKTURY KOMÓRKOWEJ NA ROZKŁAD GRANICZNYCH ENERGII

ANALIZA WPŁYWU WYTRZYMAŁOŚCI PRĘTÓW SZEŚCIENNEJ STRUKTURY KOMÓRKOWEJ NA ROZKŁAD GRANICZNYCH ENERGII POTR KORDZKOWSK ŁGORZT JNUS-CHSK RYSZRD B. PĘCHERSK * NZ WPŁYWU WYTRZYŁOŚC PRĘTÓW SZEŚCENNEJ STRUKTURY KOÓRKOWEJ N ROZKŁD GRNCZNYCH ENERG Celem pracy jet zbudowane efektywnego modelu prężytego zachowana

Bardziej szczegółowo

WYKORZYSTANIE PODSTAWOWYCH PRAW FIZYKI W MODELOWANIU WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁU

WYKORZYSTANIE PODSTAWOWYCH PRAW FIZYKI W MODELOWANIU WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁU MODELOWANIE INśYNIERSKIE ISSN 896-77X 5 s. -8 Gliwic 8 WYKORZYSTANIE PODSTAWOWYCH PRAW FIZYKI W MODELOWANIU WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁU TADEUSZ WEGNER DARIUSZ KURPISZ Instytut Mchaniki Stosowanj

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH XLIII Sympozjon Modelowanie w mechanice 004 Wieław GRZESIKIEWICZ, Intytut Pojazdów, Politechnika Warzawka Artur ZBICIAK, Intytut Mechaniki Kontrukcji Inżynierkich, Politechnika Warzawka MATEMATYCZNY OPIS

Bardziej szczegółowo

MES dla ustrojów prętowych (statyka)

MES dla ustrojów prętowych (statyka) MES dla ustrojów prętowych (statyka) Jrzy Pamin -mail: jpamin@l5.pk.du.pl Piotr Pluciński -mail: pplucin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

JANOWSCY. Wielkości geometryczne i statyczne figur płaskich. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski

JANOWSCY. Wielkości geometryczne i statyczne figur płaskich. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski anowsc s.c. ul. Krzwa /5, 8-500 Sanok NIP:687-1--79 www.janowsc.com ANOSCY projktowani w budownictwi ilkości gomtrczn i statczn figur płaskich ZESPÓŁ REDAKCYNY: Dorota Szafran akub anowski incnt anowski

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA

ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA XII KRAJOWA KONFERENCJA Naukowo - Szkoleniowa MECHANIKI PĘKANIA Kraków, 6 9.IX.2009 ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA Małgorzata JANUS-MICHALSKA, Dorota JASIŃSKA

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

SPRAWOZDANIE. a) Podaj rodzaj i oznaczenie zastosowanej głowicy.. Zakres obserwacji

SPRAWOZDANIE. a) Podaj rodzaj i oznaczenie zastosowanej głowicy.. Zakres obserwacji Akademia Górniczo-Hutnicza Kraków Katedra Wytrzymałości, Zmęczenia Materiałów i Kontrukcji KWZMiK Ćwiczenia laboratoryjne Badanie jednorodności truktury i właności mechanicznych materiałów kontrukcyjnych

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia

Bardziej szczegółowo

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA ZAJĘCIA 11 PODSTAWY PROJEKTOWANIA SEM. V KONSTRUKCJI BETONOWYCH

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Piotr Kordzikowski RYCHLEWSKIEGO DLA ANIZOTROPOWYCH CIENKICH WARSTW SPECYFIKACJA ENERGETYCZNEGO WARUNKU KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW

Piotr Kordzikowski RYCHLEWSKIEGO DLA ANIZOTROPOWYCH CIENKICH WARSTW SPECYFIKACJA ENERGETYCZNEGO WARUNKU KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW http://www.prz.edu.pl/pl/wbmil/files/konferencje/omis007/index.html - - SPECYFKACJA ENERGETYCZNEGO WARUNKU RYCHLEWSKEGO DLA ANZOTROPOWYCH CENKCH WARSTW Piotr Kordzikowski Politechnika Krakowska Wydział

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

( L,S ) I. Zagadnienia

( L,S ) I. Zagadnienia ( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie,

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:

Bardziej szczegółowo

Analiza osiadania pojedynczego pala

Analiza osiadania pojedynczego pala Poradnik Inżyniera Nr 14 Aktualizacja: 09/2016 Analiza oiadania pojedynczego pala Program: Pal Plik powiązany: Demo_manual_14.gpi Celem niniejzego przewodnika jet przedtawienie wykorzytania programu GO5

Bardziej szczegółowo

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1) 11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego Określenie makymalnych kładowych tycznych naprężenia na pobocznicy pala podcza badania tatycznego Pro. dr hab. inż. Zygmunt Meyer, m inż. Krzyzto Żarkiewicz Zachodniopomorki Uniwerytet Technologiczny w

Bardziej szczegółowo

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7 Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach

Bardziej szczegółowo

Laboratorium Nowoczesna Diagnostyka Materiałowa Pomiar materiałów magnetycznie miękkich

Laboratorium Nowoczesna Diagnostyka Materiałowa Pomiar materiałów magnetycznie miękkich Laboratorium Nowoczsna Diagnostyka Matriałowa Pomiar matriałów magntyczni miękkich I. Zagadninia do przygotowania:. Podstawow wilkości opisując pol i matriały magntyczn: natężni pola magntyczngo, indukcja

Bardziej szczegółowo

Integralność konstrukcji w eksploatacji

Integralność konstrukcji w eksploatacji 1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

1. Płyta: Płyta Pł1.1

1. Płyta: Płyta Pł1.1 Plik: Płyta Pł1.1.rtd Projekt: Płyta Pł1.1 1. Płyta: Płyta Pł1.1 1.1. Zbrojenie: Typ : Przedszk Kierunek zbrojenia głównego : 0 Klasa zbrojenia głównego : A-III (34GS); wytrzymałość charakterystyczna =

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

KSZTAŁTOWANIE WYMAGAŃ WYTRZYMAŁOŚCIOWYCH BETONU DO NAWIERZCHNI

KSZTAŁTOWANIE WYMAGAŃ WYTRZYMAŁOŚCIOWYCH BETONU DO NAWIERZCHNI KSZTAŁTOWANIE WYMAGAŃ WYTRZYMAŁOŚCIOWYCH BETONU DO NAWIERZCHNI DR INŻ. WIOLETTA JACKIEWICZ-REK ZAKŁAD INŻYNIERII MATERIAŁÓW BUDOWLANYCH POLITECHNIKA WARSZAWSKA MGR INŻ. MAŁGORZATA KONOPSKA-PIECHURSKA TPA

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium Kirunk: Elktrotchnika wrsja z dn. 8.0.019 Prominiowani optyczn Laboratorium Tmat: OCENA ZAGROŻENIA ŚWIATŁEM NIEIESKIM Opracowani wykonano na podstawi: [1] PN-EN 6471:010 zpiczństwo fotobiologiczn lamp

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego

Bardziej szczegółowo

ADAPTACYJNY FILTR KALMANA DLA UKŁADU NAPĘDOWEGO Z POŁĄCZENIEM SPRĘŻYSTYM

ADAPTACYJNY FILTR KALMANA DLA UKŁADU NAPĘDOWEGO Z POŁĄCZENIEM SPRĘŻYSTYM Prac Naukow Intytutu Mazyn, Napędów i Pomiarów Elktrycznych Nr 66 Politchniki Wrocławkij Nr 66 Studia i Matriały Nr 3 Piotr J. SERKIES* Krzyztof SZABA* napęd dwumaowy, filtr Kalmana, odporna tymacja zminnych

Bardziej szczegółowo

Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski

Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski Optymaln rozmiszczani tłumików lpkosprężystych na rami płaskij Macij Dolny Piotr Cybulski Poznań 20 Spis trści. Wprowadzni 3.. Cl opracowania...3.2. Znaczni tłumików drgań.3 2. Omówini sposobu rozwiązania

Bardziej szczegółowo

Andrzej Marynowicz. Konstrukcje budowlane Budownictwo drewniane

Andrzej Marynowicz. Konstrukcje budowlane Budownictwo drewniane Andrzej Marynowicz Konstrukcje budowlane Budownictwo drewniane Podstawowa literatura przedmiotu: [1] Kotwica J.: Konstrukcje drewniane w budownictwie tradycyjnym, Arkady, Warszawa 2004 [2] Neuhaus H.:

Bardziej szczegółowo

OBLICZENIA STATYCZNE konstrukcji wiaty handlowej

OBLICZENIA STATYCZNE konstrukcji wiaty handlowej OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =

Bardziej szczegółowo

ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE

ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE MAŁGORZATA JANUS-MICHALSKA, DOROTA JASIŃSKA ** ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE FRACTURE TOUGHNESS OF AUXETIC CELLULAR MATERIALS WITH PERIODIC MICROSTRUCTURE

Bardziej szczegółowo

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. 10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

Zastosowanie metody elementów skończonych do rozwiązywania układów prętowych

Zastosowanie metody elementów skończonych do rozwiązywania układów prętowych Instytt Mchaniki i Inżynirii Obliczniow Wydział Mchaniczny Tchnologiczny Politchnika Śląska www.imio.polsl.pl fb.com/imiopolsl twittr.com/imiopolsl LORTORIUM WYTRZYMŁOŚCI MTERIŁÓW Zastosowani mtody lmntów

Bardziej szczegółowo

Wielkości i jednostki promieniowania w ujęciu energetycznym i fotometrycznym

Wielkości i jednostki promieniowania w ujęciu energetycznym i fotometrycznym Wilkości i jdnostki prominiowania w ujęciu nrgtycznym i otomtrycznym Ujęci nrgtyczn Ujęci otomtryczn Enrgia prominista prznoszona przz prominiowani W, Q; jdnostka: 1 Ws 1 J Strumiń nrgtyczny (moc prominista)

Bardziej szczegółowo

9.0. Wspornik podtrzymujący schody górne płytowe

9.0. Wspornik podtrzymujący schody górne płytowe 9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

10.0. Schody górne, wspornikowe.

10.0. Schody górne, wspornikowe. 10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w klasie II rok szkolny 2016/2017

Przedmiotowy system oceniania z fizyki w klasie II rok szkolny 2016/2017 objmujący trści nauczania zawart w podręczniku Spotkania z fizyką" cz. 3 (a takż w programi nauczania) Elktrostatyka (6-7 godz. + 2 godz. (łączni) na powtórzni matriału (podsumowani działu i sprawdzian)

Bardziej szczegółowo

1. Wprowadzenie. Andrzej Szychowski. lub równomiernie zginanych elementach o przekrojach otwartych, w których wspornikowa

1. Wprowadzenie. Andrzej Szychowski. lub równomiernie zginanych elementach o przekrojach otwartych, w których wspornikowa Budownictwo i Architektura 13(3) (014) 91-98 Wyboczenie prężyście zamocowanej ścianki wpornikowej z uztywnieniem krawędzi wobodnej Andrzej Szychowki 1 Katedra Mechaniki, Kontrukcji Metalowych i Metod Komputerowych,

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Ścinanie betonu wg PN-EN (EC2)

Ścinanie betonu wg PN-EN (EC2) Ścinanie betonu wg PN-EN 992-2 (EC2) (Opracowanie: dr inż. Dariusz Sobala, v. 200428) Maksymalna siła ścinająca: V Ed 4000 kn Przekrój nie wymagający zbrojenia na ścianie: W elementach, które z obliczeniowego

Bardziej szczegółowo

Rzut z góry na strop 1

Rzut z góry na strop 1 Rzut z góry na strop 1 Zestawienie obciążeń stałych oddziałujących na płytę stropową Lp Nazwa Wymiary Cięzar jednostko wy 1 Ciężar własny 0,17m x 1m Obciążenia charakterystyczn e stałe kn/m Współczyn n.

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. PN-B-03264

Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton

Bardziej szczegółowo

OBLICZENIE ZARYSOWANIA

OBLICZENIE ZARYSOWANIA SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA PRZYKŁAD OBLICZENIOWY. ZAJĘCIA 9 PODSTAWY PROJEKTOWANIA KONSTRUKCJI

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI Materiały omocnicze do ćiczeń rachunkoych z rzedmiotu Termodynamika tooana CZĘŚĆ 1: GAZY WILGOTNE mr inż. Piotr

Bardziej szczegółowo

ADAPTACYJNA ANALIZA POWŁOK ZDOMINOWANYCH GIĘTNIE O ZŁOŻONYM OPISIE MECHANICZNYM

ADAPTACYJNA ANALIZA POWŁOK ZDOMINOWANYCH GIĘTNIE O ZŁOŻONYM OPISIE MECHANICZNYM Mgr inż. Magdalna ZIELIŃSKA DOI: 10.17814/mchanik.2015.7.320 Uniwrsytt Warmińsko-Mazurski w Olsztyni, Wydział Nauk Tchnicznych Dr hab. inż. Grzgorz ZBOIŃSKI Instytut Maszyn Przpływowych PAN w Gdańsku ADAPTACYJNA

Bardziej szczegółowo

Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego

Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego Ćwiczni 4 Ralizacja programowa dwupołożniowj rgulacji tmpratury pica lktryczngo. Cl ćwicznia Clm ćwicznia jst zaznajomini z podstawami rgulacji obiktów ciągłych na przykładzi strowania dwupołożniowgo komputrowgo

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów BILET No 1

Mechanika i wytrzymałość materiałów BILET No 1 Mechanika i wytrzymałość materiałów BILET No 1 1. Prawa ruchu Newtona. 2. Projektowanie prętów skręcanych ze względu na wytrzymałość oraz kąt skręcania. 3. Belka AB o cięŝarze G oparta jak pokazano na

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny oraz kryteria oceniania technika kl. VI szkoły podstawowej SEMESTR I

Wymagania programowe na poszczególne oceny oraz kryteria oceniania technika kl. VI szkoły podstawowej SEMESTR I Wymagania programow na poszczgóln ocny oraz krytria ocniania tchnika kl. VI szkoły podstawowj SEMESTR I L.p. Matriał nauczania clujący bardzo dobry dobry dostatczny dopuszczający nidosta tczny 1. trminy:

Bardziej szczegółowo

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2. Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego

Bardziej szczegółowo

Rzut z góry na strop 1

Rzut z góry na strop 1 Rzut z góry na strop 1 Przekrój A-03 Zestawienie obciążeń stałych oddziaływujących na płytę stropową Lp Nazwa Wymiary Cięzar jednostko wy Obciążenia charakterystyczn e stałe kn/m Współczyn n. bezpieczeń

Bardziej szczegółowo

Wykład 4. Skręcanie nieskrępowane prętów o przekroju cienkościennym otwartym i zamkniętym. Pręt o przekroju cienkościennym otwartym

Wykład 4. Skręcanie nieskrępowane prętów o przekroju cienkościennym otwartym i zamkniętym. Pręt o przekroju cienkościennym otwartym Wykład 4. Skręane nekrępowane prętów o przekroju enkośennym otwartym zamknętym. Pręt o przekroju enkośennym otwartym la przekroju pręta pokazanego na ryunku przyjmjmy funkje naprężeń Prandtla, która tylko

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Porównanie zasad projektowania żelbetowych kominów przemysłowych

Porównanie zasad projektowania żelbetowych kominów przemysłowych Budownictwo i Architektura 16(2) (2017) 119-129 DO: 10.24358/Bud-Arch_17_162_09 Porównanie zaad projektowania żelbetowych kominów przemyłowych arta Słowik 1, Amanda Akram 2 1 Katedra Kontrukcji Budowlanych,

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

Rozważania energetyczne dla materiałów komórkowych o ujemnym współczynniku

Rozważania energetyczne dla materiałów komórkowych o ujemnym współczynniku I Kongre Mechank Polkej, Warzawa, 8 1 erpna 007 r. J. Kubk, W. Kurnk, W.K. Nowack (Red.) na prawach rękopu Rozważana energetyczne dla materałów komórkowych o ujemnym wpółczynnku Poona Małgorzata Janu-Mchalka

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria . odstawow wilkości radio- i fotomtryczn (jdnostki nrgtyczn i świtln). rawa i zalżności fotomtrii (Lambrta, fotomtryczn, prawa odlgłości). http://www.if.pwr.wroc.pl/~wozniak/fotomtria Mijsc i trmin konsultacji:

Bardziej szczegółowo

2. Pręt skręcany o przekroju kołowym

2. Pręt skręcany o przekroju kołowym 2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo

Bardziej szczegółowo

Grubosç płyty żelbetowej: h p. Aanlizowana szerokośç płyty: b := 1000 mm. Rozpiętośç płyty o schemacie statycznym L t. 1.5 m

Grubosç płyty żelbetowej: h p. Aanlizowana szerokośç płyty: b := 1000 mm. Rozpiętośç płyty o schemacie statycznym L t. 1.5 m Sprawdzenie stanu granicznego użytkowalności (SLS) w zakresie naprężeń maksymalnych, zarysowania i ugięcia żelbetowej płyty wspornika pomostu na podstawie obliczeń wg PN-EN 199-. (Opracowanie: D. Sobala

Bardziej szczegółowo

Weryfikacja pomiarowa parametrów modelu maszyny elektrycznej z magnesami trwałymi

Weryfikacja pomiarowa parametrów modelu maszyny elektrycznej z magnesami trwałymi Tomaz DRABEK, Andrzj ATRAS, Jrzy SKWARCZYŃSKI AGH Akadmia Górniczo-Hutnicza, Katdra Enrgolktroniki i Automatyki Sytmów Prztwarzania Enrgii Wryfikacja pomiarowa paramtrów modlu mazyny lktrycznj z magnami

Bardziej szczegółowo

Ćwiczenie nr 2. obliczeniowa wytrzymałość betonu na ściskanie = (3.15)

Ćwiczenie nr 2. obliczeniowa wytrzymałość betonu na ściskanie = (3.15) Ćwiczenie nr 2 Temat: Wymiarowanie zbrojenia ze względu na moment zginający. 1. Cechy betonu i stali Beton zwykły C../.. wpisujemy zadaną w karcie projektowej klasę betonu charakterystyczna wytrzymałość

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

Sprawdzenie stanów granicznych użytkowalności.

Sprawdzenie stanów granicznych użytkowalności. MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

Lokalne wyboczenie. 1. Wprowadzenie. Andrzej Szychowski. wspornikowych, których nie znaleziono w literaturze.

Lokalne wyboczenie. 1. Wprowadzenie. Andrzej Szychowski. wspornikowych, których nie znaleziono w literaturze. Budownictwo i Architektura 14(2) (2015) 113-121 Lokalne wyboczenie ścianki wpornikowej elementu cienkościennego przy wzdłużnej i poprzecznej zmienności naprężeń Katedra Mechaniki, Kontrukcji Metalowych

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

Laboratorium, 12:15-15:00. Przestrzenna wizualizacja komputerowa Z-PK (p.336-budynek A33) Turant (Dr hab Jan) grupa 20 osobowa; 10 tygodni zajęć

Laboratorium, 12:15-15:00. Przestrzenna wizualizacja komputerowa Z-PK (p.336-budynek A33) Turant (Dr hab Jan) grupa 20 osobowa; 10 tygodni zajęć WZORNICTWO - studia stacjonarn II stopnia - sm. 1 WZ II Architktura produktu tkstylngo - prof. praktyczny Ponidziałk Ćwicznia, 08:15-11:00 Język obcy dla clów akadmickich i zawodowych SJO B25) Laboratorium,

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

Opracowanie: Emilia Inczewska 1

Opracowanie: Emilia Inczewska 1 Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla

Bardziej szczegółowo

Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN :2004

Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN :2004 Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN 1992-1- 1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y0.000m); 1 (x6.000m, y0.000m)

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

EPOKSYDOWE SYSTEMY DO LAMINOWANIA

EPOKSYDOWE SYSTEMY DO LAMINOWANIA SYSTEM INFUZYJNY ZASTOSOWANIA : Ten epoksydowy system jest przeznaczony do wykonywania struktur kompozytowych metodami podciśnieniową ( infuzji ), wtrysku niskociśnieniowego oraz nawijania włókien. Wykorzystywany

Bardziej szczegółowo

Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń

Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń opracowanie: dr inŝ. Marek Golubiewski, mgr inŝ. Jolanta Bondarczuk-Siwicka

Bardziej szczegółowo