Podstawy fizyki subatomowej
|
|
- Juliusz Kurowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Podstawy fizyki subatomowj Wykład marca 09 r.
2 Modl Standardowy Modl Standardowy opisuj siln, słab i lktromagntyczn oddziaływania i własności cząstk subatomowych. cząstki lmntarn MS: lptony, kwarki, bozony pośrdnicząc oddziaływania : lktromagntyczn, słab, siln Formalizmy: toria oddziaływań lktrosłabych chromodynamika kwantowa (QCD)
3 Cząstki lmntarn Modlu Standardowgo lptony bozony pośrdnicząc m t m t W Z kwarki g u c t bozon Higgsa d s b H 0
4 Oddziaływania fundamntaln Rodzaj oddziaływania Źródło Względn natężni Zasięg Grawitacyjn masa 0-38 Słab Elktromagntyczn Siln ładunk słaby m ładunk lktryczny 0 - ładunk kolorowy 0-5 m
5 Podstawow własności cząstk masa czas życia ładunk spin momnt magntyczny parzystość izospin liczba barionowa liczby lptonow zapachy: dziwność, powab
6 Enrgia i masa W fizyc cząstk lmntarnych i w fizyc jądrowj nrgię podaj się w lktronowoltach: Przykłady V = V = C V = = V Śrdnia nrgia kintyczna ruchu trmiczngo: k.380 E k 3 kt /K V/K V/K E k V / K 300 K V
7 Przykłady Enrgia jonizacji atomu wodoru E j = 3.6 V Enrgia potrzbna do rozbicia jądra dutru E d =. MV Enrgia paczki 0 protonów w LHC 0 4 TV = V Enrgia -tonowgo samochodu jadącgo z pr. 30 km/h 0 3 kg (8 m/s) / V/ = V
8 Masę cząstk podaj się w jdnostkach nrgii / c V/c = / (3 0 8 m/s ) = kg kg = V/c Przykłady Masa spoczynkowa lktronu m = kg = V/c = = 0.5 MV/c dnostka masy atomowj - / masy atomu C u = kg = MV/c
9 Czas życia cząstk czas życia okrślany jst w układzi odnisinia, w którym cząstka spoczywa śrdni czas życia to czas, po którym liczba cząstk zmnijsza się o czynnik =.78 w przypadku najkrócj żyjących cząstk zamiast śrdnigo czasu życia podaj się szrokość charaktryzującą niokrśloność nrgii spoczynkowj cząstki nitrwałj: t t MVs
10 Przykład p p 0 p 8.5MV t MVs 3 80 s 8.5 MV ct 30 m/s s 40 m
11 Ładunk lktryczny istniją dwa rodzaj ładunku lktryczngo: dodatni i ujmny obsrwuj się tylko ładunki będąc całkowitą wilokrotnością ładunku lmntarngo q = n n = ±, ±, ±3 ładunk lmntarny = (4) 0-9 C lmntarny ładunk dodatni ma taką samą wartość jak lmntarny ładunk ujmny q H 0
12 Spin cząstkom lmntarnym przypisujmy własny momnt pędu spin, ni związany z ich ruchm w przstrzni spin cząstk moż przyjmować wartości całkowit lub połówkow: 3 0,,, cząstki o spini połówkowym nazywamy frmionami. cząstki o spini całkowitym nazywamy bozonami. długość wktora spinu dana jst przz wyrażni ( ) orintacja spinu cząstki w przstrzni okrślona jst przz rzut spinu na oś kwantyzacji z
13 orintacja spinu cząstki w przstrzni okrślona jst przz rzut spinu na oś kwantyzacji z z moż przyjmować wartości z =, , - + wartości Przykłady ( ) ( ) 0
14 Dodawani momntów pędu, Przykłady 0 lub lub 3
15 Funkcja falowa układu bozonów i frmionów funkcja falowa układu nirozróżnialnych bozonów musi być symtryczna z względu na zamianę cząstk: (, ) (,) funkcja falowa układu nirozróżnialnych frmionów musi być antysymtryczna z względu na zamianę cząstk: (,) (,) Konskwncją tj własności f.f. układu frmionów jst zakaz Pauligo: W układzi idntycznych frmionów ni mogą istnić cząstki posiadając wszystki taki sam liczby kwantow.
16 Dipolowy momnt magntyczny pętli z prądm m S gdzi I m IS m A m S - wktor powirzchniowy o zwroci ustalonym (poprz rgułę prawj dłoni) przz kirunk przpływu prądu
17 Momnt magntyczny związany z orbitalnym ruchm lktronu w atomi v orb r m Z L Momnt magntyczny m I S S p p Natężni prądu I T p T p Orbitalny momnt pędu L m r L m r pr L m L m r L m w zapisi wktorowym m orb m L m B L
18 dnostki dipolowgo momntu magntyczngo m B m - magnton Bohra m B m 9.60 C kg 34 s Am m B MV/T Magnton jądrowy mn m B m m N p m m p MV/c 5.80 MV/T MV/c MV/T
19 Momnt magntyczny obracającj się jdnorodni naładowanj kuli Z d r sin r dv r dq dv sin drdd 4 3 r Q/ pr 3 sin drdd - gęstość ładunku X Natężni prądu związan z ruchm ładunku dq m spin QR 5 di dq T dq p Dipolowy momnt magntyczny jdnorodni naładowanj kuli o ładunku Q i prominiu R obracającj się z prędkością kątową
20 Momnt pędu kuli o masi m i prominiu R Q m R Q mr QR spin m 5 5 mr mr Klasyczny związk między momntm magntycznym i spinm mr m 5 5 m g s spin m Dla obiktów kwantowych gdzi s g - spinowy czynnik giromagntyczny
21 Przykłady Cząstka Q/ Masa ( MV/c ) ( ħ) g s /.00 p / n / 3.86 Momnt magntyczny protonu m spin m spin g s / 5.6mN m p MV/T 90 4 MV/T
22 Izospin Obsrwuj się grupy cząstk o zbliżonych masach, takich samych spinach i parzystościach a różniących się ładunkim. Grupi liczącj n cząstk przyporządkowuj się izospin I: I n Poszczgóln cząstki wchodząc w skład dango multipltu izospinowgo opisuj się podając wartość rzutu izospinu na oś z (I z ) I z przyjmuj wartości I z = I, I-... -I+, -I I + wartości
23 Przykład Symbol Q/ Masa ( MV/c ) t (s) p ( ħ) nuklony p > 0 35 lat / n / Grupa nuklonów liczy n = cząstki: proton i nutron Przypisujmy im izospin I = (-)/ = / Możliw wartości I z to I z = / i I z = -/ Protonowi przypisujmy I z = +/ Nutronowi przypisujmy I z =-/
24 Parzystość Parzystość opisuj zachowani się funkcji falowj przy opracji odbicia przstrznngo: r r Funkcjom falowym, dla których ( r ) ( r ) przypisujmy parzystość dodatnią: p =+ Funkcjom falowym, dla których ( r ) ( r ) przypisujmy parzystość ujmną: p =-
25 Przykłady funkcja o parzystości dodatnij (p= + ) : (-x) = + (x).0 x x funkcja o parzystości ujmnj (p= - ) : (-x) = - (x).0 x x
26 funkcja o niokrślonj parzystości : (-x) (x).0 x x -.0
27 Parzystość układu cząstk Parzystość jst multiplikatywną liczbą kwantową. Parzystość układu cząstk o parzystościach wwnętrznych p i p i orbitalnym momnci pędu ruch względngo l jst równa: p p p l
28 Własności bozonów pośrdniczących Nazwa Symbol Masa (GV/c ) Ładunk ( ) p ( ħ) Śrdni czas życia ( s ) Uwagi foton 0 0 o. E-M gluony g 0 0 o. siln bozon Z 0 Z o. lktrosłab bozony W +,W - W +, W , o. lktrosłab grawiton G 0 0 o. graw.
29 Własności lptonów (z gr. lptós drobny, lkki) Gn -acja Nazwa Symbol Masa (MV/c ) Ładunk ( ) Śrdni czas życia Spin ( ħ) Liczba lptono wa I II III lktron > 50 6 lat / L =+ nutrino lktronow < * / L =+ mion m s / L m =+ nutrino mionow < * / L m =+ taon s / L t =+ nutrino taonow m t t < 8. 0 * / L t =+ *) Nutrina ni rozpadają się, al ulgają oscylacjom.
30 Własności lptonów lptony są cząstkami punktowymi, ni posiadają struktury wwnętrznj r < 0 - m wszystki lptony są frmionami o spini / lptony ni oddziałują silni
31 Kwarki Gnracja Nazwa Symbol Ładunk ( ) Masa prądowa ( GV/c ) p ( ħ) Izospin I z Liczba barionowa Zapach I II III up (górny) down (dolny) strang (dziwny) charm (powabny) bottom (niski) top (wysoki) u + /3 d - / / +/ /3 / -/ /3 s - / / 0 /3 S = c + / / 0 /3 C = + b - / / 0 /3 B = t + /3 7 / 0 /3 T = + Masa prądowa masa gołych kwarków Masa konstytuntna masa kwarków ubranych w gluony
32 Własności kwarków ni obsrwuj się kwarków swobodnych kwarki występują w trzch kolorach: Rd, Grn, Blu wszystki kwarki są frmionami o spini / kwarki oddziałują silni, słabo i lktromagntyczni siln oddziaływani pomiędzy kwarkami odbywa poprzz wymianę gluonów (8 rodzajów) na małych odlgłościach kwarki zachowują się jak cząstki swobodn (asymptotyczna swoboda) siła oddziaływania rośni z odlgłością, prowadzi to do uwięzinia kwarków
33 Uwięzini kwarków u u u u Z wzrostm odlgłości między kwarkami rośni nrgia oddziaływania. u d d u W pwnym momnci nrgia jst dostatczni wysoka do utworznia pary kwark anty-kwark. Powstają now cząstki w których kwarki pozostają uwięzion.
34 Własności cząstk i antycząstk Wilkość cząstka antycząstka Masa spoczynkowa m m Czas życia t t Ładunk lktryczny Q -Q Spin Momnt magntyczny m -m Parzystość p -p dla frmionów p dla bozonów Izospin, I z I, I z I, -I z Liczba barionowa B -B Liczba lptonowa L, L m, L t -L, -L m, -L t Zapach S, C, B, T -S, -C, -B, -T _ Kolor R, G, B R, G, B Istniją cząstki idntyczn z swoimi antycząstkami są tzw. cząstki istotni obojętn np. foton, p 0
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Bardziej szczegółowoPodstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Bardziej szczegółowoOddziaływania. Diagramy Feynmana. Równanie Diraca. Symetrie. Elementy kwantowej elektrodynamiki (QED) D. Kiełczewska, wykład4
Oddziaływania Diagramy Fynmana Elmnty kwantowj lktrodynamiki (QED) Równani Diraca Symtri D. Kiłczwska, wykład4 Oddziaływania Oddziaływani zachodzi gdy następuj a) wymiana nrgii i pędu między cząstkami
Bardziej szczegółowoCząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Bardziej szczegółowoFizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra
Bardziej szczegółowoWykład 4: Termy atomowe
Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział
Bardziej szczegółowoOddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Bardziej szczegółowoCząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Bardziej szczegółowoPodstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Bardziej szczegółowoFizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Bardziej szczegółowoWstęp do chromodynamiki kwantowej
Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Bardziej szczegółowoSymetrie. D. Kiełczewska, wykład 5 1
Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych
Bardziej szczegółowoWSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Bardziej szczegółowoWłasności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
Bardziej szczegółowoElementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
Bardziej szczegółowoTermodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ
Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a
Bardziej szczegółowoSymetrie. D. Kiełczewska, wykład 5 1
Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Oddziaływania silne
Wszechświat Cząstek Elementarnych dla Humanistów Oddziaływania silne Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 6 listopada 2018 A.F.Żarnecki WCE Wykład 5 6 listopada 2018 1 / 37 Oddziaływania
Bardziej szczegółowoEkscytony Wanniera Motta
ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują
Bardziej szczegółowoWyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne
Wyk³ady z Fizyki 13 Zbigniew Osiak Cz¹stki Elementarne OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej
Bardziej szczegółowoCząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki
Wszechświat cząstek elementarnych WYKŁAD 3 Cząstki elementarne Odkrycia Prawa zachowania Cząstki i antycząstki 4.III.2009 Fizyka cząstek elementarnych Wiek XX niezwykły y rozwój j fizyki, pojawiły y się
Bardziej szczegółowoObserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych
Obsrwacj świadcząc o dyskrtyzacji widm nrgii w strukturach niskowymiarowych 1. Optyczn Widma: - absorpcji wzbudzani fotonami o coraz większj nrgii z szczytu pasma walncyjngo do pasma przwodnictwa maksima
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Bardziej szczegółowoModel Atomu Bohra. Część 2
Część Modl Atomu Bohra.1: Modl atomu Thomsona i Ruthrforda.: Modl Ruthrforda.3: Klasyczny Modl Atomu.4: Modl Bohra atomu wodoru.5: Liczby atomow a rntgnowski widma charaktrystyczn.6: Zasada korspondncji..7:
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Bardziej szczegółowoMechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Fizyka I (B+C) Mechanika Wykład I: Informacje ogólne Wprowadzenie Co to jest fizyka? Czym zajmuje się fizyka? dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki
Bardziej szczegółowoWYKŁAD I Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW. Model Standardowy AD 2010
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW Model Standardowy AD 2010 Hadrony i struny gluonowe 20.I. 2010 Hadrony=stany związane kwarków Kwarki zawsze
Bardziej szczegółowoWYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby
Bardziej szczegółowoZ czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?
Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm
Bardziej szczegółowoFizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Bardziej szczegółowoWYKŁAD X.2009 Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 4 28 Spin Fermiony i bozony Oddziaływanie słabe Rodziny fermionów fundamentalnych Prawe i lewe fermiony o spinie ½ Siły Porównania oddziaływań
Bardziej szczegółowow rozrzedzonych gazach atomowych
w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal
Bardziej szczegółowoPodstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)
11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij
Bardziej szczegółowoOddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)
Oddziaływania Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca Antycząstki; momenty
Bardziej szczegółowoWszechświat cząstek elementarnych WYKŁAD 5
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:
Bardziej szczegółowoWstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania
Bardziej szczegółowoWybrane zagadnienia fizyki subatomowej
Wybrane zagadnienia fizyki subatomowej Zenon Janas 6 stycznia 015 r. Fizyka subatomowa Fizyka subatomowa zajmuje się badaniem własności i oddziaływań obiektów o rozmiarach mniejszych niż rozmiary atomów.
Bardziej szczegółowoCząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Bardziej szczegółowoVIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Bardziej szczegółowoZjawisko Zeemana (1896)
iczby kwantow Zjawisko Zana (1896) Badani inii widowych w siny pou agntyczny, prowadzi do rozszczpini pozioów nrgtycznych. W odu Bohra, kwantowani orbitango ontu pędu n - główna iczba kwantowa n = 1,,
Bardziej szczegółowoBozon Higgsa prawda czy kolejny fakt prasowy?
Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami
Bardziej szczegółowoWszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad. 2011/12. 210/9 http://www www.fuw.edu.pl/~
Bardziej szczegółowoWłaściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Bardziej szczegółowoWstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Dynamika oddziaływań cząstek Elektrodynamika kwantowa (QED) Chromodynamika kwantowa (QCD) Oddziaływania słabe Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Bardziej szczegółowoSymetrie w fizyce cząstek elementarnych
Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek
Bardziej szczegółowoMasy atomowe izotopów. turalabundance.pdf
Rozpady Masy atomow izotopów https://chmistry.scincs.ncsu.du/msf/pdf/isotopicmass_na turalabundanc.pdf Rozpady radioaktywn dn = λndt N( t) = N 0 λt A(t) aktywność = dddd dddd λ ilość rozpadów na skundę
Bardziej szczegółowoWykład 43 Cząstki elementarne - przedłużenie
Wykład 4 Cząstki elementarne - przedłużenie Hadrony Cząstki elementarne oddziałujące silnie nazywają hadronami ( nazwa hadron oznacza "wielki" "masywny"). Hadrony są podzielony na dwie grupy: mezony i
Bardziej szczegółowoZjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony
Zjonizowana cząstczka wodoru H - lktron i dwa protony Enrgia potncjalna lktronu w polu lktrycznym dwu protonów ˆ pˆ H = m pˆ 1 m p pˆ m p 1 1 1 4πε 0 r0 r1 r Hamiltonian cząstczki suma nrgii kintycznj
Bardziej szczegółowoOddziaływania. Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)
Oddziaływania Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca
Bardziej szczegółowoM. Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 3 M. Krawczyk, Wydział Fizyki UW Zoo cząstek elementarnych 6.III.2013 Masy, czasy życia cząstek elementarnych Liczby kwantowe kwarków (zapach i kolor) Prawa zachowania
Bardziej szczegółowoWszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad.. 2010/11 http://www www.fuw.edu.pl/~
Bardziej szczegółowoMateria i jej powstanie Wykłady z chemii Jan Drzymała
Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań
Bardziej szczegółowoII.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
Bardziej szczegółowoPodstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
Bardziej szczegółowoGeneralna idea: Jeśli strumień cząstek pada na tarczę to tylko część oddziałuje związek między nimi ustala tzw. przekrój czynny. m m s.
Pojęci przkroju czynngo Gnralna ida: Jśli strumiń cząstk pada na tarczę to tylko część oddziałuj związk między nimi ustala tzw. przkrój czynny a dokładnij Załóżmy, ż mamy cinką warstwę i lmnty rozpraszając
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoWYKŁAD 5. Maria Krawczyk, Wydział Fizyki UW. Fermiony i bozony. Oddziaływanie słabe i rodziny cząstek fundamentalnych. Spin - historia odkrycia
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW Spin - historia odkrycia Fermiony i bozony Oddziaływanie słabe i rodziny cząstek fundamentalnych sem letni 2013/14 Spin - jeszcze
Bardziej szczegółowoPakiet ROOT. prosty generator Monte Carlo. Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauki
M. Trzebiński ROOT generator MC 1/5 Pakiet ROOT prosty generator Monte Carlo Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Wprowadzenie
Bardziej szczegółowoOddziaływanie Teoria Nośnik Masa Spin Ładunek Silne chromodynamika (QCD) 8 gluonów 0 1 kolory E-M elektrodynamika (QED) foton 0 1 0
Cząstki lmntarn Postawow (lmntarn) skłaniki matrii, oraz oziaływania mięzy nimi, opisj się w język kwantowj torii pola. Mol Stanarowy jst taką torią, która objmj wszystki oziaływania za wyjątkim grawitacji.
Bardziej szczegółowoWykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Bardziej szczegółowoPodróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział
Bardziej szczegółowoWszechświat cząstek elementarnych (dla humanistów)
Wszechświat cząstek elementarnych (dla humanistów) Maria Krawczyk i A. Filip Żarnecki nstytut Fizyki Teoretycznej Instytut Fizyki Doświadczalnej Wydział Fizyki UW Odkrycie cząstki Higgsa w LHC (CERN )
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 27 listopada 2018 A.F.Żarnecki WCE Wykład 8 27 listopada 2018 1 / 28 1 Budowa materii (przypomnienie)
Bardziej szczegółowoFizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Bardziej szczegółowoWszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 4 Maria Krawczyk, Wydział Fizyki UW 9.III.2011 Spin - historia odkrycia Fermiony i bozony Oddziaływanie słabe i rodziny cząstek fundamentalnych Spin - jeszcze jedna
Bardziej szczegółowoWszechświat cząstek elementarnych WYKŁAD 5. Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW sem.letni.2012/13 Spin - historia odkrycia Fermiony i bozony Oddziaływanie słabe i rodziny cząstek fundamentalnych Spin - jeszcze
Bardziej szczegółowoWYKŁAD 4 10.III.2010
Wszechświat cząstek elementarnych WYKŁAD 4 10.III.2010 Maria Krawczyk, Wydział Fizyki UW Spin historia odkrycia fermiony i bozony spin cząstek fundamentalnych Oddziaływanie słabe i rodziny cząstek fundamentalnych
Bardziej szczegółowoOddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.
1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Bardziej szczegółowoRozpraszanie elektron-proton
Rozpraszanie elektron-proton V Badania struktury atomu - rozpraszanie Rutherforda. Rozpraszanie elastyczne elektronu na punktowym protonie. Rozpraszanie elastyczne elektronu na protonie o skończonych wymiarach.
Bardziej szczegółowoFizyka cząstek elementarnych. Fizyka cząstek elementarnych
r. akad. 2012/2013 Wykład XI-XII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka cząstek elementarnych Zakład Biofizyki 1 Cząstki elementarne po odkryciu jądra atomowego, protonu i neutronu liczba
Bardziej szczegółowoSkad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39
Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,
Bardziej szczegółowoWYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby
Bardziej szczegółowoLHC i po co nam On. Piotr Traczyk CERN
LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC
Bardziej szczegółowoWYKŁAD 5 sem zim.2010/11
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 5 sem zim.2010/11 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2 9 października 2017 A.F.Żarnecki
Bardziej szczegółowoJÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING
JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING testowe pomiary i demonstracja iż proponowana metoda pracuje są wykonywane na działającym akceleratorze COSY pierwszy pomiar z precyzją
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Bardziej szczegółowoIzotopy stabilne lub podlegające samorzutnym rozpadom
Izotopy stbiln lub podlgjąc smorzutnym rozpdom Izotopy - jądr o jdnkowj liczbi protonów, różniąc się liczbą nutronów t 1/ =14 s t 1/ =5730 lt Mp nuklidów stbilność jądr Frgmnt mpy nuklidów w obszrz otrzymywnych
Bardziej szczegółowoStany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ)
Plazma Kwarkowo-Gluonowa Nowy Stan Materii Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ) Diagram fazowy
Bardziej szczegółowoWYKŁAD 8. Wszechświat cząstek elementarnych dla humanistów
Wszechświat cząstek elementarnych dla humanistów WYKŁAD 8 Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy
Bardziej szczegółowoTeoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Bardziej szczegółowoLiczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Bardziej szczegółowoBozon Higgsa oraz SUSY
Bozon Higgsa oraz SUSY Bozon Higgsa Poszukiwania bozonu Higgsa w LEP i Tevatronie - otrzymane ograniczenia na masę H Plany poszukiwań w LHC Supersymetria (SUSY) Zagadkowe wyniki CDF Masy cząstek cząstki
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 21 listopada 2017 A.F.Żarnecki WCE Wykład
Bardziej szczegółowoAtom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Bardziej szczegółowoWszechświat cząstek elementarnych WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW 29.II.2012 Zoo cząstek elementarnych Pierwsze cząstki: elektron i foton Masy, czasy życia cząstek elementarnych Liczby kwantowe
Bardziej szczegółowoModel uogólniony jądra atomowego
Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)
Bardziej szczegółowoElektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Bardziej szczegółowoWykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
Bardziej szczegółowoAtomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
Bardziej szczegółowoKarta przedmiotu. Przedmiot Grupa ECTS. Fizyka Wysokich Energii 9. Kierunek studiów: fizyka. Specjalność: fizyka
Wydział Fizyki, Uniwersytet w Białymstoku Kod USOS Karta przedmiotu Przedmiot Grupa ECTS Fizyka Wysokich Energii 9 Kierunek studiów: fizyka Specjalność: fizyka Formy zajęć Wykład Konwersatorium Seminarium
Bardziej szczegółowoWczesne modele atomu
Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze
Bardziej szczegółowoWYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW 5.I. 2011 Hadrony i struny gluonowe Model Standardowy AD 2010 Hadrony = stany związane kwarków Kwarki zawsze
Bardziej szczegółowoWYKŁAD 7. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 7 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne
Bardziej szczegółowoSpin spina fizykę i... SPiN. prof. Mariusz P. Dąbrowski
Spin spina fizykę i... SPiN prof. Mariusz P. Dąbrowski Co łączy ze sobą rowerzystę, łyżwiarkę i tancerza hip-hopu... Ziemię, gwiazdę... czarną dziurę w kosmosie... z cząstkami w Wielkim Zderzaczu Hadronów?
Bardziej szczegółowoWYKŁAD 12. Wszechświat cząstek elementarnych dla humanistów. Poza Modelem Standardowym. Maria Krawczyk, Wydział Fizyki UW
M. Krawczyk, AF. Żarnecki - Wykład 12 1 Wszechświat cząstek elementarnych dla humanistów WYKŁAD 12 Maria Krawczyk, Wydział Fizyki UW Poza Modelem Standardowym Problemy Modelu Standardowego Wiele parametrow
Bardziej szczegółowoModel Standardowy i model Higgsa. Sławomir Stachniewicz, IF PK
Model Standardowy i model Higgsa Sławomir Stachniewicz, IF PK 1. Wstęp. Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami materii. Model Higgsa to dodatek do
Bardziej szczegółowo