Matematyka rozszerzona matura 2017
|
|
- Eleonora Walczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) = A = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem a n = (n 10)( 3n) dla n 1. Wtedy n 3 +n +3 A. lim n a n = 1 C. lim n a n = B. lim n a n = 0 D. lim n a n = 3 lim a n = n (n 10)( 3n) n 3n n lim n n 3 + n = lim + 3 n n 3 + n + 3 Podzielmy wszystkie wyrazy licznika i mianownika przez n 3 n n 3n n lim n n 3 + n = lim n 3 3n3 n 3 0 n n n n n 3 n 3 + n n n 3 = lim n n 3 0 n n + 1 n + 3 n 3 W ostatniej granicy wszystkie składniki sumy, prócz -3 dążą do zera. Podobnie w mianowniku wszystkie wyrazy sumy prócz dążą do zera. W takim razie lim n n 3 0 n n + 1 n + 3 = 3 n 3 D.
2 Zadanie 3. Odcinek CD jest wysokością trójkąta ABC, w którym AD = CD = 1 BC (zobacz rysunek). Okrąg ośrodku C i promieniu CD Jest styczny do prostej AB. Okrąg ten przecina boki AC i BC trójkąta odpowiednio w punktach K i L. Zaznaczony na rysunku kąt α wpisany w okrąg jest równy A. 37,5 o B. 45 o C. 5,5 o D. 60 o Kąt wpisany α oparty jest na tym samym łuku co kąt środkowy KCL, wiec jego rozwartość jest połową rozwartości kąta KCL. α = 1 KCL = 1 ( ACD + DCL ). Z warunków zadania wynika, że trójkąt ADC jest prostokątny i równoramienny, więc ACD = 45 o. Z warunków zadania wynika też, że trójkąt CDB jest połową trójkąta równobocznego, więc DCB = 60 o. W takim razie, KCL = 105 o, a α = 5,5 o. C. Zadanie 4. Dane są punkt B = ( 4; 7) i wektor u = [ 3; 5]. Punkt A, taki, że AB = 3u, ma współrzędne A. A = (5; 8) B. A = ( 13; ) C. A = (9; 15) D. A = (1; 4) A. AB = [ 4 5; 7 ( 8)] = [ 9; 15] B. AB = [ 4 ( 13); 7 ] = [9; 15] 3u = 3[ 3; 5] = [9; 15]
3 B. Zadanie 5. Reszta z dzielenia wielomianu W(x) = x 3 x + ax + 3 przez dwumian x jest równa 1. Oblicz 4 wartość współczynnika a. W poniższe kratki wpisz kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. x 3 x + ax : x = x x 3 + x = = ax x = 1 Czyli a = 1 = 0,15 8 1; ; 5 Zadanie 6. Funkcja f jest określona wzorem f(x) = x 1 dla każdej liczby rzeczywistej x. Wyznacz równanie x +1 stycznej do wykresu tej funkcji w punkcie P=(1; 0). Styczna ma postać y = ax + b. Aby wyznaczyć współczynnik kierunkowy a równania obliczymy wpierw pochodną funkcji f(x).
4 f (x) = 1 (x + 1) (x 1) x (x + 1) = x 1 x + x (x + 1) = 3x + x 1 (x + 1) a = f (1) = (1 + 1) = = 1 4 Pozostał współczynnik b. Wyznaczymy go z równania y = ax + b, kładąc za x=1 i y=0, otrzymujemy 0 = b b = 1 y = 1 x + 1 Zadanie 7. Udowodnij, że dla dowolnych różnych liczb rzeczywistych x, y prawdziwa jest nierówność x y + x + y 8xy + 4 > 0 x y + x + y 8xy + 4 = x + y 8xy + x y + 4 = = x + y 4xy 4xy + x y + 4 = (x xy + y ) + (x y 4xy + 4) = = (x y) + (xy ) > 0 Ponieważ kwadraty są większe od 0, gdy tylko x y Zadanie 8. W trójkącie ostrokątnym ABC bok AB ma długość c, długość boku BC jest równa a oraz ABC = β. Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E. Wykaż, że długość odcinka BE jest równa ac cos β. a+c Zacznijmy od rysunku
5 Pole trójkąta ABC można obliczyć na dwa sposoby. Sposób 1. P = 1 ch, ale h = a sin β, więc P = 1 ac sin β Sposób. Pole trójkąta ABC jest sumą pól trójkątów AEB i BCE. Licząc pola tych trójkątów za podstawę uznamy bok BE o długości x P ABE = 1 xh 1, ale h 1 = c sin β, więc P ABE = 1 xc sin β. P CBE = 1 xh, ale h = a sin β, więc P CBE = 1 xa sin β. Tak więc Porównajmy prawe strony wzorów na pola P = 1 xc sin β + 1 xa sin β = 1 x sin β (a + c) 1 ac sin β = 1 x sin β (a + c) ac sin β = x sin β (a + c) Otrzymany wzór przekształćmy tak, by wyznaczyć x x = ac sin β sin β (a + c)
6 Zastosujemy teraz wzór sin α = sin α cos α I stosując podstawienie α = 1 β Otrzymamy Wstawiając to do wzoru na x otrzymujemy sin β = sin β cos β x = ac sin β cos β ac cos β sin β = (a + c) a + c Zadanie 9. W czworościanie, którego wszystkie krawędzie mają taką samą długość 6, umieszczono kulę tak, że ma na dokładnie jeden punkt wspólny z każdą ścianą czworościanu. Płaszczyzna π, równoległa do podstawy tego czworościanu, dzieli go na dwie bryły: ostrosłup o objętości równej 8 7 objętości dzielonego czworościanu i ostrosłup ścięty. Oblicz odległość środka S kuli od płaszczyzny π, tj. długość najkrótszego spośród odcinków SP, gdzie P jest punktem płaszczyzny π. Narysujmy sobie czworościan
7 Wyznaczmy wysokość ostrosłupa. Ponieważ wysokość ściany bocznej h p = a 3 = 6 3 = 3 3 więc h o = h p ( 1 3 h p) = 7 3 = 4 h o = 6 Ponieważ płaszczyzna π odcina z czworościanu czworościan o objętości 8 razy mniejszej, więc te dwa 7 czworościany są do siebie podobne w skali. Wysokość tego mniejszego czworościanu h = h 3 o = = Oznacza to, że płaszczyzna rozcina czworokąt na wysokości x = = 3 6 Jeżeli kula została wpisana w ten czworościan, to jej środek znajduje się na wysokości a jej sfera styka się ze wszystkimi ścianami tego czworościanu w punkcie przecięcia się wszystkich trzech wysokości każdej ściany. Trzeba wyznaczyć długość promienia tej kuli. W tym celu dokonajmy przekroju czworościanu wraz z kulą, tak by płaszczyzna przekroju przechodziła przez wysokość podstawy, wysokość jednej ściany bocznej i jedną krawędź podstawy. Płaszczyzna ta podzieli kulę w środku na dwie równe części. Popatrz na rysunek. Wyznaczmy długość odcinka CD CD = BC DB CD = 7 9 = 18 CD = 3
8 Z podobieństwa trójkątów ADC i EOC mamy CO CA = EO AD = EC CD EO AD = EC CD EO 3 = 3 3 EO = = 3 = 6 Odległość płaszczyzny π od środka okręgu wynosi y = = = Środek kuli znajduje się 6 od płaszczyzny przekroju 6 Zadanie 10. Rozwiąż równanie cos x + 3 cos x = w przedziale 0; π W rozwiązaniu korzystamy ze wzoru Zastosujmy podstawienie Otrzymujemy równanie cos α = cos α 1 cos x = y cos x + 3 cos x = cos x cos x = y 1 = y + 3y + 1 = 0 = 9 8 = 1 b a = 1 = = 1
9 b + y = = = 1 a 4 cos x = 1 lub cos x = 1 x = π lub x = 3 π lub x = 4 3 π Zadanie 11. W pudełku znajduje się 8 piłeczek oznaczonych kolejnymi liczbami naturalnymi od 1 do 8. Losujemy jedną piłeczkę, zapisujemy liczbę na niej występującą, a następnie zwracamy piłeczkę do urny. Tę procedurę wykonujemy jeszcze dwa razy i tym samym otrzymujemy zapisane trzy liczby. Oblicz prawdopodobieństwo otrzymania takich piłeczek, że iloczyn trzech zapisanych liczb jest podzielny przez 4. Wynik podaj w postaci ułamka zwykłego. Obliczmy zdarzenie przeciwne. Zajdzie ono wówczas, gdy iloczyn wylosowanych liczb nie będzie podzielny przez 4. Temu zdarzeniu sprzyjają dwa przypadki: Przypadek 1. Wszystkie wylosowane liczby są nieparzyste. Wśród 8 liczb cztery są nie parzyste, więc prawdopodobieństwo wylosowania liczby nieparzystej w jednym losowaniu wynosi 1. Ponieważ losujemy trzy razy ze zwracaniem, to prawdopodobieństwo, że wszystkie wylosowane liczby są nieparzyste wynosi ( 1 )3 = 1 8 Ten przypadek zajdzie, gdy w dwóch losowaniach wylosujemy liczbę nieparzystą a w jednym liczbę podzielną przez lecz niepodzielną przez 4, czyli lub 6. Prawdopodobieństwo dwukrotnego wylosowania liczby nieparzystej w losowaniu ze zwracaniem wynosi ( 1 ) = 1 4. Prawdopodobieństwo wylosowania w jednym losowaniu liczby lub 6 wynosi 1. Ponieważ kulę lub 6 można wylosować 4 albo za pierwszym razem, albo za drugim razem, albo za trzecim razem, więc prawdopodobieństwo zajścia przypadku wynosi = Prawdopodobieństwo wylosowania trzech liczb, których iloczyn nie jest podzielny przez 4 wynosi = 5 16 Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn wylosowanych trzech liczb jest podzielny przez 4 wynosi = Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn wylosowanych trzech liczb jest podzielny przez 4 wynosi
10 Zadanie 1. Wyznacz wszystkie wartości parametru m, dla których równanie 4x 6mx + (m + 3)(m 3) = 0 Ma dwa różne rozwiązania rzeczywiste x 1 i x, przy czym x 1<x, spełniające warunek (4x 1 4x 1)(4x 1 4x + 1) < 0 Aby równanie kwadratowe miało dwa różne pierwiastki > 0 Sprawdźmy, dla jakich m jest spełniony ten warunek = b 4ac = ( 6m) 4 4 (m + 3)(m 3) = 36m 16 (m + 3)(m 3) = = 36m (3m + 48)(m 3) = 36m (3m 96m + 48m 144) = = 36m (3m 48m 144) = 36m 3m + 48m = 4m + 48m > 0 4m + 48m > 0 m + 1m + 36 > 0 = = 0 m = 1 = 6 Wyjściowe równanie ma różne rozwiązania dla m 6 Zajmijmy się teraz warunkiem (4x 1 4x 1)(4x 1 4x + 1) < 0 (4(x 1 x ) 1)(4(x 1 x ) + 1) < 0 16(x 1 x ) 1 < 0 16(x 1 x 1 x + x ) 1 < 0 16((x 1 + x ) 4x 1 x ) 1 < 0 16 (( 6m 4 ) (m + 3)(m 3) 4 ) 1 < ( 9 4 m (m + 3)(m 3)) 1 < 0 36m 16(m + 3)(m 3) 1 < 0
11 4m + 48m < 0 = = 16 m 1 = m = = 4 = 5 8 = 6 1 = 44 8 = 5 1 Ostatecznie, uwzględniając, że m 6, możemy powiedzieć, że warunek zadania jest spełniony, gdy m ( 6 1 ; 6) ( 6; 5 1 ) m ( 6 1 ; 6) ( 6; 5 1 ) Zadanie 13. Wyznacz równanie okręgu przechodzącego przez punkty A = ( 5; 3) i B = (0; 6), którego środek leży na prostej o równaniu x 3y + 1 = 0 Skorzystamy z następującego równania okręgu Gdzie (a; b) współrzędne środka okręgu. Należy rozwiązać następujący układ równań x ax + y by + c = a + 9 6b + c = 0 { 36 1b + c = 0 a 3b + 1 = a 6b + c = 0 { 36 1b + c = 0 a 3b + 1 = 0 10a 6b + c = 34 { 1b + c = 36 a 3b = 1 { 10a 6b + c = 34 1b + c = 36
12 10(3b 1) 6b + c = 34 { 1b + c = 36 30b 10 6b + c = 34 { 1b + c = 36 4b + c = 4 { 1b + c = 36 4b + c = 4 { c = 1b 36 4b + 1b 36 = 4 { c = 1b 36 36b = 1 { c = 1b 36 b = 1 { 3 c = 1b 36 b = 1 { 3 c = 3 a = 0 x + y y 3 = 0 3 Zadanie 14. Liczby a; b; c są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Suma tych liczb jest równa 7. Ciąg (a ; b; c + 1) jest geometryczny. Wyznacz liczby a; b; c Niech b = x; a = x r; c = x + r Wówczas x r + x + x + r = 7 3x = 7 x = 9
13 Zachodzi warunek a b 7 r 9 = b c + 1 = r r 19r r = 81 r 1 = r + 5r 5 = 0 = = r = = 1 = 6 4 = = 4 (a; b; c) = (15 1 ; 9; 1 ) lub (a; b; c) = (5; 9; 13) Zadanie 15. Rozpatrujemy wszystkie walce o danym polu powierzchni całkowitej P. Oblicz wysokość i promień podstawy tego walca, którego objętość jest największa. Oblicz tę największą objętość. Z pierwszego równania P = πr + πrh h = V = πr h P πr πr V = πr P πr πr V = V = Pr πr3 P 6πr
14 Przyrównajmy pochodną do 0 P 6πr = 0 6πr P = 0 r P 6π = 0 (r P 6π ) (r + P 6π ) = 0 r = P 6π Drugi przypadek odpada bo r > 0 h = P πr πr h = P π P 6π π P 6π h = 3 P π P 6π h = 3 P P 6π = P P 6π 3 V = πr h = π P 6π P 6π V = 1 3 P P 6π r = P 6π, h = P 6π ; V = 1 3 P P 6π
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY MARZEC 2019 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 4 MARCA 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Ile jest liczb x należacych
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka poziom ROZSZERZONY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 5 MARCA 2016 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) (2 3x Granica lim 5 )
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 28 KWIETNIA 2018 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 3 10 3 2
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy
11. Długości boków trójkąta tworzą ciąg geometryczny. Jakie wartości może przyjmować iloraz tego ciągu?
Zadania: 1. Dane jest równanie 2x 2 + (m 1)x m 2 = 0. Wyznacz te wartości parametru m, dla których liczby: 1, suma pierwiastków, suma odwrotności pierwiastków tego równania, tworzą ciąg geometryczny. 2.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM ROZSZERZONY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 18). 2. Rozwiązania zadań wpisuj
W(x) = Stopień wielomianu jest równy: A. B. C. D. A. B. C. D.
Zadanie 9. (1 pkt.) (Czerwiec 014) Dane są wielomiany: x, P(x) = x 3 + x, Q(x) = (1 x)(x + 1) W(x) = 1 W(x) P(x) Q(x). Stopień wielomianu jest równy: 3 6 7 1 Zadanie 10. (1 pkt.) (Czerwiec 014) Pierwsza
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Propozycje rozwiązań zadań z matematyki - matura rozszerzona
Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.
Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom rozszerzony Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM ROZSZERZONY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 19 MARCA 2016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 54 3 24 2 18
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 MARCA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 4 3 + 3 9 jest
KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A) W czasie trwania egzaminu zdający może korzystać z
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka-poziom ROZSZERZONY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Do kg roztworu soli
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 8 KWIETNIA 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Funkcja f określona
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2018
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 4 czerwca 2019
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita
Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa
Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
Egzamin wstępny z Matematyki 1 lipca 2011 r.
Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 4 czerwca 2019
MATURA probna listopad 2010
MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt
Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Adam kupił 2 owoce mango
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 czerwca 018
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie
Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY DATA: 26 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.
Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 203 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }
Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 3
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja Instrukcja dla zdającego EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 4 5 6 7 8 9 10 11 1 1 14 B B C A D D A B C A B D C C Nr zad Odp. 15
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2019
1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 KWIETNIA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 7 48 jest równa
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2017 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 24 MARCA 2018 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 2 6+ 5+2 6
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2