PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21

Wielkość: px
Rozpocząć pokaz od strony:

Download "PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21"

Transkrypt

1 PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1

2 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1

3 p (mb) 1 C Fusion iquid Solid Vapor (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty stan równowagi pomiędzy fazą lotna i cikłą (tzn. kidy cząstka powitrza będzi nasycona parą wodną) Równani Calusiusa-Clapyrona opisuj jak stan równowagi procsów parowania i kondnsacji zminia się w funkcji ciśninia i tmpratury 3 /1

4 Zmiana fazy: Stan równowagi (nasycni) p(mb) Substancja ni zachowuj się jak gaz doskonały Izobaryczna Izotrmiczna 1, iquid C C B A Vapor c 374ºC Zmiana objętości 6.11 Solid iquid and Vapor Solid and Vapor 1 t ºC V 4 /1

5 Układ składający się z dwóch faz posiada tylko jdn trmodynamiczny stopiń swobody, zatm równani stanu ma postać pp(). Okrślni tmpratury układu wyznacza jgo ciśnini a zatm okrśla stan trmodynamiczny. Rozważmy dwi fazy tj samj substancji a i b i przmianę zachodzącą w sposób odwracalny. g a ( dg sd + dp ) ( s dp d g b dp d b, s a Δs Δ dg a dg ) d + ( b b a ) dp Warunk równowagi chmicznj; µg (funkcja Gibbsa Δ odnosi się do zmiany paramtru pomiędzy fazami Δ Równani Clausiusa-Clapyrona Przpływ cipła związany procsm zmiany fazy równa się cipłu przmiany fazowj. δq δq ds ds 5 /1

6 Rudolf Clausius Nimic Matmatyk / Fizyk Odkrył II zasadę trmodynamiki Wprowadził pojęci ntropii Bnoit Paul Emil Clapyron Francuz Inżynir/ Fizyk Rozwinął dziło Carnot 6 /1

7 dp d Δ Równani Clausiusa-Clapyrona jst równanim stanu dla nijdnorodngo układu, w którym mamy dwi fazy. Opisuj uproszczon powirzchni odpowiadając takim stanom. 7 /1

8 opnini Równani Clausiusa-Clapyrona dp d Δ dla przmiany topninia: faza stała cicz równani wygodni jst zapisać w postaci: d dp Δ Poniważ zmiana objętości przy przmiani topninia jst mała, to: d dp topnini inia równowagi pomiędzy wodą i lodm jst prawi pionowa. 8 /1

9 Parowani i sublimacja dp d Δ p(mb) 1 Fusion iquid C Zmiana objętości przy przjściu cicz-para wodna lub lód-para wodna odpowiada w przybliżniu objętości pary wodnj: Δ R p Solid Vapor dp d parowani sublim acja p R p(mb) (ºC) dln p d parowani sublim acja d d d d sw si i l R R R Ciśnini pary w stani równowagi fazowj z wodą: sw z lodm si si sw 1, 6.11 Solid iquid C C B iquid and Vapor Solid and Vapor A Vapor c 374ºC 1 t ºC V 9 /1

10 Poprawność równania Clausiusa-Clapyrona Przy wyprowadzniu równania Clausiusa-Clapyrona zakładaliśmy, ż rozpatrujmy fazę gazową w postaci czystj pary wodnj. W atmosfrz mamy zawsz do czyninia z miszaniną pary wodnj i suchgo powitrza. Zastosowani równania Clausiuisa-Clapyrona do okrślnia ciśninia pary nasyconj w atmosfrz ni jst ścisł poniważ: faza skondnsowana jst pod ciśninim równym ciśniniu miszaniny ( w +p d ), a ni tylko w ciśnini miszaniny gazów ni jst ściśl równ sumi ciśniń cząstkowych poszczgólnych gazów (prawo Daltona ni jst ściśl prawdziw) faza skondnsowana ni składa się wyłączni z wody, al jst miszanina wody i powitrza (ciśnini pary nad miszanina jst mnijsz niż ciśnini pary nad czystą substancją ; prawo Raoulta) Można pokazać, ż odchylni od stanu idalngo wprowadza błąd ~1 %. Innym problmm jst rozwiązani równania Clausiusa-Clapyrona w clu uzyskania zalżności ciśninia pary nasyconj od tmpratury. Jśli wymagana jst wysoka dokładność rozwiązani nalży stosować dan mpiryczn. 1 /1

11 ciśnini pary nasyconj nad wodą Równani Clausiusa-Clapyrona d d sw l R sw s_w (hpa) 4 3 można prosto scałkować, jśli założy się, ż: l const lo cipło utajon w tmpraturz 73,16K (C) ln sw sw R lo 1 1 sw sw xp R lo 1 1 l l +Δc(- ), gdzi Δcc p -c pl const-317j/kg/k sw o C 611Pa ln sw sw l Δc R o 1 1 o + Δc R ln l,5 1 6 J / kg sw sw Δc R xp l Δc R o /1

12 5,% 1 sw sw 1 1 ( ) xp lo sw R Δ ( ) c 1 1 xp l o sw Δc R R % 4,% 3,%,% 1,%,% 1/dokł-1 /dokł-1 3/dokł-1 4/dokł-1 5/dokł ( ).53 1 sw 3 Formuła Magnusa-tnsa 17.7( 73,15) 4 sw sw xp ( 73,15) + 37,7 ( ) -1,% (C) Błąd procntowy dla wartości ciśninia policzonj wdług danj formuły i dokładną wartością mpiryczną. Najdokładnijsz wyrażnia oznaczon są 5 log sw ( ) sw 6,11 hpa, 73,15 K, l.5 1 J / kg, Δc 317 J / kg/ K, R 6 461,5J / kg/ K 1 /1

13 Empiryczna zalżność ciśninia pary nasyconj od tmpratury s a a n n n ( ) 1 Współczynnik Woda ód a a a E E-1 a E E-3 a E E-5 a E E-7 a E E-9 Wyrażni dostarcza danych wysokij jakości potrzbnych w niktórych modlach numrycznych. Prawdziw dla tmpratur pomiędzy -5ºC i 5ºC. Empiryczn wartości podan są równiż w dodatku D, Curry&Wbstr tr Ćwicznia Narysować s () i si (). Porównać z przybliżonym rozwiązanim. Flatau, P.J., R.. Walko and W.R. Cotton, 199: Polynomial fits to saturation apor prssur, J. Appl. Mtor., 31, /1

14 Ciśnini pary nasyconj nad lodm Równani Clausiusa-Clapyrona d d si R i si można scałkować, przy założniu i const io cipło utajon sublimacji w tmp. 73,16K (dokładność wyrażnia ~,1%) ln si si R io 1 1 si si xp R io 1 1 si i 611 Pa, C, ( C) J / kg 14 /1

15 Formuła Magnusa ( 73,15) 17,7 sw( ) 6.17 xp ( 73,15) + 37,7 ( 73,15) 1,88 si( ) xp ( 73,15) + 65,5 [ ] mb, [ ] s K _sw-_si,3 _sw-_si,, tmpratura 15 /1

16 Wilgotność względna nad wodą i nad lodm Wilgotność względna jst zdfiniowana jako: f/ s. Dla tmpratur poniżj ºC nalży sprcyzować czy jj wartość jst podana względm wody czy lodu. Stosunk ciśninia stanu nasycnia pary wodnj względm wody i względm lodu moż być policzony z uproszczongo równania Clausiusa-Clapyrona: s si i s, tr s, tr il xp R l l xp R + Ćwicznia i 1 tr 1 tr 1 1 Policzyć jak zminia się wilg. względna nad lodm przy ustalonj wilg. wzgl. nad wodą. abla 4.4 C&W s si ( ) xp ( ) xp R l il xp il R R 1 tr tr i tr 1 1 tr 1 1 Dla < tr s ()/ si ()>1 i rośni z spadkim tmpratury. 16 /1

17 WŁASNOŚCI ROZWORU WODY 17 /1

18 Woda, w którj została rozpuszczona inna substancja (roztwór, solution) jst jdnorodnym, jdno-fazowym układm, który zawira więcj niż jdn składnik. Skład takigo roztworu jst opisywany przz ułamk molowy. Dwuskładnikowy roztwór zawirający n A moli składnika A i n B moli składnika B posiada ułamk molowy składnika A : X A : X A n A na + n B Obcność substancji rozpuszczonj ma wpływ na ciśnini pary rozpuszczalnika (w naszym wypadku wody). Opisuj to prawo Raoulta. p X A A p p A jst ciśninim pary wodnj nad roztworm, pº A jst ciśninim pary nad czystą wodą.! A 18 /1

19 Jśli rozpuszczona substancja jst równiż lotna (tzn. moż istnić w postaci pary) to do nij równiż stosuj się prawo Raoulta p B X B p! B Dla idalngo roztworu pp A +p B. Roztwór jst idalny jśli charaktryzuj się całkowitą jdnorodnością sił międzymolkularnych; tzn. ni można odróżnić molkuł A od molkuł B. Pojęci idalngo roztworu jst wygodn, gdyż pozwala ustalić stan rfrncyjny, który jst stanm wyjściowym do rozważań nad rzczywistymi roztworami. Szukamy jak zminia się ciśnini pary nasyconj nad roztworm. Oznaczmy przz r roztwór, a przz r s rozpuszczoną substancję pr s XH Os + s Xrs pr! s Zwykl X rs << X H O 19 /1

20 p r s X H O n n H O H O + n rs n 1 n rs H O p r < s w roztworz wody i p r malj z wzrostm n rs. Ażby zrozumić dlaczgo ciśnini pary nad roztworm zmnijsza się, wyobraźmy sobi ż substancja rozpuszczona ni produkuj swojj pary. Jj molkuły są rozłożon jdnorodni w wodzi, zatm niktór z nich znajdują się na powirzchni miszaniny. Część powirzchni zajętj przz molkuły wody wynosi: n n H H O < n O + r 1 Ilość molkuł, któr mogą ucic z powirzchni roztworu, a zatm ciśnini nasycnia pary nad roztworm zmnijsza względm wartości dla czystj wody. /1

21 Substancj stał mogą się rozpuszczać w wodzi na dwa sposoby: Molkuły substancji rozpuszczonj mogą pozostać nizminion (np. cukir w wodzi) Molkuły substancji rozpuszczonj mogą rozpaść się na dodatnio i ujmni naładowan jony (np. sól w wodzi). Powstaj wtdy roztwór lktrolityczny (lctrolytic solution) Prawo Raoulta zostało zmodyfikowan przz an t Hoffa dla roztworów lktrolitycznych, który stwirdził, ż w taki roztwór zawira fktywni większą liczbę moli. f rs n in rs i czynnik an t Hoffa (an t Hoff dissociation factor). Dla silni zjonizowanych roztworów i jst równ liczbi jonów w roztworz, dla słabo zjonizowanych roztworów liczba ta jst mnijsza, al zawsz większa od 1. p r s i n 1 n rs H O 1 /1

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne PLAN WYKŁADU Sooby dochodznia do tanu naycnia Procy izobaryczn Ochładzani izobaryczn (mratura unktu roy) Ochładzani rzz izobaryczn i adiabatyczn wyarowani/kondnację wody (mratura wilgotngo trmomtru, mratura

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

Właściwości koligatywne

Właściwości koligatywne Tomasz Lubera Właściwości koligatywne Grupa zjawisk naturalnych niezależnych od rodzaju substancji rozpuszczonej a jedynie od jej ilości. Należą do nich: obniżenie prężności pary, podwyższenie temperatury

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Analiza termiczna Krzywe stygnięcia

Analiza termiczna Krzywe stygnięcia Analiza termiczna Krzywe stygnięcia 0 0,2 0,4 0,6 0,8 1,0 T a e j n s x p b t c o f g h k l p d i m y z q u v r w α T B T A T E T k P = const Chem. Fiz. TCH II/10 1 Rozpatrując stygnięcie wzdłuż kolejnych

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje Wprowadzenie do równowag fazowych () odstawowe definicje Faza dla danej substancji jej postać charakteryzująca się jednorodnym składem chemicznym i stanem fizycznym. W obrę bie fazy niektóre intensywne

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Roztwory rzeczywiste (1)

Roztwory rzeczywiste (1) Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 Roztwory rzeczywiste (2) Tym razem dla (CH 3 ) 2 CO () i CHCl

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe WYKŁAD 7 Diagramy fazowe Dwuskładnikowe układy doskonałe JS Reguła Gibssa. Układy dwuskładnikowe Reguła faz Gibbsa określa liczbę stopni swobody układu w równowadze termodynamicznej: układy dwuskładnikowe

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:

Bardziej szczegółowo

Ćwiczenia 12 Zadanie 12.4D

Ćwiczenia 12 Zadanie 12.4D Sylwester Arabas (ćwiczenia do wykładu prof. Hanny Pawłowskiej) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 26 maja 2011 r. : polecenie / rozwiązanie Wyznaczenie do jakiego poziomu musiałaby

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Roztwory rzeczywiste (1)

Roztwory rzeczywiste (1) Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 rzyczyny dodatnich i ujemnych odchyleń od prawa Raoulta konsekwencja

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977. XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego Wykład 3 - wykład 3 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2013 1/56 Warunek równowagi fazowej Jakich układów dotyczy równowaga fazowa? Równowaga fazowa dotyczy układów: jednoskładnikowych

Bardziej szczegółowo

Prężność pary nad roztworem

Prężność pary nad roztworem Tomasz Lubera Układ: Prężność pary nad roztworem dwuskładnikowy (składniki I i II) dwufazowy (ciecz i gaz) w którym faza ciekła i gazowa to roztwory idealne W stanie równowagi prężności pary składników/układu

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 0-4 Warszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mail: stach@unipress.waw.pl,

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego właściwości fizycznych (Atkins) 2. Faza to część układu

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Swobodny spadek ciał w ośrodku stawiającym opór

Swobodny spadek ciał w ośrodku stawiającym opór Ryszard Chybici Swobodny spad ciał w ośrodu stawiający opór (Posłuiwani się przz osoby trzci ty artyuł lub jo istotnyi frantai bz widzy autora jst wzbronion) Milc, 005 Swobodny spad ciała ośrodu stawiający

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje Wprowadzenie do równowag fazowych (1) Podstawowe definicje 1) Faza dla danej substancji jej postać charakteryzująca się jednorodnym składem chemicznym i stanem fizycznym. W obrębie fazy niektóre intensywne

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ ZLEŻNOŚĆ PRĘŻNOŚCI PRY OD TEMPERTURY - DESTYLCJ WSTĘP Zgodnie z regułą faz w miarę wzrostu liczby składników w układzie, zwiększa się również liczba stopni swobody. Układ utworzony z mieszaniny dwóch cieczy

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego właściwości fizycznych (Atkins) 2. Faza to część układu

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1 Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda

Bardziej szczegółowo

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają

Bardziej szczegółowo

w rozrzedzonych gazach atomowych

w rozrzedzonych gazach atomowych w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

Wykład Przemiany gazu idealnego

Wykład Przemiany gazu idealnego Wykład 4 2.6 Przmiany gazu idalngo Zmiana stanu gazu idalngo moż odbywać się rzy różnych warunkach narzuconych na odstawow aramtry oisując stan gazu. Ogólną rzmianę gazu rzy zmiani rzynajmnij dwóch aramtrów

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia CHEMIA semestr III Laboratorium z chemii fizycznej Zakres zagadnień na kolokwia 1. Wymagania ogólne Podstawą przygotowania do ćwiczeń jest skrypt pt. Chemia fizyczna. Ćwiczenia laboratoryjne, praca zbiorowa

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

CHEMIA FIZYCZNA ZTiM

CHEMIA FIZYCZNA ZTiM CHEMIA FIZYCZNA ZTiM Semestr zimowy 2016/2017 Dr hab. inż. Dorota Warmińska 1. Chemia fizyczna. Termodynamika. Podstawowe pojęcia stosowane w termodynamice. Układ i otoczenie. Przegroda adiabatyczna i

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

Fazy i ich przemiany

Fazy i ich przemiany Układy i fazy Fazy i ich przemiany Co to jest faza? 1. Faza to forma występowania materii jednolita w całej objętości pod względem składu chemicznego i właściwości fizycznych (Atkins) 2. Faza to część

Bardziej szczegółowo

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1) 11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

RÓWNOWAGI W UKŁADACH WIELOFAZOWYCH

RÓWNOWAGI W UKŁADACH WIELOFAZOWYCH RÓWNOWAGI W UKŁADACH WIELOFAZOWYCH 321 Pojęcia podstawowe 322 erodynaika równowag fazowych reguła faz Gibbsa 323 Równanie Clausiusa-Clapeyrona 324 Przeiany fazowe I i II rodzaju 31 erodynaika równowag

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki

Bardziej szczegółowo

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 3 Wstęp do Geofizyki - Fizyka atmosfery 2 /43 Powietrze opisuje się równaniem stanu gazu doskonałego,

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Wykład 1-4. Anna Ptaszek. 6 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 1-4.

Wykład 1-4. Anna Ptaszek. 6 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 1-4. Wykład 1-4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 6 września 2016 1 / 68 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego. A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna

Bardziej szczegółowo

2. Architektury sztucznych sieci neuronowych

2. Architektury sztucznych sieci neuronowych - 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego Makrokonomia Gosodarki Otwartj Wykład 6 Modl Dornbuscha rzstrzlnia kursu walutowgo Lszk Wincnciak Wydział Nauk Ekonomicznych UW 2/25 Plan wykładu: Założnia modlu Formaln rzdstawini modlu Równowaga na rynku

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Modelowanie w ochronie środowiska

Modelowanie w ochronie środowiska Modelowanie w ochronie środowiska PARAMETRY FIZYKO-CHEMICZNE WPŁYWAJĄCE NA TRWAŁOŚĆ I ROZPRZESTRZENIANIE SIĘ ZWIĄZKÓW CHEMICZNYCH W ŚRODOWISKU NATURALNYM KOMPOENTY ŚRODOWISKA TRWAŁOŚĆ! CZAS PRZEBYWANIA

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Temat: Pochodna funkcji. Zastosowania

Temat: Pochodna funkcji. Zastosowania Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

Badanie równowag ciecz para w układach dwuskładnikowych

Badanie równowag ciecz para w układach dwuskładnikowych Wprowadzenie Badanie równowag ciecz para w układach dwuskładnikowych Rozważmy równowagę ciecz para w układzie zawierającym dwie ciecze A i B całkowicie mieszające się ze sobą. Zgodnie z regułą faz Gibbsa,

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.

Bardziej szczegółowo

KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA POD CIŚNIENIEM

KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA POD CIŚNIENIEM 40 KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA POD CIŚNIENIEM POD CIŚNIENIEM piłka, masa, waa, pompka, ciśnini, az doskonały, zdrzni sprężyst, współczynnik rstytucji

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Diagramy fazowe graficzna reprezentacja warunków równowagi

Diagramy fazowe graficzna reprezentacja warunków równowagi Diagramy fazowe graficzna reprezentacja warunków równowagi Faza jednorodna część układu, oddzielona od innych części granicami faz, na których zachodzi skokowa zmiana pewnych własności fizycznych. B 0

Bardziej szczegółowo

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI SPIS TREŚCI WYKAZ NAJWAŻNIEJSZYCH SYMBOLI...7 PRZEDMOWA...8 1. WSTĘP...9 2. MATEMATYCZNE OPRACOWANIE WYNIKÓW POMIARÓW...10 3. LEPKOŚĆ CIECZY...15 3.1. Pomiar lepkości...16 3.2. Lepkość względna...18 3.3.

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz

Bardziej szczegółowo

gdzie: E ilość energii wydzielona z zamiany masy na energię m ubytek masy c szybkość światła w próŝni (= m/s).

gdzie: E ilość energii wydzielona z zamiany masy na energię m ubytek masy c szybkość światła w próŝni (= m/s). 1 Co to jst dfkt masy? Ŝli wskutk rakcji chmicznj masa produktów jst mnijsza od masy substratów to zjawisko taki nazywamy dfktm masy Ubytkowi masy towarzyszy wydzilani się nrgii ówimy Ŝ masa jst równowaŝna

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo