Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz
|
|
- Adrian Duda
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn, brzgow. Nizalżność zminnych losowych. Momnty. Współczynnik korlacji. Sumowani nizalżnych zminnych losowych. Prawo wilkich liczb. Zadani 5.1 (a) Wktor losowy (X, Y ) ma następujący rozkład łączny: P (X = 0, Y = 1) = C; P (X = 0, Y = 0) = 0; P (X = 0, Y = 1) = 0, 15; P (X = 1, Y = 1) = P (X = 1, Y = 0) = 0, 5; P (X = 1, Y = 1) = 0,. Wyznaczyć stałą C oraz rozkłady brzgow tgo wktora losowgo. Czy X i Y są nizalżn? (b) Znalźć rozkład łączny wktora losowgo (X, Y ), gdzi X i Y są nizalżnymi zminnymi losowymi o rozkładach P (X = 1) = 0, 3; P (X = ) = 0, 7; P (Y = 0) = 0, 75; P (Y = 1) = 0, 5. Zadani 5. 8 (a) Funkcja f(x, y) = 9 y3 (5x + ) dla 0 < x < 1, 0 < y < 1 jst gęstością wktora losowgo (X, Y ). Obliczyć P ((X, Y ) ), gdzi to obszar 0 y 1, 0 x y. Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ). Czy X i Y są nizalżn? x y dla x > 0, y > 0 (b) Funkcja f(x, y) = jst gęstością wktora losowgo (X, Y ). Obliczyć P (1 < X <, 1 < Y < 1). Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ). Czy X i Y są nizalżn? C dla (x, y) K (c) Dobrać stałą C tak, aby funkcja f(x, y) = gdzi K to półokrąg o środku 0 poza tym, w punkci (0, 0) i prominiu 1, położony nad osią Ox, była gęstością pwngo wktora losowgo (X, Y ). Obliczyć następni P (X + Y 1/4). Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ). Czy X i Y są nizalżn? (d) Dobrać stałą C tak, aby funkcja f(x, y) = Cxy( x y) dla 0 x 1, 0 y 1, 0 poza tym była gęstością pwngo wktora losowgo (X, Y ). Obliczyć następni P ((X, Y ) ), gdzi to trójkąt 0 x 1/, 0 y x. Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ).
2 Zadani 5.3 Wyznaczyć wktor wartości oczkiwanych oraz macirz kowariancji wktora losowgo (X, Y ) o podanym rozkładzi. Obliczyć współczynnik korlacji zminnych losowych X i Y, któr są składowymi tgo wktora. (a) x n , 15 0, 5 ; 0 0 0, 5 1 0, 15 0, x n 1 (b) 0 0, 5 0, , 075 0, (c) rozkład o gęstości f(x, y) = 9 y3 (5x + ) dla 0 < x < 1, 0 < y < 1 x y dla x > 0, y > 0 (d) rozkład o gęstości f(x, y) = dla (x, y) K () rozkład o gęstości f(x, y) = π 0 poza tym, (0, 0) i prominiu 1, położony nad osią Ox. gdzi K to półokrąg o środku w punkci (f) rozkład o gęstości f(x, y) = Czy X i Y są nizalżn? Zadani 5.4 6xy( x y) dla 0 x 1, 0 y 1, (a) Zminn losow X i Y są nizalżn, przy czym X ma rozkład wykładniczy Exp(3), a Y rozkład normalny N (, 3). Znalźć wartość oczkiwaną i wariancję zminnj losowj Z = 3X 5Y 3. (b) Zminn losow X i Y są nizalżn, przy czym X ma rozkład Poissona P(3), a Y rozkład Brnoulligo B(10; 0, ). Znalźć wartość oczkiwaną i wariancję zminnj losowj Z = 3X 5Y + 7. (c) Nich Y = X +N, gdzi X ma rozkład zrojdynkowy z paramtrm p = 0, 3; a N ma rozkład normalny N (0, ), przy czym zminn losow X i N są nizalżn. Obliczyć współczynnik korlacji ρ XY. Zadani 5.5 (a) Zminn losow X 1, X,... są nizalżn o jdnakowym rozkładzi wykładniczym Exp(). Do czgo jst zbiżna śrdnia arytmtyczna X X n? W snsi jakij zbiżności? n (b) Nich X 1, X,... będzi ciągim nizalżnych zminnych losowych o jdnakowym rozkładzi jdnostajnym U(0, 1). Zdfiniujmy 0 dla n = 1, 3, 5,... Z n = X n dla n =, 4, 6,... n Z i równa jst 0,5 czy 0,5 z prawdopodobiństwm 1? Odpowidź uza- i=1 1 Czy granica lim n n sadnić.
3 3 Zadani 6.1 Lista 6. Twirdzni d Moivr a-laplac a. Cntraln Twirdzni Graniczn Lindbrga-Lévy go. (a) W pwnym dużym okręgu wyborczym ma zostać przprowadzon rfrndum w sprawi budowy lktrowni atomowj. Wśród uprawnionych do głosowania miszkańców 45% popira tę inwstycję, a 55% jst przciw. Na podstawi tw. Moivr a Laplac a oszacować, jaki jst prawdopodobiństwo odrzucnia projktu w rfrndum, w których wźmi udział tylko 00 osób wybranych losowo. Oszacować błąd przybliżnia. (b) Jśli gracz wyrzuci kostką 6 oczk, to wygrywa 4 zł. Jśli ni, przgrywa 1 zł. Oszacować prawdopodobiństwo tgo, ż w 1000 rzutach gracz przgra co najwyżj 0 zł. Oszacować błąd przybliżnia. (c) W pwnym towarzystwi ubzpiczniowym jst ubzpiczonych samochodów. Każdy z właścicili płaci roczną składkę 50 zł za samochód. Śrdnio 9 na 1000 samochodów ulga uszkodzniu w ciągu roku. Właścicilowi uszkodzongo pojazdu towarzystwo wypłaca 5000 zł. Na podstawi tw. Moivr a Laplac a oszacować, jaki jst prawdopodobiństwo, ż w ciągu roku towarzystwo ni ponisi strat. Oszacować błąd przybliżnia. (d) Prawdopodobiństwo, ż dowolna osoba odpowi na przsłaną pocztą rklamę i zamówi towar, wynosi 0,03. Rklamę wysłano do 00 osób. Na podstawi tw. Moivr a Laplac a oszacować prawdopodobiństwo, ż (1) dokładni 5 osób, () mnij niż 5 osób przyśl zamówinia. Oszacować błąd przybliżnia. Porównać wyniki z otrzymanymi w zadaniu 7.3(a) mtodą dokładną i przybliżoną z tw. Poissona. Zadani 6. (a) Czas oczkiwania na tramwaj linii 14 jst zminną losową o rozkładzi wykładniczym o śrdnij 0 minut. Pan Piotr codzinni w dni robocz dojżdża nim do pracy. Oszacować na podstawi CTG Lindbrga Lévy go prawdopodobiństwo, ż pan Piotr traci w ciągu 160 koljnych dni roboczych na czkani na tramwaj linii 14 więcj niż 500 minut. (b) Czas pracy lampy pwngo typu ma rozkład wykładniczy o śrdnij 100 dni. Na podstawi tw. Lindbrga Lévy go oszacować, czy wystarczy mić w zapasi 169 lamp, aby z prawdopodobiństwm 0,9 wystarczyło ich na dni niprzrwanj pracy. (Przyjmujmy, ż spalona lampa jst natychmiast wyminiana na nową.) (c) Pwna konstrukcja składa się z 500 jdnakowych lmntów. Na podstawi CTG Lindbrga Lévy go oszacować prawdopodobiństwo, ż całkowita masa tj konstrukcji ni przkroczy 1755 kg, jśli rozkład masy lmntów, z których jst złożona, ma wartość oczkiwaną 3,5 kg i odchylni standardow 0,5 kg? (d) Samolot zabira na pokład 70 osób. Waga pasażrów ma pwin rozkład o wartości oczkiwanj 75 kg i wariancji 5 kg. Oszacować na podstawi CTG Lindbrga Lévy go prawdopodobiństwo, ż łączna waga pasażrów przkroczy 5300 kg. () W grupi studnckij przprowadza się tst, w którym można uzyskać do 100 punktów. Śrdni wynik uzyskiwany przz studnta wynosi 40 pkt, a wariancja 0. Wyniki studntów są nizalżn i o takim samym rozkładzi. Oszacować na podstawi CTG Lindbrga Lévy go prawdopodobiństwo tgo, ż przciętna liczba punktów przypadająca na jdngo studnta w grupi 150 osób zawira się w przdzial od 35 do 45 pkt.
4 4 Odpowidzi i wskazówki: Lista nr 5: x n 0 1 r.brzg. Y 5.1 (a) C = 0, 15; 1 0, 15 0, 5 0, , 5 0, 5 1 0, 15 0, 0, 35 r.brzg.x 0, 3 0, 7 = 1 x n 1 r.brzg. Y (b) 0 0, 5 0, 55 0, , 075 0, 175 0, 5 r.brzg.x 0, 3 0, 7 = 1 ; X i Y ni sa nizalżn; 5. (a) P ((X, Y ) ) = 13 0, 989; f 160 X(x) = 4y 3, X i Y są nizalżn; (d) C = 6; P ((X, Y ) ) = 0, 065; f X (x) = 4y 3y (/9)(5x + ) dla 0 < x < 1, x dla x > 0, (b) P (1 < X <, 1 < Y < 1) = +1 0, 1470; f 3 X (x) = y dla y > 0,, X i Y są nizalżn; (c) C = ; P π (X + Y 0, 5) = 0, 5; f X (x) = π 1 x dla 1 < x < 1, 4 π 1 y ; X i Y ni są nizalżn; 4x 3x dla 0 < x < 1, 5.3 (a) (EX, EY ) = (0, 7; 0, 05); macirz kowariancji to 0, 015 0, 1 0, , 0379; [ 0, 1 0, 015 0, 015 0, 7475 ρ XY = 0, 1 0 (b) (EX, EY ) = (1, 7; 0, 5); macirz kowariancji to ; ρ 0 0, 1875 XY = 0; 109/ (c) (EX, EY ) = (16/7; 4/5); macirz kowariancji to ; ρ 0 /75 XY = 0; 1 0 (d) (EX, EY ) = (1; 1); macirz kowariancji to ; ρ 0 1 XY = 0; 0, 5 0 () (EX, EY ) = (0; 4 ); macirz kowariancji to 3π 9π 0 16 ; ρ XY = 0 [ 36π ] 43/70 1/144 (f) (EX, EY ) = (7/1; 7/1); macirz kowariancji to ; 1/144 43/70 ρ XY = 5/43 0, , więc X i Y ni są nizalżn; ] ;
5 5 5.4 (a) EZ = 1, D Z = 6; (b) EZ = 6, D Z = 67; (c) ρ XY = 0, 1/ 0, 1 16, 1 0, (a) do 4/3 z prawdop. 1; (b) do 0,5. Lista nr 6: 6.1 (a) 0, 9319±0, 06; (b) 0, 0064±0, 05; (c) 0, 9996±0, 03; (d) (1) 0, 149±0, 64; () 0, 676±0, 3 6. (a) 0, 997; (b) tak; (c) 0, 6736; (d) 0, 1170; () 0, 9978
Rachunek Prawdopodobieństwa MAP1064, 2008/09
1 Rachunk Prawdopodobiństwa MAP1064, 008/09 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 10-1 Opracowani: dr hab. Agniszka Jurlwicz Litratura: [1] A. Plucińska, E. Pluciński,
Bardziej szczegółowoLista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowoZestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Bardziej szczegółowozadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoPrzykłady do zadania 3.1 :
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 3: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala,
Bardziej szczegółowoZmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
Bardziej szczegółowoUogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2
ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowocos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
Bardziej szczegółowoRachunek prawdopodobieństwa MAP1064 Wydział Elektroniki, rok akad. 2008/09, sem. letni Wykładowca: dr hab. A. Jurlewicz
Rachunek prawdopodobieństwa MAP064 Wydział Elektroniki, rok akad. 08/09, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 7: Zmienne losowe dyskretne. Rozkłady Bernoulliego dwumianowy), Pascala,
Bardziej szczegółowoDefinicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Bardziej szczegółowo12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
Bardziej szczegółowoNiech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Bardziej szczegółowoLista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
Bardziej szczegółowoLaboratorium nr 7. Zmienne losowe typu skokowego.
Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Bardziej szczegółowoPrzykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych
Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Przykłady 6. Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa. Transformacje zmiennej losowej. Opracowanie:
Bardziej szczegółowo1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..
Bardziej szczegółowoAnaliza wybranych własności rozkładu reszt
Analiza wybranych własności rozkładu rsz Poprawni skonsruowany i oszacowany modl, kóry nasępni ma być wykorzysany do clów analizy i prdykcji, poza wysokim sopnim odzwircidlania zmian warości mpirycznych
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Bardziej szczegółowoRachunek Prawdopodobieństwa MAP1064, 2008/09
Rachunek Prawdopodobieństwa MAP064, 2008/09 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz Listy zadań nr 7-9 Opracowanie: dr hab. Agnieszka Jurlewicz Literatura: [] A. Plucińska, E. Pluciński,
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Bardziej szczegółowo5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3
LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest
Bardziej szczegółowo2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
Bardziej szczegółowoRachunek prawdopodobieństwa 1B; zadania egzaminacyjne.
Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na
Bardziej szczegółowoModelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Bardziej szczegółowoKwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Bardziej szczegółowoReguła de L Hospitala. Reguła de L Hospitala - odpowiedzi. Różniczka funkcji. Różniczka funkcji - odpowiedzi. Styczna i normalna
REGUŁA DE L HOSPITALA Rguła d L Hospitala Oblicz granicę: a lim b lim + f lim ln+ k lim l lim p u lim z lim + ln ln c lim g lim ln h lim ln sin q lim + v lim lim arc ctg π ln sin lnln sin d lim lim i lim
Bardziej szczegółowoRozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
Bardziej szczegółowoAleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Bardziej szczegółowoPEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Bardziej szczegółowoWykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Bardziej szczegółowoA = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!
Rachunek prawdopodobieństwa MAP34, WPPT/FT, wykład dr hab. A. Jurlewicz Przykłady - Lista nr : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.. Hasło potrzebne
Bardziej szczegółowox x 0.5. x Przykłady do zadania 4.1 :
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.
Bardziej szczegółowoGranica funkcji - Lucjan Kowalski GRANICA FUNKCJI
GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g
Bardziej szczegółowoAnaliza danych jakościowych
Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.
Bardziej szczegółowoZadania zestaw 1: Zadania zestaw 2
Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m
Bardziej szczegółowoSieci neuronowe - uczenie
Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Bardziej szczegółowoJeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Bardziej szczegółowoJednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Bardziej szczegółowo1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Bardziej szczegółowoLista 1 - Prawdopodobieństwo
Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Bardziej szczegółowoRozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Bardziej szczegółowoLABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Bardziej szczegółowoEKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.
EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80
Bardziej szczegółowoZmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Bardziej szczegółowoIdentyfikacja osób na podstawie zdjęć twarzy
Idntyfikacja osób na podstawi zdjęć twarzy d r i n ż. Ja c k Na r u n i c m gr i n ż. Ma r k Kowa l s k i C i k a w p r o j k t y W y d z i a ł E l k t r o n i k i i T c h n i k I n f o r m a c y j n y
Bardziej szczegółowoELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Bardziej szczegółowoPrzykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 8: Zmienne losowe typu ciągłego. Gęstość prawdopodobieństwa. Rozkład
Bardziej szczegółowolim lim 4) lim lim lim lim lim x 3 e e lim lim x lim lim 2 lim lim lim Zadanie 1 Wyznacz dziedziny następujących funkcji: log x x 6x
Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7) 8) 9) 5 5 7 7 7 6 0) 6 ) ) 9) 0)
Bardziej szczegółowoParametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Bardziej szczegółowoP (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
Bardziej szczegółowo4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1
LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie
Bardziej szczegółowo4) lim. lim. lim. lim. lim. x 3. e e. lim. lim x. lim. lim. lim. lim 2. lim. lim. lim. Zadanie 1 Wyznacz dziedziny następujących funkcji: log x.
Zastosowania matmatyki w konomii Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7)
Bardziej szczegółowoWykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Bardziej szczegółowoLISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny
Bardziej szczegółowoDrugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
Bardziej szczegółowoRozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Bardziej szczegółowo6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły
6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 6 6.04.08 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 07/08 Własności rozkładu normalnego Centralne twierdzenie graniczne Funkcja charakterystyczna
Bardziej szczegółowoZmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Bardziej szczegółowoWażne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Bardziej szczegółowoRozkłady zmiennych losowych
Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków
Bardziej szczegółowoProcesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
Bardziej szczegółowoAutor: Dariusz Piwczyński :07
Autor: Dariusz Piwczyński 011-1-01 14:07 Analiza danych jakościowych tsty opart o statystykę χ. Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub
Bardziej szczegółowoTemat: Pochodna funkcji. Zastosowania
Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a
Bardziej szczegółowoĆwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Bardziej szczegółowoN ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Bardziej szczegółowoWstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Bardziej szczegółowoAby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
Bardziej szczegółowoProcesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Bardziej szczegółowoPrzykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Bardziej szczegółowoMUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład
Bardziej szczegółowoWYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Bardziej szczegółowo= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2
64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że
Bardziej szczegółowoSzkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoRozwiązanie równania różniczkowego MES
Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl
Bardziej szczegółowoPrzykład 1 modelowania jednowymiarowego przepływu ciepła
Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych
Bardziej szczegółowoRozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Bardziej szczegółowoNajczęściej spotykane rozkłady dyskretne:
I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =
Bardziej szczegółowo