MODELE OBIEKTÓW W 3-D3 część
|
|
- Władysława Kurek
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 3 MODELE OBIEKTÓW W 3-D3 cęść Plan wkładu: Modele skeletowe Równane powerchn w postac uwkłanej. Modele skeletowe (wre rame) V, V, - werchołk (verte) E, E, - krawęde (edge) V E E E 4 P, P, - ścan can (polgon surace) V P P V 3 E 5 V 4 E 3 Model skeletow - bór r werchołków, w, krawęd ścan (weloboków) w) połą łąconch tak, że e każda krawędź jest wspólna prnajmnej dla dwóch ścan.
2 Problem: Jak budować model skeletow? Jak eektwne apsać budowan model? Metod budow model skeletowch pretworene adanego w postac równana r matematcnego opsu modelowanej powerchn, nterakcjne sposob tworena modelu, wkorstujące realn obekt w postac brł,, urądene do wnacana współr rędnch punktu w prestren (skaner 3-D) 3 odpowedne algortm, łąc cące ce uskane w wnku skanowana punkt krawędam. Pretwarane opsu adanego w postac równanar Najcęś ęścej pretwarane sąs w równana r powerchn apsane w postac parametrcnej. ( u,v) ( u,v) ( u,v) 0 u,v (u,v) v u dedna parametrcna (,, ) prestreń 3-D Tworene modelu skeletowego powerchn polega na: podale dedn parametrcnej na welobok, oblcenu dla werchołków w weloboków w punktów w 3-D, 3 połą łącenu wlconch punktów w welobok w 3-D. 3
3 Jednorodn podał dedn parametrcnej: Dedna parametrcna jest delona na take same welobok np. prostokąt, t, kwadrat lub trójk jkąt. Eekt uskan pr podale dedn parametrcnej na równe kwadrat Nejednorodn podał dedn parametrcnej (trangulacja nejednorodna): Dedna parametrcna jest delona według specjalnego algortmu na trójk jkąt o różnej r welkośc. podał dedn parametrcnej model skeletow powerchn 3
4 Trangulacja nejednorodna powala na uskane modelu łożonego onego e nacne mnejsej lcb trójk jkątów nż podał jednorodn, pr achowanu tej samej dokładno adnośc. Zapreentowane trangulacje wkonał dr Jarosław aw Suger, pr pomoc własnego algortmu. Skanowane powerchn realnego obektu Skaner laserowe: a) skaner dalmerem (rangng( scaner) laser odbornk obekt wercadło o (ruchome) (,, ) Pre laser wsłan jest mpuls śwetln. Mer sę cas od wsłana mpulsu do arejestrowana sgnału u odbtego od obektu w odbornku. Powala to na wnacene odległośc badanego punktu od wercadła. a. Znając c aktualne położene wercadła, a, można wlcć (,, ). 4
5 b) skaner trangulacjne jedną kamerą laser wercadło o (ruchome) baa obekt (,, ) sensor CCD obektw Laser wsła a wąk kę śwatła. a. Mer sę odchlene obrau ośwetlonego punktu od os sensora CCD. Pr najomośc położena wercadła a ba ( jest awse stała) a) można wlcć (,, ). c) skaner trangulacjne dwema kameram sensor CCD obektw baa laser obekt (,, ) sensor CCD obektw Laser wsła a wąk kę śwatła. a. Rejestruje sę jednoceśne ne dwe klatk obraam meronego punktu. Presunęce obraów punktu pomęd klatkam ora najomość ba powala wlcć (,, ). 5
6 (, ) c c dokładno adność asęg g skanerów laserowch błąd skaner dalmerem odległość punktu skaner trangulacjn (mała a baa) skaner trangulacjn (duża a baa) Prkład : Goddess Orgnal se: : 9 30 cm Ponts: : 7475 Rotatng Stage: es Polgons: : Completon tme: 4 hours Author: Mchael Bassett, Mnolta Europe GmbH,, German 6
7 Prkład : Anmacja twar mów wącego cłoweka Fragment prac dplomowej Krstoa Moskw Metod apswana danch dla model skeletowch Repreentacja bepośredna: V P P V V 3 V 4 Każda ścana opsana jest lstą współr rędnch werchołków. w. ((,, ),(,, ),(,, )) ( V,V, ) P V4 ((,, ),(,, ),(,, )) ( V,V, ) P V4 7
8 M T (, ) Ss (, s ) R ( φ ) T (, ) c c d d Własnośc opsu: werchołk na lstach ścan powtarają sę, modkacja opsu jest trudna ( presunęce werchołka wmaga naleena wsstkch ścan wspólnch dla werchołka modkacj odpowednej trójk współr rędnch), pr rsowanu krawęde wspólne dla dwóch ścan będą rsowane dwukrotne. Repreentacja pr pomoc wskaźnk nków na lstę werchołków: w:. Każd werchołek ek apsan jest na lśce werchołków. w.. Ścan apswane sąs jako lst wskaźnk nków na element lst werchołków. w. ((,, ),...,(,, )) ( V,V,V, ) V V4 V P (,,4) P (,3,4) P P V V 3 Własnośc opsu: werchołek ek jest apswan tlko jeden ra, modkacja współr rędnch werchołka jest łatwa, trudno naleźć ścan o wspólnej krawęd, pr rsowanu krawęde wspólne dla dwóch ścan będą rsowane dwukrotne, trudno wpełna nać obra ścan. V 4 8
9 Repreentacja pr pomoc wskaźnków na lstę krawęd:. Każd werchołek ek apsan jest na lśce werchołków. w.. Tworona jest lsta krawęd. 3. Ścan apswane są jako lst wskaźnków na element lst krawęd. ((,, ),...,(,, )) ( V,V,V, ) V V4 ( V,V,P, l ) (,,,0 ) ( V,V3,P, l ) (,3,,0 ) ( V3,V4,P, l ) ( 3,4,,0 ) ( V4,V,P,P ) ( 4,,, ) ( V,V,P, l ) ( 4,,,0 ) E E E3 E4 E 5 4 V P V E E E 5 E 4 P ( E,E,E ) (,4,5 ) ( E,E,E ) (,3,4) P 4 5 P 3 4 V 4 E 3 V 3 [ ] P Własnośc opsu: werchołek ek jest apswan tlko jeden ra, modkacja współr rędnch werchołka jest łatwa, trudno naleźć ścan o wspólnej krawęd, pr rsowanu krawęde wspólne dla dwóch ścan będąb rsowane dwukrotne, trudno wpełna nać obra ścan. Welobok a płascnap Element rachunku wektorowego: wektor - P [ ] Punkt w prestren 3-D 3 D będe b dalej traktowan jako wektor. 9
10 Suma wektorów Ilocn wektora lcb Ilocn skalarn Ilocn wektorow P P ap [ a a a ] P + P + u [ 0 0] u [ 0 0] u [ 0 0 ] [,, ] u det [ + + ] P + + P u u [ A B C] Równane płascn p wnacanej pre werchołk weloboku, wektor normaln dla tej płascn: p Równane płascnp A + B + C + D 0 Wnacane wektora normalnego [ A, B, C ] do. Wnacane wektora normalnego płascn Dla trech werchołków w weloboku P, P, P oblcć: 3 [ A B C ] ( P P ) ( P ) 3 P el [ A, B, C ] [ 0, 0, 0 ] to wercho Jeżel to werchołk sąs współlnowe ne określaj lają płascn. Należ w takm prpadku wbrać nne werchołk ponowne oblcć wektor normaln. 0
11 Oblcene współcnnka D cnnk A, B, C wsp Oblcone wceśnej współcnnk współrędne dowolnego werchołka wstawć do równana r płascn p wlcć D. Dla różnch r trójek werchołków w możem otrmać różne równana płascn p w prpadku gd welobok ne jest płask. Ab otrmać welobok lub układ weloboków w płaskch p można:. Podelć welobok na mnejse welobok płaske. p. Zmodkować współr rędne werchołków w tak, ab nowe werchołk leżał na płascp ascźne możlwe najblżsej ( w sense pewnego krterum ) werchołkom pred modkacją. (,, ) 0. Równane powerchn w postac uwkłanej Postać uwkłana równana r powerchn (,, ) 0 Powerchne drugego stopna ( kwadrk ): lub (,, ) A + B + C + F + G + H + J + K 0 A D + D + E + G H [ ] 0 F G D B E H F E C J J K
12 Prkład:. Płascna P A B C... F 0 (,, ) G + H + J + K 0. Sera (,, ) + + r 0 3. Elpsoda (,, ) a + b + c 0 4. Clnder (,, ) a + b 0
13 5. Stożek (,, ) a b c 0 6. Hperboloda (,, ) a + b c 0 7. Paraboloda (,, ) a + c 4 0 Zalet stosowana kwadrk w grace komputerowej: Łatwe oblcane wektora normalnego do powerchn ρ N Wektor normaln można wnacć analtcne. 3
14 Łatwe oblcane punktów precęca ca powerchn prostą (ważne w algortmach metod śledena promen ). Łatwe testowane c dan punkt leż na powerchn ( podstawć współr rędne punktu do równana r sprawdć c wnk jest blsk era ). dla danch, Łatwe oblcane dla danch (ważne w algortmach realującch usuwane powerchn newdocnch ) Stosunkowo łatwe oblcane precęca ca jednej kwadrk drugą. Wad opsu w postac kwadrk: Trudna generacja punktu leżą żącego na powerchn Trudna generacja ragmentu powerchn np. połow ow c ćwartk ser Powerchna opsane równanam r nnm nż kwadrk: Powerchna trecego stopna (,, ) ( + + ) 0 4
Jacek Jarnicki Politechnika Wrocławska
Informacje organacjne. Układ predmotu Grafka komputerowa Doc. dr nż. Jacek Jarnck Insttut Informatk, Automatk Robotk p. 6 C-3, tel. 7-3-8-3 jacek.jarnck@pwr.wroc.pl www.sk.ar.pwr.wroc.pl semestr VI -,
ALGEBRA rok akademicki
ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane
WYKŁAD 5. MODELE OBIEKTÓW 3-D3 część 1. Plan wykładu: V 1 , V 2 E 1 , E 2 P 1. frame) 1. Modele szkieletowe (wire. Modele szkieletowe
WYKŁAD 5 MODL OBIKTÓW -D ęść. Modele skeletowe (wre rme) V, V, - werhołk (verte),, - krwęde (edge) V 4 Pln wkłdu: Modele skeletowe Równne powerhn w post uwkłnej P, P, - śn (polgon sure) Model skeletow
Przykład 3.1. Projektowanie przekroju zginanego
Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Przestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot
- podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
Algebra z geometrią 2012/2013
Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
Rozdział 9. Baza Jordana
Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,
Postać Jordana macierzy
Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja
Elementy symetrii makroskopowej w ujęciu macierzowym.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej
Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
METODA MATEMATYCZNEGO MODELOWANIA PŁATAMI BÉZIERA KSZTAŁTU ZIARNA PSZENŻYTA
I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 01: Z. (14) T.1 S. 5- ISSN 149-764 Polske Towarstwo Inżner Rolnce http://www.ptr.org METODA MATEMATYCZNEGO MODELOWANIA PŁATAMI BÉZIERA KSZTAŁTU ZIARNA
Powierzchnie stopnia drugiego
Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej
Ł Ę Ć Ż ć Ć Ł Ł Ó Ź Ń Ż Ś Ó Ó ć Ę Ś Ź Ś Ó Ż Ź ź Ć Ź Ś Ź Ę Ż Ł Ó Ć Ś Ć Ć Ę Ł Ś ć Óć Ó Ę Ń ć Ę Ó Ź Ż Ź Ź ć ź Ó Ę Ę Ę Ź Ę Ź Ę Ś Ź ć Ć Ć Ł Ó Ó Ń ź Ę Ę Ń Ł Ź Ń Ż ć Ę ź Ę ź Ę Ł ć Ł Ź ź ź Ł Ę Ó ź ć Ż Ś ć Ł Ł
4.2.1. Środek ciężkości bryły jednorodnej
4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami
ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT
ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w
Macierze hamiltonianu kp
Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej
Zadania z AlgebryIIr
Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:
1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
EPR. W -1/2 =-1/2 gµ B B
Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s
Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś
Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta
WYKŁAD MODELOWANIE I WIZUALIZACJA TEKSTURY. Co to jest tekstra obiekt T(,, (,, t( =... tn(,,,, Plan wkład: Co to jest tekstra? Generowanie worów tekstr Wialiaja tekstr Filtrowanie tekstr Co może oiswać
1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
Wykorzystanie metody przekrojów i jej wizualizacja dla celów w ochrony przeciwpowodziowej dolin rzecznych prof. dr hab. inż.. Andrzej Stateczny Akadem
Wykorzystanie metody przekrojów i jej wizualizacja dla celów w ochrony przeciwpowodziowej dolin rzecznych prof. dr hab. inż.. Andrzej Stateczny Akademia Morska Wydział Nawigacyjny Magdalena Kozak, Tomasz
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Janusz Typek TENSOR MOMENTU BEZWŁADNOŚCI
Janus Tpek TENSOR MOMENTU BEZWŁADNOŚC Scecn, maec 994 Temat pac: Tenso momentu bewładnośc Cel pac: Oblcene tensoa momentu bewładnośc dla układu składającego sę klku mas punktowch oa jego wkostane do wnacena
Metoda szacowania wpływu strategii zarządzania na dochód ze sprzedaży węgla
Pro. dr hab. nż. HENRYK PRZYBYŁA, dr hab. nż. STANISŁAW KOWALIK Poltechnka Śląska, Glwce Metoda sacowana wpłwu strateg arądana na dochód e spredaż węgla. Wprowadene Transormacje sstemu gospodarcego, otwarce
Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8
Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
Algebra WYKŁAD 1 ALGEBRA 1
Algebra WYKŁAD ALGEBRA Realacja predmotu Wykład 30 god. Ćwcena 5 god. Regulamn alceń: www.mn.pw.edu.pl/~fgurny ALGEBRA Program ajęć Lcby espolone Algebra macery Układy równań lnowych Geometra analtycna
GRUPY SYMETRII Symetria kryształu
GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
ŚĆ Ć ć ż ć ń Ę Ę ż ż Ą ń ż ć ż Ę ż Ę Ę Ć ż Ę ż Ś ż ż ż ż ż Ł ż ż Ę ż ĘŚ ż ć ć ŚĆ ć ń Ś ź ć ć ć ć ć ć ć ń ć Ę Ę ć ć ć Ł Ę Ą ź Ą Ę Ę Ł ć ć ż ć ż ż ć ż ż ż Ł ć ń ż Ł ż ń ń ż ż ć ż Ę ż Ę ć ż ż Ą ĘŚ ń ż ź Ę
Wymagania na poszczególne oceny z przedmiotu Informatyka kl. IV
Wymagana na poscególne oceny predmotu Inormatyka kl. IV 1. 2. 3. 4. 5. Wymagana kontynuowane nauk..... Stope dopuscający Uce w pracown komputerowej, jest komputer, komputeroweg o, komputera, system operacyjny
Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste
Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
Ruch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA
MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania
POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y
POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam
Tomasz Grębski. Liczby zespolone
Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..
KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA
ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania
napór cieczy - wypadkowy ( hydrostatyczny )
5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
PRZESTRZEŃ WEKTOROWA (LINIOWA)
PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
,..., u x n. , 2 u x 2 1
. Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać
Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
Mechanika analityczna: współrzędne, więzy, stopnie swobody, współrzędne uogólnione
Mechanka analtcna: wółrędne wę tone wobod wółrędne uogólnone Roatruem układ o welu tonach wobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mae m O Układ wobodn
Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności
Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam
J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
KINEMATYKA MANIPULATORÓW
KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można
Jeśli m = const. to 0 P 1 P 2
1 PRAWA NEWTONA Prawo perwse. Każde cało trwa w spocnku lub ruchu jednostajn prostolnow, dopók sł nań dałające tego stanu ne eną. Prawo druge. Zana lośc ruchu (pędu) jest proporcjonalna wględe sł dałającej
Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie
WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v
; -1 x 1 spełnia powyższe warunki. Ale
Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr
H P1 H L1 A 1 N L A 5 A 6 H P 2 H L 2. Pojedynczy rekord obserwacyjny: Schemat opracowania jednej serii obserwacyjnej:
Pojedyncy rekord obserwacyjny: SS,PG,.,,3.746,357.774,9:39:8, OZNCZENIE REKORDU NZW ODLEGŁOŚĆ KĄ POZIOY KĄ PIONOWY CZS Schema opracowana jednej ser obserwacyjnej: Ką poomy H L H P H P H P H P3 H L H L
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2
WYKŁAD TRANSFORMACJE -D PROCEDURA WIZUALIZACJI -D Plan wkładu: Transforaje eleentarne w przestrzeni -D Składanie transforaji Ogólna proedura wizualizaji w -D Obinanie w oknie prostokątn tn 1. Transforaje
WYKŁAD 7. MODELE OBIEKTÓW 3-D3 część Koncepcja krzywej sklejanej. Plan wykładu:
WYKŁAD 7 MODELE OIEKTÓW -D cęść Pla wkład: Kocepcja krwej sklejaej Jedorode krwe -sklejae ejedorode krwe -sklejae Powerche eera, -sklejae URS. Kocepcja krwej sklejaej Istotą praktcego pkt wdea wadą krwej
I. Rachunek wektorowy i jego zastosowanie w fizyce.
Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości
ZESTAW ZADAŃ Z INFORMATYKI
(Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
D Archiwum Prac Dyplomowych - Instrukcja dla studentów
Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Laboratorium wytrzymałości materiałów
Poltechnka ubelska MECHNK aboratorum wytrymałośc materałów Ćwcene - Wynacane momentu bewładnośc prekroju gnanej belk defncj woru Gegera Prygotował: ndrej Teter (do użytku wewnętrnego) Wynacane momentu
; -1 x 1 spełnia powyższe warunki. Ale
AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także
OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE
OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch
Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Problematyka budowy skanera 3D doświadczenia własne
Problematyka budowy skanera 3D doświadczenia własne dr inż. Ireneusz Wróbel ATH Bielsko-Biała, Evatronix S.A. iwrobel@ath.bielsko.pl mgr inż. Paweł Harężlak mgr inż. Michał Bogusz Evatronix S.A. Plan wykładu
RZUTOWANIE. rzutnia (ekran) obserwator
WYKŁAD 6 RZUTOWANIE Plan wkładu: Układ współr rędnch, ogólne asad rutowania Rutowanie równolegr wnoległe Rutowanie perspektwicne Ogóln prpadek rutowania 1. Układ współr rędnch, ogólne asad rutowania Lewoskrętn
Całka krzywoliniowa nieskierowana (całka krzywoliniowa funkcji skalarnej)
WYŁAD : CAŁI RZYWOLINIOWE Nech - krwa w R : gde [ α β ] ora C [ α β]. Zaem dowol puk krwej moża predsawć w posac j k krwa adaa jes pre wekor parameracj r : r j k. Decja Jeśl krwa e ma puków welokroch.
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła,
Struktury drewaste rogrywające parametrycne od każdego werchołka pocątkowego różną sę medy sobą kstałtem własnoścam. Stopeń łożonośc struktury może być okreśony pre współcynnk łożonośc L G ++ ) ++ L G
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t
Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n