Szeregowy obwód RC - model matematyczny układu
|
|
- Łucja Makowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony został sposób modlownia obiktu, polgający na wyznaczniu pojdynczgo równania różniczkowgo, w którym niwiadomą jst funkcja. Rozwiązani uzyskango modlu zralizowan zostało trzma mtodami: () polgającą na wyznaczaniu całki nioznaczonj, (2) przy użyciu rachunku opratorowgo Laplac a, (3) numryczni w Matlabi/Simulinku. WPROWADZENIE Na rysunku przdstawiony został szrgowy obwód RC, który rozważany będzi jako czwórnik z wjściowym sygnałm u ( i wyjściowym u 2 (. Jst to układ liniowy dynamiczny i stacjonarny. i( R u ( C i( u 2 ( Rys.. Obwód szrgowy RC Modl matmatyczny wyznaczony został w oparciu o prawa Kirchhoffa, dobrz znan z torii obwodów lktrycznych. Równani obwodu (II prawo Kirchhoffa) Spadk napięcia na rzystorz Spadk napięcia na kondnsatorz Prąd przpływający przz kondnsator u ( u ( u ( ) () R c t Po podstawiniu równań (2) i (3) do równania () u u R ( i( R (2) u c ( t ) u 2( t ) (3) du2 ( i( C (4) ( 2 t Ri( u ( ) (5) Po podstawiniu równania (4) do równania (5) uzyskuj się pojdyncz równani różniczkow o postaci Ostatnia aktualizacja: M. Tomra
2 któr po przkształcniu du 2 ( RC u2( u( t ) (6) du2( u2( u( (7) RC RC jst poszukiwanym modlm matmatycznym układu RC, zapisanym w postaci pojdynczgo równania różniczkowgo I rzędu. Do powyższgo równania (7) zostaną wprowadzon zminn pomocnicz pozwalając na poprawini przjrzystości uzyskango rozwiązania a0 RC, b0, ( ) 2 ( ) RC y t u t, u( u ( (8) Po podstawiniu powyższych zminnych pomocniczych (8) do równania (7) uzyskuj się następując postać modlu matmatyczngo opisango pojdynczym równanim różniczkowym I rzędu a0 b0u( (9) Uzyskany modl matmatyczny (9) będący równanim różniczkowym I rzędu, został rozwiązany trzma różnymi mtodami: mtodą bzpośrdnią w dzidzini czasu, stosowaną w matmatyc; przkształcnia opratorowgo Laplac'a mtodą numryczną w Simulinku. któr pokazan zostały w poniższych przykładach. Na podstawi zaprzntowanych rozwiązań łatwo ocnić jaki nakład pracy potrzbny jst do ich uzyskania i która z tych mtod jst najmnij czasochłonna. Przykład Dla układu RC pokazango na rysunku.. znajdź modl matmatyczny opisany pojdynczym równanim różniczkowym. Paramtry obwodu są następując: u ( = U 0 = 2 [V] R = 20 [] C = 000 [F] = 0.00 [F] W chwili załącznia napięcia wjściowgo na układ, kondnsator był wstępni naładowany i wartość napięcia na jgo stykach wynosiła u 2 (0) = 0.25 [V]. i( R U o u ( i( C u 2 ( Rys... Badany obwód szrgowy RC Rozwiązani. W tym przykładzi wykorzystan zostani wyprowadzon wczśnij pojdyncz równani różniczkow opisan wzorm (9). Po podstawiniu wartości związanych z wartościami rzystora R i kondnsatora C uzyskuj się następując postać rozwiązywango równania różniczkowgo Ostatnia aktualizacja: M. Tomra 2
3 u( (.) W analizowanym obwodzi RC (Rys..) sygnał wjściowy ma postać u( U0 ( 2( (.2) który po podstawiniu do równania (.) daj następując równani różniczkow I rzędu 00( (.3) z warunkim początkowym y ( 0) u2(0) 0.25 (.4) Prąd w obwodzi wyznaczony zostani z zalżności i( C 0.00 (.5) Przykład 2 Mtodą bzpośrdnią stosowaną w matmatyc, rozwiązać w dzidzini czasu pojdyncz równani różniczkow (.3) uzyskan w przykładzi. Dodatkowo wyznaczyć wzór na prąd i( płynący w obwodzi z rysunku.. Rozwiązani. Równani (.3) zostani rozwiązan mtodą uzminniania stałj. Najpirw rozwiązan zostani równani różniczkow I rzędu liniow i jdnorodn o postaci 0 Po kilku przkształcniach i zastosowaniu obustronngo całkowania otrzymuj się Rozwiązanim powyższych całk jst zalżność (2.) (2.2) ln C (2.3) W wyniku dalszych przkształcń otrzymuj się rozwiązani równania różniczkowgo liniowgo jdnorodngo Następni zostani uzminniona stała C C C C (2.4) Powyższ równani (2.5) zostani zróżniczkowan obustronni dc( d C( = C( (2.5) dc( C( (2.6) Otrzyman wyniki opisan wzorami (2.5) i (2.6) zostaną podstawion do równania (.3) dc( C( C( 00( Z równania (2.7) wyznaczona zostani pochodna uzminnionj stałj (2.7) Ostatnia aktualizacja: M. Tomra 3
4 dc( 00 t ( (2.8) Równani (2.8) po przkształcniu zostało obustronni scałkowan Z rozwiązania powyższych całk uzyskuj się wyrażni t dc( 00( (2.9) 00 t t C( ( 2( (2.0) Uzyskaną wartość uzminnionj stałj C( z równania (2.0) podstawia się do równania (2.5) otrzymując w tn sposób rozwiązani równania różniczkowgo nijdnorodngo. 2( (2.) Rozwiązani równania różniczkowgo (.3) składa się z sumy uzyskanych rozwiązań: równania liniowgo jdnorodngo (2.4) i równania liniowgo nijdnorodngo (2.) C 2( (2.2) Wartość stałj C występującj w równaniu (2.2) zostani wyznaczona na podstawi posiadango warunku początkowgo (.4) czyli 0 y ( t 0) 0) 0.25 C 2 (2.3) C (2.4) Ostatczni, zmiany napięcia na kondnsatorz opisan są zalżnością u2(.75 2( (2.5) Rys. 2.. Wykrsy czasow uzyskanych rozwiązań. Pochodna rozwiązania opisango wzorm (2.5) Ostatnia aktualizacja: M. Tomra 4
5 pozwala na wyznaczni prądu płynącgo w obwodzi.75( ) 87.5 (2.6) i( C (2.7) Na rysunku 2. pokazan zostały wykrsy czasow uzyskanych rozwiązań, czyli zmiany w czasi wartości napięcia na kondnsatorz u 2 ( i prądu w obwodzi i(. Przykład 3 Równani różniczkow (.3) uzyskan w przykładzi nalży rozwiązać przy użyciu rachunku opratorowgo Laplac'a. Rozwiązani. Po poddaniu równania różniczkowgo (.3) obustronnmu przkształcniu Laplac'a, dy ( + y ( = 00 ( t ) (3.) koljnym krokim jst zastąpini funkcji czasowych odpowiadającymi im funkcjami opratorowymi ( y = Y (s) (3.2) dy ( = sy ( s) 0) (3.3) ( t ) = s (3.4) Po podstawiniu wyrażń (3.2), (3.3) oraz (3.4) do równania (3.) otrzymuj się sy ( s) 0) + Y ( s) = Z równania (3.4) wyznaczona została zminna opratorowa Y (s), która jst postacią opratorową poszukiwango rozwiązania 00 s (3.4) 0.25s 00 Y( s) (3.5) s 2 s Koljnym krokim rozwiązania jst rozbici otrzymanj funkcji opratorowj (3.5) składającj się z ilorazu dwóch wilomianów na sumę składowych funkcji lmntarnych. 0.25s Y( s) (3.6) ( s ) s s s Po zastosowaniu do równania (3.6), odwrotngo przkształcnia Laplac a uzyskuj się postać czasową rozwiązania.75 2( (3.7) Prąd płynący w obwodzi wyznaczony został w przykładzi 2. Ostatnia aktualizacja: M. Tomra 5
6 Przykład 4 Równani różniczkow (.) uzyskan w przykładzi rozwiązać mtodą numryczną przz zamodlowani go w Matlabi/Simulinku. Rozwiązani. Uzyskan równani różniczkow w przykładzi jst pirwszgo rzędu i ni jst wymagana dkompozycja tgo równania. W clu zamodlowania go w Simulinku zostani zapisan w postaci u( (4.) gdzi sygnał wjściowy ma postać natomiast warunk początkowy jst następujący Prąd w obwodzi wyrażony jst przz równani u( 2 ( (4.2) y ( 0) 0.25 (4.3) du2( i( C C (4.4) Równania (4.) - (4.4) zamodlowan zostały w Simulinku w postaci następującgo schmatu C Scop_i 2 Constant u( b0 / 0.25 x os Intgrator Scop_u2 0) a0 Rys. 4.. Równania (4.) i (4.4) zamodlowan w Simulinku i rozwiązan mtodami numrycznymi. Po uruchominiu układu z rysunku 4., na oscylogramach (Scop_u2, Scop_i) obsrwuj się idntyczn wykrsy czasow jak t, któr zostały pokazan na rysunku 2.. LITERATURA. Tomra M., Rachunk opratorowy Laplac'a, 2. Tomra M., Wprowadzni do Simulinka, Ostatnia aktualizacja: M. Tomra 6
Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.
Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości
2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia
PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK
Przykład 1 modelowania jednowymiarowego przepływu ciepła
Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych
Rozwiązanie równania różniczkowego MES
Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl
Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)
Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych
Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i
CHARAKTERYSTYKA OBCIĄŻENIOWA
Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i
Automatyzacja Procesów Przemysłowych
Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław
Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek
1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej
Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:
DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH
LABORATORIUM DYNAMIKI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mchaniki Stosowanj Zakład Wibroakustyki i Bio-Dynamiki Systmów Ćwiczni nr 3 Cl ćwicznia: DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani
Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.
A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
2. Architektury sztucznych sieci neuronowych
- 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.
EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80
PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH załącznik 1 do ćwiczenia nr 6
PMY MŁOSYGNŁOW NZYSOÓW POLNYH załącznik 1 do ćwznia nr 6 Wstęp Modl małosygnałow tranzystorów mają na l przdstawini tranzystora za pomocą obwod liniowgo. aka rprzntacja tranzystora pozwala na zastąpini
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Przyjmuje się umowę, że:
MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy
Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego
Ćwiczni 4 Ralizacja programowa dwupołożniowj rgulacji tmpratury pica lktryczngo. Cl ćwicznia Clm ćwicznia jst zaznajomini z podstawami rgulacji obiktów ciągłych na przykładzi strowania dwupołożniowgo komputrowgo
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
Sieci neuronowe - uczenie
Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM
POLITECHNIKA GDAŃSKA Wydział Elktrotchniki i Automatyki Katdra Enrgolktroniki i Maszyn Elktrycznych LABORATORIUM SYSTEMY ELEKTROMECHANICZNE TEMATYKA ĆWICZENIA MASZYNA SYNCHRONICZNA BADANIE PRACY W SYSTEMIE
Wzmacniacz tranzystorowy
Wydział Elktroniki Mikrosystmów i Fotoniki Opracował zspół: Mark Pank, Waldmar Olszkiwicz, yszard Korbutowicz, wona Zborowska-Lindrt, Bogdan Paszkiwicz, Małgorzata Kramkowska, Zdzisław Synowic, Bata Ściana,
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska
Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła
ZESPÓŁ B-D ELEKTROTECHNIKI
ZESÓŁ B-D ELEKTOTECHNIKI Laboratorium Elktrotchniki i Elktroniki Samochodowj Tmat ćwicznia: Badani rozrusznika Opracowani: dr hab. inż. S. DUE 1. Instrukcja Laboratoryjna 2 omiary wykonan: a) omiar napięcia
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ
Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application
ZADANIA DO ĆWICZEŃ Z ELEMENTÓW ELEKTRONICZNYCH temat: Tranzystory bipolarne
ZADANIA DO ĆWICZEŃ Z ELEMENTÓW ELEKTRONICZNYCH tat: Tranzystory bipolarn prowadzący Piotr Płotka, -ail pplotka@ti.p.da.pl, tl. 347-1634, pok. 301 ZADANIE 1. W układzi jak na rysunku wyznaczyć wilkości
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego
Różniczkowanie numeryczne
Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Zagadnienie statyki kratownicy płaskiej
Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Ekscytony Wanniera Motta
ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora
Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie
Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC
Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 KAROL MAREK KLIMCZAK SYMULACJA FINANSOWA SPÓŁKI ZA POMOCĄ MODELU ZYSKU REZYDUALNEGO Słowa kluczow:
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego
Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej
E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH obliczanie załącznik 1 do ćwiczenia nr 7
LMNY LKONZN LA.: Paramtry małosynałow tranz. bipolarnyc zał. 1 PAAMY MAŁOSYGNAŁOW ANZYSOÓW POLANYH oblzani załącznik 1 do ćwznia nr 7 Wstęp Modl małosynałow tranzystorów mają na cl przdstawini tranzystora
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz
1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,
Temat: Pochodna funkcji. Zastosowania
Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a
Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)
11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )
Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH
CHARAKERYSYKI CZASOWE UKŁADÓW DYNAMICZNYCH Zadani Chararyyi czaow uładów. Odpowidź oową wyznacza ię z wzoru: { } Problm: h L G X Wyznaczyć odpowidz oową i impulową całującgo z inrcją G h L G gdzi: Y X
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych
Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych
Równania różniczkowe wyższych rzędów
Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu
WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH
Górnictwo i Goinżyniria Rok 32 Zszyt 1 28 Agniszka Maj* WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH 1. Wstęp Obsrwacj
RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH
A. J. S t o d ó l k ie w ic z. 0 KILKU KLASACH RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH R Z Ę D U n-go. KRAKÓW. NAKŁADEM AKADEMII UMIEJĘTNOŚCI. SKŁAD GŁÓW NY W KSIĘGARNI SPÓ ŁK I W YDAW NICZEJ PO LSK IEJ. A. J.
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Wykład 2 - model produkcji input-output (Model 1)
Wykład 2 - model produkcji input-output (Model 1) 1 Wprowadzenie Celem wykładu jest omówienie (znanego z wcześniejszych zajęć) modelu produkcji typu input-output w postaci pozwalającej na zaprogramowanie
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Swobodny spadek ciał w ośrodku stawiającym opór
Ryszard Chybici Swobodny spad ciał w ośrodu stawiający opór (Posłuiwani się przz osoby trzci ty artyuł lub jo istotnyi frantai bz widzy autora jst wzbronion) Milc, 005 Swobodny spad ciała ośrodu stawiający
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład
ROZWIĄZANIA I ODPOWIEDZI
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=
Równania różniczkowe wyższych rzędów
Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia
Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Wyrobienie umiejętności łączenia obwodów elektrycznych rozgałęzionych oraz sprawdzenie praw prądu stałego. Czytanie schematów
Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita
Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie
Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h
Metody rozwiązywania obwodów elektrycznych ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących
WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ.
Ewa Czapla Instytut Ekonomii i Zarządzania Politchnika Koszalińska WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ. Stopy procntow
Optymalne rozmieszczanie tłumików lepkosprężystych na ramie płaskiej. Maciej Dolny Piotr Cybulski
Optymaln rozmiszczani tłumików lpkosprężystych na rami płaskij Macij Dolny Piotr Cybulski Poznań 20 Spis trści. Wprowadzni 3.. Cl opracowania...3.2. Znaczni tłumików drgań.3 2. Omówini sposobu rozwiązania
Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa
Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Laboratorium nr 5 - szybkie prototypowanie, "targetowanie" i realizacja sterowania zdecentralizowanego
Katda Inżyniii Systmów Stowania Automatyka - Zastosowania, mtody i nazędzia, pspktywy Sm. VII, AiR Laboatoium n 5 - szybki pototypowani, "tagtowani" i alizacja stowania zdcntalizowango Cl laboatoium: Stowani
Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens
INSYU AUOMAYKI i ROBOYKI WYDZIAŁ MECHARONIKI - laboratorium Ćwiczni PA6 Badani działania rgulatora PID zaimplmntowango w strowniu S7-00 firmy Simns Instrucja laboratoryjna Opracowani : dr inż. Danuta Holjo
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Metoda superpozycji - rozwiązanie obwodu elektrycznego.
Metoda superpozycji - rozwiązanie obwodu elektrycznego. W celu rozwiązania obwodu elektrycznego przedstawionego na rysunku poniżej musimy zapisać dla niego prądowe i napięciowe równania Kirchhoffa. Rozwiązanie
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa