SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM

Wielkość: px
Rozpocząć pokaz od strony:

Download "SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM"

Transkrypt

1 SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM 7. DIAGNOSTYKA PLAZMY - WYZNACZANIE GĘSTOŚCI ELEKTRONOWEJ (opracowani: Jolanta Borkowska-Burncka, Zakład Chmii Analitycznj i Mtalurgii Chmicznj, Wydział Chmiczny, Politchnika Wrocławska) Dla szrszgo i bardzij fktywngo wykorzystania źródł plazmy oraz analizy i zrozuminia problmów związanych z procsami transportu nrgii i masy, stanami nirównowagi i rakcjami plazmochmicznymi koniczna jst znajomość podstawowych paramtrów plazmy takich jak gęstość lktronów, koncntracj innych składników plazmy, rozkłady tmpratur i nrgii. Clm ćwicznia jst praktyczn zapoznani studntów z możliwościami wykorzystania widma misyjngo atomu wodoru do okrślnia gęstości lktronów w plazmi indukcyjni sprzężonj WYZNACZANIE GĘSTOŚCI ELEKTRONOWEJ PLAZMY INDUKCYJNIE SPRZĘŻONEJ Paramtry charaktryzując widmo Widmo plazmy obsrwowan w zakrsi od ultrafioltu do podczrwini jst w zasadzi suprpozycją widma ciągłgo i widma dyskrtngo. Na widmo ciągł składa się nikwantowan prominiowani wysyłan np. przz rozgrzan gazy lub ciała stał oraz prominiowani hamowania lktronów. Analiza widma ciągłgo daj informacj główni o tmpraturz ośrodka. Widmo dyskrtn to najczęścij widmo atomow oraz widmo cząstczk dwuatomowych o mnij lub bardzij rozdzilonj strukturz. Widmo dyskrtn nisi informacj o jakościowym i ilościowym składzi matrii wysyłającj lub absorbującj prominiowani. Na rys. 1 przdstawion zostało typow widmo argonowj plazmy atmosfrycznj w zakrsi UV. intnsywność λ/nm Rys. 1. Widmo argonowj plazmy indukcyjnj w zakrsi UV oraz paramtry linii spktralnj. Podstawow paramtry charaktryzując widmo traktowan jako zbiór dyskrtnych sygnałów analitycznych to: - położni sygnału - natężni sygnału (wartość maksymalna, wartość całkowita pol powirzchni). - kształt sygnału (profil, szrokość połówkowa, symtria). Położni sygnału/linii Do opisu położnia widma atomowgo (linii atomowych) stosuj się główni długość fali λ (w nm lub dawnij w Å, 1 nm = 1 Å), rzadzij częstotliwość ν (w Hz) lub liczbę falową 1/λ (w cm -1 ). Tę samą konwncję praktykuj się przy opisi położnia widma prostj cząstczki (dwuatomowj), przy czym w tym przypadku częścij stosowan są liczby falow lub częstotliwość. Lini obojętngo atomu dango pirwiastka A oznaczan są w spktroskopii jako A I, lini pojdynczo zjonizowango atomu jako A II, podwójni zjonizowango atomu jako A III, itd. Zbiory długości 1

2 fal linii charaktrystycznych dla dango pirwiastka można znalźć w atlasach linii atomowych lub w intrntowych bazach danych, w których znajdują się równiż informacj dotycząc rodzaju przjścia oraz wartości nrgii kombinujących poziomów lktronowych, wagi statystyczn czy prawdopodobiństwa przjścia. Analiza widma pozwala na jdnoznaczną idntyfikację cząstk mitujących prominiowani. Najprostszym widmm jst widmo atomu wodoru. W zakrsi od bliskigo ultrafioltu do podczrwini obsrwujmy jdyni lini nalżąc do srii Balmra: 1 1 ν = R H n (1) gdzi R H =19737 cm -1 stała Rydbrga. Najbardzij znan i obsrwowan są pirwsz lini tj srii: H α (656,7 nm), H β (486,13 nm), H γ (434,5 nm) oraz H δ (41,17 nm). W miarę wzrostu liczby lktronów w atomi widmo staj się bogatsz, z uwagi na rosnącą liczbę możliwych stanów lktronowych i przjść między nimi. Liczba linii pojawiających się w widmi dango pirwiastka zalży oczywiści od stężnia pirwiastka i tmpratury, która dcyduj o populacji stanów lktronowych (rozkład Boltzmanna). Natężni sygnału (intnsywność linii) Najważnijszym, z punktu widznia analizy ilościowj, paramtrm linii spktralnj jst jj natężni (intnsywność). Zalżność natężnia linii spktralnj od ilości cząstk mitujących prominiowani o danj długości fali jst wykorzystywana do analizy ilościowj oraz do badań diagnostycznych plazmy (tmpratura, stopiń jonizacji). Z względu na zalżność populacji poszczgólnych stanów nrgtycznych atomu/jonu od tmpratury wyrażającą się równanim Boltzmanna (obniżni liczby cząstk w stani podstawowym i zwiększni w stanach wzbudzonych z wzrostm tmpratury), a tym samym z uwagi na wpływ tmpratury na natężni linii misyjnj, istotnym jst utrzymywani jdnakowych paramtrów gnrowania sygnałów w przypadku próbk wzorcowych i analizowanych. Kształt sygnału (profil linii) Koljnym paramtrm charaktryzującym widmo jst kształt sygnału analityczngo (linii spktralnj). Informacj dotycząc profilu linii spktralnj mogą pomóc w okrślniu kształtu krzywych analitycznych, tmpratury lub kontroli warunków pracy atomizra. Linia spktralna ni jst niskończni wąska lcz objmuj pwin przdział długości fal. Miarą szrokości linii jst tzw. szrokość połówkowa Δλ 1/ (ang. full width at half maximum FWHM), czyli odlgłość w skali długości fali (lub częstości) między punktami, którym odpowiada natężni równ połowi wartości natężnia maksymalngo. Do opisu kształtu linii spktralnj stosowan są różn przybliżnia główni rozkłady Gaussa i Lorntza (rys. ). Gauss Lorntz Rys.. Porównani kształtu linii opisywanj profilm Gaussa i Lorntza (jdnakowa szrokość i intgraln natężni).

3 Naturalna szrokość linii jst związana z wynikającym z zasady Hisnbrga rozmycim poziomów nrgtycznych i zalży od czasów życia poziomów nrgtycznych. Naturalny profil linii spktralnj jst opisywany funkcją Lorntza: I I( ν ) = () N 1+ [ ( ν ν ) ] / ν 1/ gdzi ν jst częstością, ν częstością w maksimum linii, I i I odpowidnio intnsywnością przy danj częstości i w maksimum, a naturalna szrokość połówkowa wyraża się wzorm: N N πhc ν 1 / = + lub λ π 1 / = (3) τ i τ j τ i τ j gdzi h stała Plancka, c prędkość światła, τ i i τ j czasy życia kombinujących poziomów nrgtycznych. Dla linii odpowiadających przjściom lktrycznym dipolowym dozwolonym rgułami wyboru (czasy życia rzędu 1-8 s) wartości λ 1/ są rzędu 1-5 nm. Bz zastosowania spcjalnych tchnik ksprymntalnych ni jst więc możliwa rjstracja linii o szrokości naturalnj. W ralni istnijących warunkach w atomizrz/plazmi ruch cząstk, oddziaływania pomiędzy cząstkami, czynniki zwnętrzn (pol lktryczn lub magntyczn) powodują dodatkow fkty poszrznia linii widmowych o ok. dwa rzędy wilkości. Do najważnijszych czynników wpływających na szrokość linii nalżą ciśnini i tmpratura. Poszrzni ciśniniow linii jst konskwncją zmiany amplitudy i fazy mitowanj fali lktromagntycznj oraz przsunięcia poziomu nrgtyczngo atomu w wyniku zdrzń z innymi atomami/cząstkami. Efkt poszrznia ciśniniowgo linii, podobni jak szrokość naturalna, jst opisywany równiż funkcją Lorntza, a wilkość szrokości połówkowj linii (tzw. szrokości lorntzowskij) można wyrazić zalżnością: p RT 6 pσ ν 1/ = 4σ N = 1,49 1 (4) pµ µ T gdzi p ciśnini, µ - masa zrdukowana cząstk biorących udział w zdrzniu, T tmpratura, σ - przkrój czynny na zdrzni. W przypadku źródł pracujących pod obniżonym ciśninim poszrzni ciśniniow jst niwilki, natomiast przy ciśniniu atmosfrycznym jst rzędu pm (1-3 nm). Poszrzni tmpraturow, tzw. dopplrowski, związan z różnymi prędkościami mitujących/absorbujących cząstk względm dtktora prominiowania, jst przybliżan funkcją Gaussa: ( ) ( ) M ν ν I ν = I ν xp c (5) RT ν gdzi ν jst częstością w maksimum linii, c prędkość światła, M masa cząstki, T tmpratura, R stała gazowa, a tzw. dopplrowską szrokość połówkową linii opisuj wyrażni: 1/ D n ln RT D ln RT 7 T D n 1/ = lub D l1 / = l = 7,16 1 l (6) c M c M M gdzi λ jst długością fali linii spktralnj w nm a tmpratura wyrażona jst w K. Szrokość dopplrowska linii jst w sposób istotny zalżna od tmpratury i masy atomu i dla tmpratury K jst rzędu kilku pm. Lini tgo samgo pirwiastka o większj długości fali wykazują większ poszrzni dopplrowski. W tabli 1 podan są szrokości połówkow wynikając z fktu Dopplra dla kilku linii spktralnych. 3

4 Tabla 1. Dopplrowska szrokość połówkowa λ D 1/ linii spktralnych dla różnych tmpratur T / K H I 486,1 nm Ca I 4, nm Mg I 8,3 nm Cd 8,8 nm 16 pm,1 pm 1,8 pm,7 pm 4 1,9 pm 3, pm,6 pm 1, pm 8 31 pm 4,3 pm 3,6 pm 1,4 pm Wpływ pola lktryczngo na szrokość linii nosi nazwę fktu Starka, natomiast fkt poszrznia linii obsrwowany w wyniku rozszczpinia poziomów nrgtycznych atomu w polu magntycznym znany jst jako fkt Zmana. Dodatkowymi czynnikami wpływającymi na szrokość linii spktralnj są fkt izotopowy, struktura nadsubtlna oraz poszrzni rzonansow wynikając z oddziaływania pomiędzy mitującymi i nimitującymi idntycznymi atomami. Szrokość naturalna, ciśniniowa, dopplrowska i in. składają się na tzw. fizyczną szrokość linii λv (opisywaną funkcją Voigta). Fizyczna szrokość linii spktralnych wykorzystywanych w optycznj spktromtrii atomowj wynosi w większości przypadków od 1 do pm. Eksprymntalni mirzona szrokość linii tzw. szrokość fktywna ( λ xp ) zalży dodatkowo od szrokości szczlin wjściowj i wyjściowj spktromtru, czyli od szrokości instrumntalnj ( λ ins ) i jst związana z tymi wilkościami poprzz równani: λ = λ V + λ (7) xp ins Efkt Starka a gęstość lktronowa Rozszczpini linii spktralnych wywołan działanim pola lktryczngo na cząstki (atomy, jony) mitując lub absorbując prominiowani nosi nazwę fktu Starka (odkryci 1913, nagroda Nobla 1919). W nizbyt silnych polach lktrycznych poziom o danj liczbi kwantowj J rozszczpia się na J+1 (J całkowit) lub J+1/ (J połówkow) podpoziomów. Wilkość rozszczpinia zalży od rodzaju kombinujących stanów lktronowych i od wilkości natężnia pola lktryczngo. W przypadku atomu wodoru i atomów wodoropodobnych wilkość ta jst proporcjonalna do natężnia pola (liniowy fkt Starka). Dla atomów wilolktronowych obsrwowany jst kwadratowy fkt Starka. W plazmi mitując atomy lub jony znajdują się pod działanim pola lktryczngo wywołango przz szybko poruszając się lktrony i wolnijsz jony. Najczęścij do opisu fktu wystarczając jst założni, ż wpływ jonów jst do pominięcia w porównaniu z udziałm lktronów. Poszrzni linii spktralnych wywołan fktm Starka umożliwia w stosunkowo prosty sposób okrślni gęstości lktronów (n ) w plazmi. Najczęścij fkt Starka badany jst dla linii wodorowych srii Balmra, pirwszych linii wodorowych innych srii oraz atomów wodoropodobnych (np. H II). Na rys. przdstawion zostały zmiany szrokości połówkowj Rys.. Poszrzni linii H β jako funkcja gęstości lktronowj w plazmi atmosfrycznj (przy założonj lokalnj równowadz trmodynamicznj LTE). 4

5 linii wodorowj wraz z gęstością lktronów. Jak widać, wzrost gęstości lktronów w plazmi powoduj wzrost szrokości linii związanj z fktm Starka, natomiast udział pozostałych fktów w poszrzniu tj linii jst w przybliżniu stały. W przypadku liniowgo fktu Starka szrokość połówkowa wzrasta z n /3 : S / / 3 ( n T ) λ 1 = Co, n (8) Zatm gęstość lktronową można wyrazić jako S n = C n, T λ 3 / (8a) ( )( ) 1/ gdzi stała C zalży w niwilkim stopniu od gęstości lktronowj i tmpratury. Profil linii (szrokość połówkowa) jst złożony i ni moż być opisany jdną funkcją. Lini spktraln innych pirwiastków, z wyjątkim kilku linii zjonizowango hlu (H II) wykazują kwadratowy fkt Starka. W tym przypadku szrokość połówkowa linii jst proporcjonalna do gęstości lktronowj. Poszrzni powodowan przz kwadratowy fkt Starka jst zwykl znaczni mnijsz niż wywołan liniowym fktm. W tabli podan zostały wartości współczynników C(n,T ) do okrślnia gęstości lktronów w plazmi na podstawi szrokości połówkowj linii wodorowych. Tabla. Współczynniki C(n, T) w Å -3/ cm -3 do okrślnia gęstości lktronowj z szrokości połówkowj linii wodorowych n / cm -3 T / K H α 1 6, , , , , 1 16, H β 5 3, , , , , , , , , , , , H γ 1 4, , , , , , H δ 1 1, , , , , , , , , W przypadku linii H β i opisu jj kształtu profilm Lorntza do oblicznia gęstości lktronowj (w cm -3 ) stosowan jst równiż wyrażni: (λ S /4,8)=(n/1 17 ),68116 (λ S w nm) (1) Na rys. 3 pokazana została linia H β zarjstrowana dla plazmy indukcyjni sprzężonj w różnych warunkach ksprymntalnych (różn kolory widma). 5

6 Rys. 3. Linia wodorowa H β zarjstrowana w widmi plazmy indukcyjni sprzężonj przy różnych mtodach podawania próbki Wyznaczani gęstości lktronowj z poszrznia linii wodorowych W widmach otrzymanych do analizy nalży zidntyfikować 4 pirwsz lini atomu wodoru nalżąc do srii Balmra oraz kilka linii atomowych argonu o intnsywności zbliżonj do linii wodorowych i położonych w ich sąsidztwi. Następni, korzystając z programu dopasowującgo kształt (profil) linii do odpowidnigo modlu matmatyczngo (Gaussa, Lorntza i Gaussa+Lorntza), nalży wyznaczyć szrokości połówkow poszczgólnych linii wodoru i argonu. Przy założniu, ż głównym źródłm poszrznia linii wodorowych jst fkt Starka, fkt Dopplra i szrokość instrumntalna, można obliczyć tę szrokość fizyczną linii przkształcając zalżność (7) i przyjmując za szrokość instrumntalną śrdnią szrokość linii wyznaczoną dla odpowidnich linii argonu (dla których fkt Starka jst w praktyc do pominięcia) λv = λxp λins Poszrzni linii wodoru wynikając z fktu Starka można obliczyć z uproszczonj zalżności S D D λ1 / = DλV Dλ1/ (11) Poszrzni każdj linii wodoru związan z fktm Dopplra nalży obliczyć korzystając z zalżności (6). Gęstość lktronów obliczyć korzystając z zalżności (8a) dla trzch różnych wartości tmpratur (5, 75 i 1 K). Wartość współczynnika C nalży wyznaczyć poprzz intrpolację lub kstrapolację, korzystając z Tabli. Dodatkowo nalży obliczyć gęstość lktronów z poszrznia linii H β korzystając z zalżności (1). W sprawozdaniu nalży przdstawić wyniki pomiarów dla pirwszych cztrch linii srii Balmra, oblicznia, przdyskutować uzyskan wartości oraz podać wartość gęstości lktronów w plazmi wraz z uzasadninim końcowgo wyniku. 7.. LITERATURA 1. Kołos W., Sadlj J. Atom i cząstczka. Wydawnictwa Naukowo-Tchniczn, Warszawa Hrzbrg G., Molcular spctra and molcular structur. I. Spctra of diatomic molculs, D.van Nostrand Company Inc., Nw Jrsy Sadlj J., Spktroskopia molkularna. Wydawnictwa Naukowo-Tchniczn, Warszawa. 5. Hubrt K.P., Hrzbrg G., Molcular spctra and molcular structur. IV. Constants of diatomic molculs, Van Nostrand Rinhold Company, Nw York Pars R.W.B., Gaydon A.G., Th idntification of molcular spctra, Chapman&Hall Ltd, London K. Pigoń, Z. Ruziwicz, Chmia fizyczna, t.. Fizykochmia molkularna. PWN Warszawa 5. Zagadninia szrokość linii spktralnj (naturalna, ciśniniowa, dopplrowska, instrumntalna i in.); paramtry opisując widmo atomow; liniowy i kwadratowy fkt Starka; gęstość lktronów w plazmi; procsy w plazmi zachodząc przy udzial lktronów; rozkład nrgii lktronów w plazmi; widmo atomow wodoru; sria Balmra 6

SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM

SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM SPEKTROSKOPIA ATOMOWA I MOLEKULARNA LABORATORIUM 6. DIAGNOSTYKA PLAZMY INDUKCYJNEJ I WYZNACZANIE STAŁYCH OSCYLACYJNYCH CZĄSTECZKI N (opracowani: Jolanta Borkowska-Burncka, Zakład Chmii Analitycznj, Wydział

Bardziej szczegółowo

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone.

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. Podsumowani W Obsrw. przjść wymusz. przz pol EM tylko, gdy różnica populacji. Tymczasm w zakrsi fal radiowych poziomy są ~ jdnakowo obsadzon. Nirównowagow rozkłady populacji pompowani optyczn (zasada zachowania

Bardziej szczegółowo

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony

Zjonizowana cząsteczka wodoru H 2+ - elektron i dwa protony Zjonizowana cząstczka wodoru H - lktron i dwa protony Enrgia potncjalna lktronu w polu lktrycznym dwu protonów ˆ pˆ H = m pˆ 1 m p pˆ m p 1 1 1 4πε 0 r0 r1 r Hamiltonian cząstczki suma nrgii kintycznj

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

ĆWICZENIE J15. Celem ćwiczenia jest zbadanie efektu Comptona poprzez pomiar zależności energii rozproszonych kwantów gamma od kąta rozproszenia.

ĆWICZENIE J15. Celem ćwiczenia jest zbadanie efektu Comptona poprzez pomiar zależności energii rozproszonych kwantów gamma od kąta rozproszenia. ĆWICZNI J15 Badani fktu Comptona Clm ćwicznia jst zbadani fktu Comptona poprzz pomiar zalżności nrgii rozproszonych kwantów gamma od kąta rozprosznia. Wstęp fkt Comptona to procs nilastyczngo rozprosznia

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Masy atomowe izotopów. turalabundance.pdf

Masy atomowe izotopów.   turalabundance.pdf Rozpady Masy atomow izotopów https://chmistry.scincs.ncsu.du/msf/pdf/isotopicmass_na turalabundanc.pdf Rozpady radioaktywn dn = λndt N( t) = N 0 λt A(t) aktywność = dddd dddd λ ilość rozpadów na skundę

Bardziej szczegółowo

gdzie: E ilość energii wydzielona z zamiany masy na energię m ubytek masy c szybkość światła w próŝni (= m/s).

gdzie: E ilość energii wydzielona z zamiany masy na energię m ubytek masy c szybkość światła w próŝni (= m/s). 1 Co to jst dfkt masy? Ŝli wskutk rakcji chmicznj masa produktów jst mnijsza od masy substratów to zjawisko taki nazywamy dfktm masy Ubytkowi masy towarzyszy wydzilani się nrgii ówimy Ŝ masa jst równowaŝna

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Model Atomu Bohra. Część 2

Model Atomu Bohra. Część 2 Część Modl Atomu Bohra.1: Modl atomu Thomsona i Ruthrforda.: Modl Ruthrforda.3: Klasyczny Modl Atomu.4: Modl Bohra atomu wodoru.5: Liczby atomow a rntgnowski widma charaktrystyczn.6: Zasada korspondncji..7:

Bardziej szczegółowo

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1)

Podstawowym prawem opisującym przepływ prądu przez materiał jest prawo Ohma, o makroskopowej postaci: V R (1.1) 11. Właściwości lktryczn Nizwykl istotnym aspktm funkcjonalnym matriałów, są ich właściwości lktryczn. Mogą być on nizwykl różnorodn, prdysponując matriały do nizwykl szrokij gamy zastosowań. Najbardzij

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Zastosowanie promieniowania synchrotronowego w spektroskopii mössbauerowskiej. Artur Błachowski

Zastosowanie promieniowania synchrotronowego w spektroskopii mössbauerowskiej. Artur Błachowski Zastosowani prominiowania synchrotronowgo w spktroskopii mössbaurowskij Artur Błachowski Zakład Spktroskopii Mössbaurowskij Instytut Fizyki Akadmia Pdagogiczna w Krakowi - Prominiowani synchrotronow (PS)

Bardziej szczegółowo

Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych

Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych Obsrwacj świadcząc o dyskrtyzacji widm nrgii w strukturach niskowymiarowych 1. Optyczn Widma: - absorpcji wzbudzani fotonami o coraz większj nrgii z szczytu pasma walncyjngo do pasma przwodnictwa maksima

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2

Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 Spektroskopia Analiza rotacyjna widma cząsteczki N 2 Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 w stanach B 2 v=0 oraz X 2 v=0. System B 2 u - X 2 g cząsteczki

Bardziej szczegółowo

w rozrzedzonych gazach atomowych

w rozrzedzonych gazach atomowych w rozrzdzonych gazach atomowych Anna Okopińska Instytut Fizyki II. T E O R IA Z DE G E N E R O WA N Y C H G A Z Ó W DO S K O N A Ł Y C H Mchanika cząstki kwantowj Cząstkę kwantową w polu siły o potncjal

Bardziej szczegółowo

Zjawisko Zeemana (1896)

Zjawisko Zeemana (1896) iczby kwantow Zjawisko Zana (1896) Badani inii widowych w siny pou agntyczny, prowadzi do rozszczpini pozioów nrgtycznych. W odu Bohra, kwantowani orbitango ontu pędu n - główna iczba kwantowa n = 1,,

Bardziej szczegółowo

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności

Bardziej szczegółowo

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21 PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1 p (mb) 1 C Fusion iquid Solid 113 6.11 Vapor 1 374 (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty

Bardziej szczegółowo

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977. XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa

Bardziej szczegółowo

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków

Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków Sygnał Analiza składu chmiczngo powirzchni Analiza składu chmiczngo powirzchni Sposoby analizy Rjstrujmy cząstki mitowan z powirzchni Tchniki lktronow -molkuł - fragmntów Emisja: -atomów - lktronów - fotonów

Bardziej szczegółowo

Wykład 4: Termy atomowe

Wykład 4: Termy atomowe Wykład : Trmy atomow Orbitaln i spinow momnty magntyczn Trmy atomow Symbol trmów Przykłady trmów Rguła Hunda dla trmów Rozszczpini poziomów nrgtycznych Właściwości magntyczn atomów wilolktronowych Wydział

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

11. Zjawiska korpuskularno-falowe

11. Zjawiska korpuskularno-falowe . Zjawiska korpuskularno-falow.. Prominiowani trmizn Podstawow źródła światła: - ogrzan iała stał lub gazy, w który zaodzi wyładowani lktryzn. misja absorpja R - widmowa zdolność misyjna prominiowania

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

ZADANIE 122 WYZNACZANIE ZAWARTOŚCI IZOTOPU

ZADANIE 122 WYZNACZANIE ZAWARTOŚCI IZOTOPU ZADANIE 122 WYZNACZANIE ZAWARTOŚCI IZOTOPU 40 K W NATURALNYM POTASIE Wstęp Pirwiastki chmiczn, z których zbudowany jst Wszchświat powstały w procsach nuklosyntzy rakcjach jądrowych zachodzących w wnętrzach

Bardziej szczegółowo

SPEKTROSKOPOWA DIAGNOSTYKA PLAZMY ŁUKU PRÓśNIOWEGO

SPEKTROSKOPOWA DIAGNOSTYKA PLAZMY ŁUKU PRÓśNIOWEGO Zakład Chmii Analityczn Kurs: "Spktroskopia atomowa i molkularna" Ćwiczni: SPEKTROSKOPOWA DIAGNOSTYKA PLAZMY ŁUKU PRÓśNIOWEGO Clm ćwicznia st zapoznani studnta z wybranymi mtodami spktroskopow diagnosty

Bardziej szczegółowo

WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH

WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH Górnictwo i Goinżyniria Rok 32 Zszyt 1 28 Agniszka Maj* WPŁYW PARAMETRÓW OŚRODKA SPRĘŻYSTO-LEPKIEGO NA KONWERGENCJĘ POWIERZCHNIOWĄ PROSTOKĄTNEGO CHODNIKA NA PODSTAWIE BADAŃ MODELOWYCH 1. Wstęp Obsrwacj

Bardziej szczegółowo

UNIWERSYTET JAGIELLOŃSKI

UNIWERSYTET JAGIELLOŃSKI UNIWERSYTET JAGIELLOŃSKI Instytut Fizyki Rozprawa doktorska Spktroskopia cząstczk van dr waalsowskich w struminiu naddźwiękowym. Charaktrystyka stanów lktronowych w CdKr i Cd. Michał Łukomski promotor

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowj Wykład marca 09 r. Modl Standardowy Modl Standardowy opisuj siln, słab i lktromagntyczn oddziaływania i własności cząstk subatomowych. cząstki lmntarn MS: lptony, kwarki, bozony

Bardziej szczegółowo

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm

Bardziej szczegółowo

Oddziaływanie elektronu z materią

Oddziaływanie elektronu z materią Oddiaływani lktronu matrią p p X-ray p wt wt A wt p - lktron pirwotny, 0-3000V. wt - lktron wtórny, 0-0 V. A- lktron Augr a, 0-000V. X-ray- proiowani X, 000-000V. - plamon, 0-80 V. - fonon, 0,0-0,5V. Zdrni

Bardziej szczegółowo

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium

Kierunek: Elektrotechnika wersja z dn Promieniowanie optyczne Laboratorium Kirunk: Elktrotchnika wrsja z dn. 8.0.019 Prominiowani optyczn Laboratorium Tmat: OCENA ZAGROŻENIA ŚWIATŁEM NIEIESKIM Opracowani wykonano na podstawi: [1] PN-EN 6471:010 zpiczństwo fotobiologiczn lamp

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego. A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna

Bardziej szczegółowo

+ + Rozważmy jadra o nieparzystych A (odd-even, δ=0) Np. A=101, minimum paraboli abo dla: Więcej neutronów mają:

+ + Rozważmy jadra o nieparzystych A (odd-even, δ=0) Np. A=101, minimum paraboli abo dla: Więcej neutronów mają: Rozważmy jadra o niparzystych A (odd-vn, δ=0) Np. A=101, minimum paraboli abo dla: 101 44 Ru Więcj nutronów mają: Mo 101 101 42, 43 Tc I to on rozpadają się dzięki przjściu: n p + 101 42 101 43 Mo Tc 101

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Wykład 25. Kwantowa natura promieniowania

Wykład 25. Kwantowa natura promieniowania 1 Wykład 5 Kwantowa natura prominiowania 1.1 Prominiowani cipln. Ciała, któr podgrzwan są do dostatczni wysokich tmpratur świcą. Świcni ciał, któr spowodowan jst nagrzwanim, nazywa się prominiowanim ciplnym

Bardziej szczegółowo

stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują

stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują Strszczni W8: stany nistacjonarn nistacjonarn suprpozycj stanów lktronowych prominiują polaryzacja składowych zmanowskich = wynik szczgólnj wolucji stanów nistacjonarnych w polu B przjścia wymuszon przz

Bardziej szczegółowo

Spektroskopia oscylacyjna

Spektroskopia oscylacyjna Spktroskopia oscylacyjna Typ zmian kwantowych Zmiana: spinu orintacji konfiguracji rozkładu lktronowgo konfig. jądrowj Rodzaj spktroskopii Rotująca molkuła Jak szybko cząstczka obraca się? E J=1 (CO) =

Bardziej szczegółowo

Ćw. 27. Badanie właściwości statystycznych elektronów emitowanych z katody lampy próżniowej

Ćw. 27. Badanie właściwości statystycznych elektronów emitowanych z katody lampy próżniowej Ćw. 7. Badani właściwości statystycznych lktronów itowanych z katody lapy próżniowj Michał Urbański 1. Wprowadznia Kintyczna toria gazów i atrii została sforułowana pod konic XIXw. i spowodowała rwolucję

Bardziej szczegółowo

ZESPÓŁ B-D ELEKTROTECHNIKI

ZESPÓŁ B-D ELEKTROTECHNIKI ZESÓŁ B-D ELEKTOTECHNIKI Laboratorium Elktrotchniki i Elktroniki Samochodowj Tmat ćwicznia: Badani rozrusznika Opracowani: dr hab. inż. S. DUE 1. Instrukcja Laboratoryjna 2 omiary wykonan: a) omiar napięcia

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

2. Architektury sztucznych sieci neuronowych

2. Architektury sztucznych sieci neuronowych - 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

Zjawisko fotoelektryczne zewnętrzne

Zjawisko fotoelektryczne zewnętrzne Narodow Cntrum Badań Jądrowych Dział Edukacji i Szkolń ul. Andrzja Sołtana 7, 05-400 Otwock-Świrk ĆWICZENIE 17 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zjawisko fotolktryczn

Bardziej szczegółowo

Źródła promieniotwórcze. Zjawisko promieniotwórczości

Źródła promieniotwórcze. Zjawisko promieniotwórczości Źródła prominiotwórcz Zjawisko prominiotwórczości Układ okrsowy pirwiastków chmicznych zawira obcni 11 pirwiastków o przypisanych nazwach. Ostatnim jst Coprnicium, którgo nazwa została oficjalni zatwirdzona

Bardziej szczegółowo

Wykład FIZYKA II. 9. Optyka - uzupełnienia. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 9. Optyka - uzupełnienia.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 9. Optyka - uzupłninia Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politchniki Wrocławskij http://www.if.pwr.wroc.pl/~wozniak/ PRZYRZĄDY OPTYCZNE - LUPA Lupa najprostszy przyrząd,

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-6

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM Z PRZEDMIOTU METODY REZONANSOWE ĆWICZENIE NR MR-6 JAKOŚCIOWA I ILOŚCIOWA ANALIZA

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Fizyka molekularna. Wykład 15h zakończony egzaminem pisemnym. dr Małgorzata Obarowska pok. 109D GG Konsultacje: piątek 10-11

Fizyka molekularna. Wykład 15h zakończony egzaminem pisemnym. dr Małgorzata Obarowska pok. 109D GG Konsultacje: piątek 10-11 Fizyka molkularna Wykład 15h zakończony gzaminm pismnym dr Małgorzata Obarowska pok. 19D GG mabo@mif.pg.gda.pl Konsultacj: piątk 1-11 Fizyka molkularna plan wykładu W1. Budowa matrii struktura atomu W.

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Uświadomienie potrzeby badawczej.

Uświadomienie potrzeby badawczej. III. BADANIA MARKETINGOWE PROWADZENIA BADAŃ 1. W badaniach marktingowych poszukuj się odpowidzi na trzy rodzaj pytań: pytania o fakty o różnym stopniu złożoności co jst? pytania o cchy (właściwości) stwirdzanych

Bardziej szczegółowo

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH Ć w i c z n i 34 WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH 34.1 Opis tortyczny Prominiowani γ jst prominiowanim towarzyszącym przmianom prominiotwórczym α i β. Są to kwanty prominiowania

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo Zygmunt Szfliński 1 Wykład 9 Oddziaływani lktronów i ciężkich jonów z matrią Zmiany osłainia w funkcji liczy atomowj ośrodka 3 Exponncjaln osłaini fotonów Każd oddziaływani

Bardziej szczegółowo

Podpis prowadzącego SPRAWOZDANIE

Podpis prowadzącego SPRAWOZDANIE Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek

Bardziej szczegółowo

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

Identyfikacja osób na podstawie zdjęć twarzy

Identyfikacja osób na podstawie zdjęć twarzy Idntyfikacja osób na podstawi zdjęć twarzy d r i n ż. Ja c k Na r u n i c m gr i n ż. Ma r k Kowa l s k i C i k a w p r o j k t y W y d z i a ł E l k t r o n i k i i T c h n i k I n f o r m a c y j n y

Bardziej szczegółowo

Wielkości i jednostki promieniowania w ujęciu energetycznym i fotometrycznym

Wielkości i jednostki promieniowania w ujęciu energetycznym i fotometrycznym Wilkości i jdnostki prominiowania w ujęciu nrgtycznym i otomtrycznym Ujęci nrgtyczn Ujęci otomtryczn Enrgia prominista prznoszona przz prominiowani W, Q; jdnostka: 1 Ws 1 J Strumiń nrgtyczny (moc prominista)

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO

BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO ZADANIE 9 BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Wstęp KaŜde ciało o temperaturze wyŝszej niŝ K promieniuje energię w postaci fal elektromagnetycznych. Widmowa zdolność emisyjną ciała o temperaturze

Bardziej szczegółowo

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

MODELOWANIE STATYCZNEJ PĘTLI HISTEREZY MATERIAŁU MAGNETYCZNIE MIĘKKIEGO

MODELOWANIE STATYCZNEJ PĘTLI HISTEREZY MATERIAŁU MAGNETYCZNIE MIĘKKIEGO Zszyty Naukow WSInf Vol 9, Nr 3, 21 Zbigniw Gmyrk Wydział Informatyki I Zarządzania Wyższa Szkołą Informatyki w Łodzi MODELOWNIE STTYCZNEJ PĘTLI HISTEREZY MTERIŁU MGNETYCZNIE MIĘKKIEGO Strszczni Modlowani

Bardziej szczegółowo

Wyznaczanie stosunku e/m dla elektronu.

Wyznaczanie stosunku e/m dla elektronu. Ćwiczni Nr 355. Wyznaczani stosnk / dla lktron. I. Litratra 1. Ćwicznia laboratoryjn z fizyki, część II. Praca zbiorowa pod rdakcją I. Krk i J. Typka, Wydawnictwo Politchniki Szczcińskij. Rsnick D., Holliday,

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

Badanie zależności natężenia wiązki promieniowania od odległości

Badanie zależności natężenia wiązki promieniowania od odległości Ćwiczni 29a. Badani zalżności natężnia wiązki pominiowania od odlgłości 29a.. asada ćwicznia W ćwiczniu badana jst zalżność liczby impulsów pominiowania α, β i γ w funkcji odlgłości od źódła pominiotwóczgo

Bardziej szczegółowo

Automatyzacja Procesów Przemysłowych

Automatyzacja Procesów Przemysłowych Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

II.1 Serie widmowe wodoru

II.1 Serie widmowe wodoru II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria . odstawow wilkości radio- i fotomtryczn (jdnostki nrgtyczn i świtln). rawa i zalżności fotomtrii (Lambrta, fotomtryczn, prawa odlgłości). http://www.if.pwr.wroc.pl/~wozniak/fotomtria Mijsc i trmin konsultacji:

Bardziej szczegółowo