Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz"

Transkrypt

1 1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn, brzgow. Nizalżność zminnych losowych. Momnty. Współczynnik korlacji. Sumowani nizalżnych zminnych losowych. Prawo wilkich liczb. Zadani 5.1 (a) Wktor losowy (X, Y ) ma następujący rozkład łączny: P (X = 0, Y = 1) = C; P (X = 0, Y = 0) = 0; P (X = 0, Y = 1) = 0, 15; P (X = 1, Y = 1) = P (X = 1, Y = 0) = 0, 5; P (X = 1, Y = 1) = 0,. Wyznaczyć stałą C oraz rozkłady brzgow tgo wktora losowgo. Czy X i Y są nizalżn? (b) Znalźć rozkład łączny wktora losowgo (X, Y ), gdzi X i Y są nizalżnymi zminnymi losowymi o rozkładach P (X = 1) = 0, 3; P (X = ) = 0, 7; P (Y = 0) = 0, 75; P (Y = 1) = 0, 5. Zadani 5. 8 (a) Funkcja f(x, y) = 9 y3 (5x + ) dla 0 < x < 1, 0 < y < 1 jst gęstością wktora losowgo (X, Y ). Obliczyć P ((X, Y ) ), gdzi to obszar 0 y 1, 0 x y. Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ). Czy X i Y są nizalżn? x y dla x > 0, y > 0 (b) Funkcja f(x, y) = jst gęstością wktora losowgo (X, Y ). Obliczyć P (1 < X <, 1 < Y < 1). Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ). Czy X i Y są nizalżn? C dla (x, y) K (c) Dobrać stałą C tak, aby funkcja f(x, y) = gdzi K to półokrąg o środku 0 poza tym, w punkci (0, 0) i prominiu 1, położony nad osią Ox, była gęstością pwngo wktora losowgo (X, Y ). Obliczyć następni P (X + Y 1/4). Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ). Czy X i Y są nizalżn? (d) Dobrać stałą C tak, aby funkcja f(x, y) = Cxy( x y) dla 0 x 1, 0 y 1, 0 poza tym była gęstością pwngo wktora losowgo (X, Y ). Obliczyć następni P ((X, Y ) ), gdzi to trójkąt 0 x 1/, 0 y x. Wyznaczyć rozkłady brzgow wktora losowgo (X, Y ).

2 Zadani 5.3 Wyznaczyć wktor wartości oczkiwanych oraz macirz kowariancji wktora losowgo (X, Y ) o podanym rozkładzi. Obliczyć współczynnik korlacji zminnych losowych X i Y, któr są składowymi tgo wktora. (a) x n , 15 0, 5 ; 0 0 0, 5 1 0, 15 0, x n 1 (b) 0 0, 5 0, , 075 0, (c) rozkład o gęstości f(x, y) = 9 y3 (5x + ) dla 0 < x < 1, 0 < y < 1 x y dla x > 0, y > 0 (d) rozkład o gęstości f(x, y) = dla (x, y) K () rozkład o gęstości f(x, y) = π 0 poza tym, (0, 0) i prominiu 1, położony nad osią Ox. gdzi K to półokrąg o środku w punkci (f) rozkład o gęstości f(x, y) = Czy X i Y są nizalżn? Zadani 5.4 6xy( x y) dla 0 x 1, 0 y 1, (a) Zminn losow X i Y są nizalżn, przy czym X ma rozkład wykładniczy Exp(3), a Y rozkład normalny N (, 3). Znalźć wartość oczkiwaną i wariancję zminnj losowj Z = 3X 5Y 3. (b) Zminn losow X i Y są nizalżn, przy czym X ma rozkład Poissona P(3), a Y rozkład Brnoulligo B(10; 0, ). Znalźć wartość oczkiwaną i wariancję zminnj losowj Z = 3X 5Y + 7. (c) Nich Y = X +N, gdzi X ma rozkład zrojdynkowy z paramtrm p = 0, 3; a N ma rozkład normalny N (0, ), przy czym zminn losow X i N są nizalżn. Obliczyć współczynnik korlacji ρ XY. Zadani 5.5 (a) Zminn losow X 1, X,... są nizalżn o jdnakowym rozkładzi wykładniczym Exp(). Do czgo jst zbiżna śrdnia arytmtyczna X X n? W snsi jakij zbiżności? n (b) Nich X 1, X,... będzi ciągim nizalżnych zminnych losowych o jdnakowym rozkładzi jdnostajnym U(0, 1). Zdfiniujmy 0 dla n = 1, 3, 5,... Z n = X n dla n =, 4, 6,... n Z i równa jst 0,5 czy 0,5 z prawdopodobiństwm 1? Odpowidź uza- i=1 1 Czy granica lim n n sadnić.

3 3 Zadani 6.1 Lista 6. Twirdzni d Moivr a-laplac a. Cntraln Twirdzni Graniczn Lindbrga-Lévy go. (a) W pwnym dużym okręgu wyborczym ma zostać przprowadzon rfrndum w sprawi budowy lktrowni atomowj. Wśród uprawnionych do głosowania miszkańców 45% popira tę inwstycję, a 55% jst przciw. Na podstawi tw. Moivr a Laplac a oszacować, jaki jst prawdopodobiństwo odrzucnia projktu w rfrndum, w których wźmi udział tylko 00 osób wybranych losowo. Oszacować błąd przybliżnia. (b) Jśli gracz wyrzuci kostką 6 oczk, to wygrywa 4 zł. Jśli ni, przgrywa 1 zł. Oszacować prawdopodobiństwo tgo, ż w 1000 rzutach gracz przgra co najwyżj 0 zł. Oszacować błąd przybliżnia. (c) W pwnym towarzystwi ubzpiczniowym jst ubzpiczonych samochodów. Każdy z właścicili płaci roczną składkę 50 zł za samochód. Śrdnio 9 na 1000 samochodów ulga uszkodzniu w ciągu roku. Właścicilowi uszkodzongo pojazdu towarzystwo wypłaca 5000 zł. Na podstawi tw. Moivr a Laplac a oszacować, jaki jst prawdopodobiństwo, ż w ciągu roku towarzystwo ni ponisi strat. Oszacować błąd przybliżnia. (d) Prawdopodobiństwo, ż dowolna osoba odpowi na przsłaną pocztą rklamę i zamówi towar, wynosi 0,03. Rklamę wysłano do 00 osób. Na podstawi tw. Moivr a Laplac a oszacować prawdopodobiństwo, ż (1) dokładni 5 osób, () mnij niż 5 osób przyśl zamówinia. Oszacować błąd przybliżnia. Porównać wyniki z otrzymanymi w zadaniu 7.3(a) mtodą dokładną i przybliżoną z tw. Poissona. Zadani 6. (a) Czas oczkiwania na tramwaj linii 14 jst zminną losową o rozkładzi wykładniczym o śrdnij 0 minut. Pan Piotr codzinni w dni robocz dojżdża nim do pracy. Oszacować na podstawi CTG Lindbrga Lévy go prawdopodobiństwo, ż pan Piotr traci w ciągu 160 koljnych dni roboczych na czkani na tramwaj linii 14 więcj niż 500 minut. (b) Czas pracy lampy pwngo typu ma rozkład wykładniczy o śrdnij 100 dni. Na podstawi tw. Lindbrga Lévy go oszacować, czy wystarczy mić w zapasi 169 lamp, aby z prawdopodobiństwm 0,9 wystarczyło ich na dni niprzrwanj pracy. (Przyjmujmy, ż spalona lampa jst natychmiast wyminiana na nową.) (c) Pwna konstrukcja składa się z 500 jdnakowych lmntów. Na podstawi CTG Lindbrga Lévy go oszacować prawdopodobiństwo, ż całkowita masa tj konstrukcji ni przkroczy 1755 kg, jśli rozkład masy lmntów, z których jst złożona, ma wartość oczkiwaną 3,5 kg i odchylni standardow 0,5 kg? (d) Samolot zabira na pokład 70 osób. Waga pasażrów ma pwin rozkład o wartości oczkiwanj 75 kg i wariancji 5 kg. Oszacować na podstawi CTG Lindbrga Lévy go prawdopodobiństwo, ż łączna waga pasażrów przkroczy 5300 kg. () W grupi studnckij przprowadza się tst, w którym można uzyskać do 100 punktów. Śrdni wynik uzyskiwany przz studnta wynosi 40 pkt, a wariancja 0. Wyniki studntów są nizalżn i o takim samym rozkładzi. Oszacować na podstawi CTG Lindbrga Lévy go prawdopodobiństwo tgo, ż przciętna liczba punktów przypadająca na jdngo studnta w grupi 150 osób zawira się w przdzial od 35 do 45 pkt.

4 4 Odpowidzi i wskazówki: Lista nr 5: x n 0 1 r.brzg. Y 5.1 (a) C = 0, 15; 1 0, 15 0, 5 0, , 5 0, 5 1 0, 15 0, 0, 35 r.brzg.x 0, 3 0, 7 = 1 x n 1 r.brzg. Y (b) 0 0, 5 0, 55 0, , 075 0, 175 0, 5 r.brzg.x 0, 3 0, 7 = 1 ; X i Y ni sa nizalżn; 5. (a) P ((X, Y ) ) = 13 0, 989; f 160 X(x) = 4y 3, X i Y są nizalżn; (d) C = 6; P ((X, Y ) ) = 0, 065; f X (x) = 4y 3y (/9)(5x + ) dla 0 < x < 1, x dla x > 0, (b) P (1 < X <, 1 < Y < 1) = +1 0, 1470; f 3 X (x) = y dla y > 0,, X i Y są nizalżn; (c) C = ; P π (X + Y 0, 5) = 0, 5; f X (x) = π 1 x dla 1 < x < 1, 4 π 1 y ; X i Y ni są nizalżn; 4x 3x dla 0 < x < 1, 5.3 (a) (EX, EY ) = (0, 7; 0, 05); macirz kowariancji to 0, 015 0, 1 0, , 0379; [ 0, 1 0, 015 0, 015 0, 7475 ρ XY = 0, 1 0 (b) (EX, EY ) = (1, 7; 0, 5); macirz kowariancji to ; ρ 0 0, 1875 XY = 0; 109/ (c) (EX, EY ) = (16/7; 4/5); macirz kowariancji to ; ρ 0 /75 XY = 0; 1 0 (d) (EX, EY ) = (1; 1); macirz kowariancji to ; ρ 0 1 XY = 0; 0, 5 0 () (EX, EY ) = (0; 4 ); macirz kowariancji to 3π 9π 0 16 ; ρ XY = 0 [ 36π ] 43/70 1/144 (f) (EX, EY ) = (7/1; 7/1); macirz kowariancji to ; 1/144 43/70 ρ XY = 5/43 0, , więc X i Y ni są nizalżn; ] ;

5 5 5.4 (a) EZ = 1, D Z = 6; (b) EZ = 6, D Z = 67; (c) ρ XY = 0, 1/ 0, 1 16, 1 0, (a) do 4/3 z prawdop. 1; (b) do 0,5. Lista nr 6: 6.1 (a) 0, 9319±0, 06; (b) 0, 0064±0, 05; (c) 0, 9996±0, 03; (d) (1) 0, 149±0, 64; () 0, 676±0, 3 6. (a) 0, 997; (b) tak; (c) 0, 6736; (d) 0, 1170; () 0, 9978

Rachunek Prawdopodobieństwa MAP1064, 2008/09

Rachunek Prawdopodobieństwa MAP1064, 2008/09 1 Rachunk Prawdopodobiństwa MAP1064, 008/09 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 10-1 Opracowani: dr hab. Agniszka Jurlwicz Litratura: [1] A. Plucińska, E. Pluciński,

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Przykłady do zadania 3.1 :

Przykłady do zadania 3.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 3: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala,

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Rachunek prawdopodobieństwa MAP1064 Wydział Elektroniki, rok akad. 2008/09, sem. letni Wykładowca: dr hab. A. Jurlewicz

Rachunek prawdopodobieństwa MAP1064 Wydział Elektroniki, rok akad. 2008/09, sem. letni Wykładowca: dr hab. A. Jurlewicz Rachunek prawdopodobieństwa MAP064 Wydział Elektroniki, rok akad. 08/09, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 7: Zmienne losowe dyskretne. Rozkłady Bernoulliego dwumianowy), Pascala,

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Przykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych

Przykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Przykłady 6. Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa. Transformacje zmiennej losowej. Opracowanie:

Bardziej szczegółowo

1 Gaussowskie zmienne losowe

1 Gaussowskie zmienne losowe Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..

Bardziej szczegółowo

Analiza wybranych własności rozkładu reszt

Analiza wybranych własności rozkładu reszt Analiza wybranych własności rozkładu rsz Poprawni skonsruowany i oszacowany modl, kóry nasępni ma być wykorzysany do clów analizy i prdykcji, poza wysokim sopnim odzwircidlania zmian warości mpirycznych

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1064, 2008/09

Rachunek Prawdopodobieństwa MAP1064, 2008/09 Rachunek Prawdopodobieństwa MAP064, 2008/09 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz Listy zadań nr 7-9 Opracowanie: dr hab. Agnieszka Jurlewicz Literatura: [] A. Plucińska, E. Pluciński,

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Reguła de L Hospitala. Reguła de L Hospitala - odpowiedzi. Różniczka funkcji. Różniczka funkcji - odpowiedzi. Styczna i normalna

Reguła de L Hospitala. Reguła de L Hospitala - odpowiedzi. Różniczka funkcji. Różniczka funkcji - odpowiedzi. Styczna i normalna REGUŁA DE L HOSPITALA Rguła d L Hospitala Oblicz granicę: a lim b lim + f lim ln+ k lim l lim p u lim z lim + ln ln c lim g lim ln h lim ln sin q lim + v lim lim arc ctg π ln sin lnln sin d lim lim i lim

Bardziej szczegółowo

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16) Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Rachunek prawdopodobieństwa MAP34, WPPT/FT, wykład dr hab. A. Jurlewicz Przykłady - Lista nr : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.. Hasło potrzebne

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

1 Warunkowe wartości oczekiwane

1 Warunkowe wartości oczekiwane Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8

Bardziej szczegółowo

EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.

EKONOMETRIA. Ekonometryczne modele specjalne.   Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel. EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80

Bardziej szczegółowo

Zmienne losowe zadania na sprawdzian

Zmienne losowe zadania na sprawdzian Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Identyfikacja osób na podstawie zdjęć twarzy

Identyfikacja osób na podstawie zdjęć twarzy Idntyfikacja osób na podstawi zdjęć twarzy d r i n ż. Ja c k Na r u n i c m gr i n ż. Ma r k Kowa l s k i C i k a w p r o j k t y W y d z i a ł E l k t r o n i k i i T c h n i k I n f o r m a c y j n y

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego

Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 8: Zmienne losowe typu ciągłego. Gęstość prawdopodobieństwa. Rozkład

Bardziej szczegółowo

lim lim 4) lim lim lim lim lim x 3 e e lim lim x lim lim 2 lim lim lim Zadanie 1 Wyznacz dziedziny następujących funkcji: log x x 6x

lim lim 4) lim lim lim lim lim x 3 e e lim lim x lim lim 2 lim lim lim Zadanie 1 Wyznacz dziedziny następujących funkcji: log x x 6x Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7) 8) 9) 5 5 7 7 7 6 0) 6 ) ) 9) 0)

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

4) lim. lim. lim. lim. lim. x 3. e e. lim. lim x. lim. lim. lim. lim 2. lim. lim. lim. Zadanie 1 Wyznacz dziedziny następujących funkcji: log x.

4) lim. lim. lim. lim. lim. x 3. e e. lim. lim x. lim. lim. lim. lim 2. lim. lim. lim. Zadanie 1 Wyznacz dziedziny następujących funkcji: log x. Zastosowania matmatyki w konomii Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7)

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 6 6.04.08 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 07/08 Własności rozkładu normalnego Centralne twierdzenie graniczne Funkcja charakterystyczna

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Autor: Dariusz Piwczyński :07

Autor: Dariusz Piwczyński :07 Autor: Dariusz Piwczyński 011-1-01 14:07 Analiza danych jakościowych tsty opart o statystykę χ. Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub

Bardziej szczegółowo

Temat: Pochodna funkcji. Zastosowania

Temat: Pochodna funkcji. Zastosowania Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

MUMIO Lab 6 (składki, kontrakt stop-loss)

MUMIO Lab 6 (składki, kontrakt stop-loss) MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo