Sieci neuronowe - uczenie
|
|
- Ludwik Pietrzak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Sici nuronow - uczni Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y
2 Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra A, zaś w p.p. Siatka 6 6 Zadani: dobrać wagi wjść i wartość progową tak, by uzyskać zaplanowany kt Dan tstow Dan trningow (znan odpowidzi) Dobór wag (uczni) Odpowidź Wjści: Uczni prcptronu Ciąg przykładów uczących z znanymi odpowidziami Procs ucznia: Inicjujmy wagi losowo Dla każdgo przykładu, jśli odpowidź jst niprawidłowa, to w + α x w + α x [w,w ] w x + w x -θ θ α gdzi α jst równ różnicy między odpowidzią prawidłową a otrzymaną.
3 Uczni prcptronu Często α mnoży się dodatkowo przz niwilki współczynnik ucznia Po wyczrpaniu przykładów, zaczynamy procs ucznia od początku, dopóki następują jakikolwik zmiany wag połączń Próg θ można traktować jako wagę dodatkowgo wjścia o wartości -: (zawsz -) x 3 θ 3 (θ ) x -4 x x -4 Uczni prcptronu Opisany schmat jst w miarę przjrzysty tylko dla pojdynczych prcptronów, lub niwilkich sici Ciężko jst stosować rguły tgo typu dla skomplikowanych modli Tymczasm np. do rozpoznawania wszystkich litr potrzba by sici złożonj z 6 takich prcptronów 3
4 Sici prcptronów Dndrits Nods Synapss Axon Synapss (wights) Ogranicznia pojdynczych prcptronów spowodowały w latach 8-tych wzrost zaintrsowania siciami wilowarstwowymi i opracowani algorytmu ich ucznia (propagacja wstczna) SIECI WIELOWARSTWOWE Wyjścia nuronów nalżących do warstwy niższj połączon są z wjściami nuronów nalżących do warstwy wyższj np. mtodą każdy z każdym Działani sici polga na liczniu odpowidzi nuronów w koljnych warstwach Ni jst znana ogólna mtoda projktowania optymalnj architktury sici nuronowj 4
5 SIECI PERCEPTRONÓW Potraią rprzntować dowolną unkcję boolowską (opartą na rachunku zdań) p θ - θ p XOR q q Funkcj aktywacji Progow ( s) s s<,,8,6,4, ,,,8,6,4, Sigmoidaln ( s) s + 5
6 FUNKCJE AKTYWACJI () Unipolarn ( s) s +,,8,6,4, ,5 Bipolarn, ,5 - + ( s) s -,5 FUNKCJE AKTYWACJI (3),,8,6,4, α ( s) α s + α. α. α.5 lim α α ( s).5 lim ( s) α + α.5 s> s s< 6
7 FUNKCJE AKTYWACJI (4),,8,6 θ, α + ( s) α( s θ) θ α.5,4, FUNKCJE AKTYWACJI (5) Zasady ogóln: Ciągłość (zachowani stabilności sici jako modlu rzczywistgo) Różniczkowalność (zastosowani propagacji wstcznj) Monotoniczność (intuicj związan z aktywacją komórk nuronowych) Niliniowość (możliwości ksprsji) 7
8 SIECI NEURONOWE Potraią modlować (dowolni dokładni przybliżać) unkcj rzczywist (z tw. Kołmogorowa) n y w+ w i x i i Σ ( s) s + unkcja aktywacji SIECI NEURONOWE Σ 8
9 SIECI NEURONOWE SIECI JAKO FUNKCJE ZŁOŻONE () x x v v v v w w g y y g( w ( vx+ vx) + w ( vx+ vx) ) yntwork ( x, x ) 9
10 SIECI JAKO FUNKCJE ZŁOŻONE () x x g y y ( 5x 7x ) ( 3x + x ) ( 5x 7x ) ( 3x + x ) 8 < 8 SIECI JAKO FUNKCJE ZŁOŻONE (3) x x v v v v w w g y Ntwork(x,x) Jśli wszystki poszczgóln unkcj aktywacji są liniow, to unkcja Ntwork jst równiż liniowa Architktura wilowarstwowa daj zatm now możliwości tylko w przypadku stosowania unkcji niliniowych
11 SIECI JAKO FUNKCJE ZŁOŻONE przypadk liniowy x x v v v v Nich i (x,x) a i *(x*v i + x*v i ) + b i g(z,z) a*(z*w + z*w) + b Wtdy Ntwork(x,x) A*x + A*x + B Np.: A a*(a*v*w + a*v*w) w w g y PROPAGACJA WSTECZNA () Chcmy wytrnować wagi połączń między koljnymi warstwami nuronów Inicjujmy wagi losowo (na mał wartości) Dla dango wktora uczącgo obliczamy odpowidź sici (warstwa po warstwi) Każdy nuron wyjściowy oblicza swój błąd, odnoszący się do różnicy pomiędzy obliczoną odpowidzią y oraz poprawną odpowidzią t
12 PROPAGACJA WSTECZNA () dan ucząc odpowidź sici y błąd d właściwa odpowidź t Błąd sici diniowany jst zazwyczaj jako d ( y t) PROPAGACJA WSTECZNA (3) Oznaczmy przz: : R R unkcję aktywacji w nuroni w,..., w K wagi połączń wchodzących z,..., z K sygnały napływając do nuronu z poprzdnij warstwy Błąd nuronu traktujmy jako unkcję wag połączń do nigo prowadzących: d( w ) ( ( ) ),..., wk w z wk zk t
13 PRZYKŁAD () Rozpatrzmy modl, w którym: Funkcja aktywacji przyjmuj postać + ( s) 3 s+ ( ) Wktor wag połączń [;-3;] Załóżmy, ż dla dango przykładu: Odpowidź powinna wynosić t.5 Z poprzdnij warstwy dochodzą sygnały [;;.3] PRZYKŁAD () Liczymy wjściową sumę ważoną: s w x+ wx+ w3x3 + ( 3) Liczymy odpowidź nuronu: y s) + + ( 3 + Błąd wynosi: d ( ) (.3.5). 36 3
14 IDEA ROZKŁADU BŁĘDU Musimy rozłożyć otrzymany błąd na połącznia wprowadzając sygnały do dango nuronu Składową błędu dla każdgo j-tgo połącznia okrślamy jako pochodną cząstkową błędu względm j-tj wagi Składowych tych będzimy mogli użyć do zmodyikowania ustawiń poszczgólnych wag połączń IDEA ROZKŁADU BŁĘDU Załóżmy, ż mamy nuron z wagami w, w, w 3. Mamy dan wktor wjściowy: [.3,.7], przy czym oczkiwana odpowidź to t. Jak nalży zminić wagi, aby błąd był jak najmnijszy? Możmy błąd przdstawić jako unkcję w, w : x w y w x n y w+ w i x i ( s) s + i błąd - Wagi powinniśmy zminić w kirunku spadku wartości błędu. 4-4 wagi - 4 wartość błędu dla wag [, 3] 4
15 KIERUNEK ZMIANY WAG Jśli rozważymy większą liczbę przykładów, unkcja śrdnigo błędu będzi miała bardzij skomplikowany kształt. [.3,.7], t [.,.9], t. [-.6, ], t.5 [, -.8], t [.6, ], t Nachylni wykrsu w danym punkci (odpowiadającym aktualnym wartościom wag) dan jst przz gradint, czyli wktor pochodnych cząstkowych. Zmiana wag powinna nastąpić w kirunku przciwnym. OBLICZANIE POCHODNEJ ( w wk) d,..., w j ( y t) '( s) z j ( ( w z + + w z ) t) ( y t) ( s) ( w z w z ) y... w j s K K w j K K 5
16 Ida: PROPAGACJA WSTECZNA Wktor wag połączń powinniśmy przsunąć w kirunku przciwnym do wktora gradintu błędu (z pwnym współczynnikim ucznia η) Możmy to zrobić po każdym przykładzi uczącym, albo sumując zmiany po kilku przykładach. Ralizacja: w j η ( t y) '( s) z j Prosty przykład: wagi w, w, dan wjściow: [.5,.5], t. Funkcja sigmoidalna: ( s) więc: ( s ) s + s ( + ) Stąd: s.5 +.5, y.73, zmiana w (-.73) *.9 *.5.6. A więc now wagi to.6. Tn sam przykład da tym razm odpowidź y.736. s błąd δ PROPAGACJA WSTECZNA Błędy są następni propagowan w kirunku poprzdnich warstw. Wprowadźmy pomocniczo współczynnik błęduδzdiniowany dla ostatnij warstwy jako: w w błąd δ błąd δ δ ( s) ( t y) a dla pozostałych warstw: n w i i δ ( s) δ czyli nuron w warstwi ukrytj zbira błąd z nuronów, z którymi jst połączony. Zmiana wag połączń następuj po azi propagacji błędu i odbywa się wdług wzoru: w η δ z Oznacznia: w - waga wjścia nuronu, z - sygnał wchodzący do nuronu danym wjścim, δ - współczynnik błędu obliczony dla dango nuronu, s - wartość wzbudznia (suma wartości wjściowych pomnożonych przz wagi) dla dango nuronu. i 6
2. Architektury sztucznych sieci neuronowych
- 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak
WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Uogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej.
WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej. Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. D. Rutkowska, M. Piliński i L.
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Przykład 1 modelowania jednowymiarowego przepływu ciepła
Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz
1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
ZASTOSOWANIA POCHODNEJ
ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych
2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Temat: Pochodna funkcji. Zastosowania
Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a
Szeregowy obwód RC - model matematyczny układu
Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony
Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek
1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Analiza danych jakościowych
Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Uczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI
GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g
Identyfikacja osób na podstawie zdjęć twarzy
Idntyfikacja osób na podstawi zdjęć twarzy d r i n ż. Ja c k Na r u n i c m gr i n ż. Ma r k Kowa l s k i C i k a w p r o j k t y W y d z i a ł E l k t r o n i k i i T c h n i k I n f o r m a c y j n y
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)
11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij
Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego
Ćwiczni 4 Ralizacja programowa dwupołożniowj rgulacji tmpratury pica lktryczngo. Cl ćwicznia Clm ćwicznia jst zaznajomini z podstawami rgulacji obiktów ciągłych na przykładzi strowania dwupołożniowgo komputrowgo
PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.
MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz
Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)
Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO
I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania
x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Widzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Plan wyk y ł k adu Mózg ludzki a komputer Komputer Mózg Jednostki obliczeniowe Jednostki pami Czas operacji Czas transmisji Liczba aktywacji/s
Sieci neuronowe model konekcjonistczn Plan wkładu Mózg ludzki a komputer Modele konekcjonistcze Sieć neuronowa Sieci Hopfielda Mózg ludzki a komputer Twój mózg to komórek, 3 2 kilometrów przewodów i (biliard)
Wykład VIII: Odkształcenie materiałów - właściwości sprężyste
Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Automatyzacja Procesów Przemysłowych
Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.
Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Autor: Dariusz Piwczyński :07
Autor: Dariusz Piwczyński 011-1-01 14:07 Analiza danych jakościowych tsty opart o statystykę χ. Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.
EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80
Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski
sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym
Oprogramowanie Systemów Obrazowania SIECI NEURONOWE
SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani
( t) UKŁADY TRÓJFAZOWE
KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska
Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego
Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.
A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna
Definicja perceptronu wielowarstwowego
1 Sieci neuronowe - wprowadzenie 2 Definicja perceptronu wielowarstwowego 3 Interpretacja znaczenia parametrów sieci 4 Wpływ wag perceptronu na jakość aproksymacji 4.1 Twierdzenie o uniwersalnych właściwościach
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
CHARAKTERYSTYKA OBCIĄŻENIOWA
Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i
Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium 6 Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa 3--6 Powtórzenie. Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) ()
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 8. SZTUCZNE SIECI NEURONOWE INNE ARCHITEKTURY Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SIEĆ O RADIALNYCH FUNKCJACH BAZOWYCH
Rozwiązanie równania różniczkowego MES
Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl
Wstęp do sztucznych sieci neuronowych
Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna
6. Perceptron Rosenblatta
6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Sztuczne siei neuronowe - wprowadzenie
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp
Sztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie
PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH załącznik 1 do ćwiczenia nr 6
PMY MŁOSYGNŁOW NZYSOÓW POLNYH załącznik 1 do ćwznia nr 6 Wstęp Modl małosygnałow tranzystorów mają na l przdstawini tranzystora za pomocą obwod liniowgo. aka rprzntacja tranzystora pozwala na zastąpini
PRZYKŁADY ROZWIĄZAŃ MES. Piotr Nikiel
PRZYKŁADY ROZWIĄZAŃ MES Piotr Nikiel Metoda elementów skooczonych Metoda elementów skooczonych jest metodą rozwiązywania zadao brzegowych. MES jest wykorzystywana obecnie praktycznie we wszystkich dziedzinach
DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule
Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec
Systemy agentowe Sieci neuronowe Jędrzej Potoniec Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku
Przetwarzanie sygnałów biomedycznych
Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak
2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ
Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek
Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,
Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.
Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości
Ekscytony Wanniera Motta
ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
I EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania