ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
|
|
- Edyta Sadowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost cłonu roocego. Prekłne kołowe elmy: - prekłne wykłe - prekłne o osch geometrycnych kół neruchomych wglęem postwy. Roróżnmy prekłne wykłe seregowe, równoległe, seregowo-równoległe, - prekłne oegowe lu nce plnetrne - prekłne o osch geometrycnych kół ruchomych wglęem postwy. Roróżnmy prekłne oegowe proste, łożone, mknęte. W olcench knemtycnych prekłn posługwć sę ęemy tw. prełożenm kerunkowym, które ogólne możn psć worem: c c c ge:, cłony ruchome; - npęący (cynny), - npęny (erny), c cłon neruchomy c c, - prękośc kątowe cłonów cynnego ernego pry uneruchomonym cłone c. W lse cęśc poręcnk te prękośc kątowe ęemy oncć,. Prekłne wykłe W prypku nly prekłn wykłych ne m potrey wprown poęc cłonu neruchomego wór () możn uproścć o postc: lu Prełożene kerunkowe prymuemy uemne < 0, eżel wroty prękośc kątowych cłonu cłonu są precwne. Jest to prekłn o ęenu ewnętrnym - prykł n Rys.. Prełożene kerunkowe prymuemy otne 0 >, eżel wroty prękośc kątowych tych cłonów są gone. Jest to prekłn o ęenu wewnętrnym - prykł n Rys.. () () Oprcowł: J. Fels Stron
2 Prekłne Mechncne Jeżel mouł prełożen kerunkowego c >, wówcs prekłn służy o reukc prękośc kątowe est nywn reuktorem. Jeżel mouł prełożen kerunkowego c <, wówcs prekłn służy o węksn prękośc kątowe est nywn multplktorem. Prełożene prekłn możn wyrć pomocą prmetrów geometrycnych kół uwglęnąc postwową leżność: v o () ge: v o lnow prękość owoow wspóln l oywu m współprcuących kół, s śrenc połow koł ętego lu śrenc koł tocnego, [ m ] prękość kątow koł, [ s ], Jeżel chcemy wyrżć prełożene pomocą prękośc orotowe n to π n π n s 60 0, or ge: n mn. nleży otkowo uwglęnć leżność: [ ] Po uwglęnenu powyżsych wąków wór n prełożene prekłn wykłe est określony w nstępuące postc: n n W prypku prekłn ętych, orąc po uwgę ch postwowe cechy geometrycne, wory n prełożene możemy wyrć równeż ko stosunk opowench lc ęów. Zleżnośc geometrycne knemtycne l prekłn ęte o ęenu ewnętrnym prestw Rys.. Anlogcne leżnośc l prekłn ęte o ęenu wewnętrnym prestw Rys.. (4) Oprcowł: J. Fels Stron
3 Prekłne Mechncne Postwowe leżnośc geometrycne knemtycne, wspólne l oywu roów prekłn: mouł t m π (5) śrenc połow t m π (6) prękość owoow (7) v 0 oległość os pry kół: m ( + ) (8) prełożene kerunkowe: m m (9) Rys.. Zleżnośc geometrycne knemtycne l prekłn ęte o ęenu ewnętrnym Oprcowł: J. Fels Stron
4 Prekłne Mechncne oległość os pry kół: m ( ) (0) prełożene kerunkowe: m m () Rys.. Zleżnośc geometrycne knemtycne l prekłn ęte o ęenu wewnętrnym Oprcowł: J. Fels Stron 4
5 Prekłne Mechncne Schemty knemtycne or prełożen typowych prekłn kołowych pono n Rys. o 7. () Rys.. Prekłn o ęenu ewnętrnym () Rys. 4. Prekłn o ęenu wewnętrnym Rys. 5. Prekłn stożkow (4) W tym prypku ne określ sę nku prełożen (5) Rys. 6. Schemt prekłn cęgnowe, psowe lu łńcuchowe ślmcnc ślmk (6) Rys. 7. Prekłn ślmkow ge: - woność ślmk. Tkże w tym prypku ne określ sę nku prełożen Oprcowł: J. Fels Stron 5
6 Prekłne Mechncne Prekłne oegowe (plnetrne) Prekłne oegowe w oróżnenu o prekłn wykłych cechuą sę tym, że śrok nektórych kół wnych le steltm porusą sę po torch kołowych wokół os geometrycne prekłn tym, że śrok tych torów leżą w geometrycne os prekłn. Koł prekłn, których śrok leżą w os prekłn nywne są kołm centrlnym ntomst cłon, n którym osone są stelty nyw sę rmem. Schemt konstrukcyny wyrnego wrntu prekłn oegowe prestwono n Rys. 8. ) ) c) Rys. 8. Jenoręow prekłn oegow: ) ) schemt konstrukcyny, c) schemt knemtycny Oprcowł: J. Fels Stron 6
7 Prekłne Mechncne ) ) śrenc połow koł wyncon n postwe wrunku współosowośc: + lc ęów koł - + Rys. 9. Cłony ruchome neruchome enoręowe prekłn oegowe: ) schemt konstrukcyny, ) schemt olcenowy Rys. 0. Wrnty prekłn oegowych wuręowych Oprcowł: J. Fels Stron 7
8 Prekłne Mechncne Anl knemtycn prekłn oegowych Prekłne oegowe mą w ogólnym prypku w stopne swooy: w, k pokno n Rys.. Jeżel enk uneruchommy wglęem postwy een cłonów np. koło centrlne lu rmo, to wówcs prekłn ęe posć een stopeń swooy: w. Pry tym nleży uwżyć, że prekłn uneruchomonym rmem ne est uż prekłną oegową. Prekłnę oegową o enym stopnu swooy uneruchomonym kołem centrlnym prestw Rys.. Prekłn oegow o wóch stopnch swooy est nywn prekłną różncową lu yferencłem ) Prekłn oegow o wóch ) Prekłn oegow o enym stopnch swooy stopnu swooy n 4 n p 4 p 4 p 5 4 p 5 w n - p 4 - p w n - p 4 - p , - koł centrlne, - stelt, - rmo, Rys.. Schemty knemtycne enoręowe prekłn oegowe: ) prekłn oegow o wóch stopnch swooy, ) prekłn oegow o enym stopnu swooy W celu wyncen prełożen prekłn oegowe posłużymy sę schemtm poknym n Rys., ge symolm oncone ostły tw. osowe elementy prekłn oegowe t. koł centrlne, ntomst pre - oncono rmo. N Rys. pokno prękośc kątowe cłonów ruchomych t., prekłn oegowe w prypku key pos on w stopne swooy cyl w cłony (np. ) są cłonm cynnym. Oprcowł: J. Fels Stron 8
9 Prekłne Mechncne Prymemy, że cł prekłn ostł wprwon w ruch prękoścą kątową ( ). W tkm prypku prękośc kątowe kół centrlnych ostną pomnesone o wrtość ( ), ntomst rmo stne sę neruchome 0, (Rys. ), co oncmy symolcne wążąc n rysunku źwgnę rm postwą. ) ) Rys.. Schemty prekłn oegowe nconym prękoścm kątowym: ) ewglęne prękośc kątowe cłonów prekłn o wóch stopnch swooy t.,,, ) wglęne prękośc kątowe cłonów prekłn po nnu cłe prekłn prękośc kątowe ( ) t.,, 0. Prełożene kerunkowe pomęy kołem kołem prekłn pry uneruchomonym w ten sposó rme, psemy w postc leżnośc wne worem Wlls: (7) ge: - prełożene kerunkowe o cłonu o pry neruchomym rme. Oprcowł: J. Fels Stron 9
10 Prekłne Mechncne Dl prekłn o enym stopnu swooy, w które koło est neruchome 0, ntomst koło rmo są cłonm ruchomym, Rys. (), wór Wlls pryme postć: 0 (8) Zuwżymy enk, że w recywstośc posukwnym prełożenem prekłn o enym stopnu swooy est prełożene pomęy kołem rmem pry neruchomym kole cyl. Wyncymy to prełożene prekstłcąc wór (8): (9) Zsnc let prestwonego powyże sposou roumown poleg n tym, że prełożene prekłn o osch ruchomych uło sę wyrć pomocą prostego woru, w którym występue prełożene. Prełożene to ro łtwo wyncyć ponewż otycy prekłn wykłe seregowe lu równoległe o osch neruchomych, powstłe popre myślowe uneruchomene rm or myślowe uruchomene koł w recywstośc neruchomego. W nlogcny sposó możn wyncyć prełożene kerunkowe prekłn w prypku key koło est kołem neruchomym ( 0 ), ntomst koło rmo są cłonm ruchomym. (0) Jk uwżymy we worch (9) (0) nstępue mn wskźnków, or. Sposó mny wskźnków poe wór: () ge: - prełożene prekłn oegowe (rmo ruchome, neks u ołu), - prełożene prekłn myślowo uneruchomonym rmem (neks u góry). Oprcowł: J. Fels Stron 0
11 Prekłne Mechncne Prktycne wykorystne woru Wlls o olcn prełożeń prekłn oegowych pokżemy n prykłch. Prykł. Anl knemtycn enoręowe prekłn oegowe Schemt prekłn pokno n Rys.. Dne:,,, 0, ponewż koło est cłonem neruchomym. Sukne: prełożene prekłn or,. ) ) wy we Rys.. Prekłn oegow enoręow o enym stopnu swooy ) schemt knemtycny prekłn o ruchomym rme ) schemt knemtycny prekłn uneruchomonym rmem Jk uwżymy ne pono lcy ęów koł, gyż wynk on tw. wrunku współosowośc prekłn. Wrunek ten określ wąek geometrycny pomęy śrencm kół ętych prekłn, które leżą w rowżnym prypku w ene płscyźne, mą wspólny mouł ponto w nch mą wspólną oś orotu. Dl rowżne prekłn oegowe wrunek współosowośc możn psć: + ; m m + m cyl: (P.) Prełożene prekłn Wlls (7) prymuąc 0 wyncymy korystąc e woru 0 Po prekstłcenu otrymmy: (P.) Oprcowł: J. Fels Stron
12 Prekłne Mechncne Prełożene prekłn myślowo uneruchomonym rmem Rys. wyncymy prostych wąków oowąuących l prekłn seregowe o osch neruchomych. + Osttecne prełożene prekłn oegowe wynese: (P.) + (P.4) Prełożene >, co onc, że prekłn est reuktorem ponto wroty prękośc kątowych koł npęącego rm są gone. Posukwną prękość kątową wyncmy prostego prekstłcen: + ; + (P.5) Anlowną prekłnę możn równeż użytkowć trktuąc rmo ko cłon npęący cłon ko wyścowy. Wówcs e prełożene wynese: + (P.6) Prełożene 0 < < onc, że tk prekłn est multplktorem. W celu olcen prękośc kątowe stelty równeż wykorystmy wąk wynkące e woru Wlls: (P.7) 0 Ponewż (P.8) to. Po postwenu upreno wyprowone- go woru n prękość rm otrymmy: + Po postwenu (P.9) + prostych prekstłcench osttecne. otrymmy wór n prękość kątową stelty: Znk (-) w powyżsym wore onc, że wrot prękośc kątowe stelty est precwny o wrotu koł npęącego. Oprcowł: J. Fels Stron
13 Prekłne Mechncne Prykł. Anl knemtycn prekłn flowe Prekłnę flową pokno n Rys. 4. Dne: 00, 0, cłonem npęącym est rmo, cłonem wyścowym elstycny perśceń ęty (w wykłe prekłn oegowe est to stelt, Rys.4), Olcyć prełożene prekłn:. Elstycny perśceń ęty ) ) Rys. 4. Schemt olcenowy schemt knemtycny prekłn flowe: ) schemt olcenowy prekłn flowe, ) schemt knemtycny prekłn flowe Prełożene prekłn olcmy poone k prełożene w Prykłe korystąc e woru Wlls. W olcench posługuemy sę schemtem olcenowym (Rys. 4). 0 (P.) (P.) 00 Posukwne prełożene wynos: Oprcowł: J. Fels Stron
14 Prekłne Mechncne Oprcowł: J. Fels Stron 4 Prykł. Prekłn kstłtowo-tocn (cykloln) Dne: - lc plców koł, - lc ęów cyklolnych stelty Olcyć prełożene prekłn:. 0 Prełożene: 0 Rys. 5. Schemty konstrukcyne knemtycne prekłn cyklolne
PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.
CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o
Maszyna robocza, lub człon roboczy
Automatyka Rootyka Postawy moelowana syntey mechanmów Postawy analy syntey knematycne prekłan CZ.. PODSTAWY ANALIZY KINEMATYCZNEJ PRZEKŁADNI Slnk Prekłana Masyna rooca, lu cłon roocy Rys.. Ukła napęowy
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 3 str. 1. PMiSM-2017
AR. Postawy moelowana syntey mechanmów. Ćwcene laboratoryjne nr str. Akaema Górnco-Hutnca Wyał Inżyner Mechancnej Robotyk Katera Mechank Wbroakustyk PMSM-07 PODSTAWY MODELOWANIA I SYNTEZY MECHANIZMÓW ĆWICZENIA
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Przekładnie zębate - cel
Prekładnie ębate Prekładnie ębate - cel V M Prekładnia SILNIK = M M w w M w w ORGAN ROBOCZY Preniesienie ruchu jednego wału na drugi Zmiana momentu Zmiana prędkości obrotowej Podiał kryterium: układ osi
PRZEKŁADNIE FALOWE. 1. Wstęp. (W. Ostapski)
PRZEKŁADNIE FALOWE (W. Ostapsk). Wstęp Perwsy patent na prekładnę harmoncną waną w Polsce falową otrymał w 959 roku w USA C.W. Musser, [04, 05]. Rok późnej była ona preentowana na wystawe w Nowym Yorku
- Badanie ruchu ciał pod wpływem działających na nie sił. - Badanie stanów równowagi. KINEMATYKA PUNKTU MATERIALNEGO
MECHANIKA Mechnk klsycn Knemyk Dynmk Kneyk Syk - Dł fyk jmujący sę ruchem, równowgą oływnem cł. - Oper sę n rech sch ynmk Newon b ruchy cł mkroskopowych (mechnk newonowsk). - Nuk o ruchu be uwglęnen wywołujących
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT
ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
5. Zadania tekstowe.
5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość
1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty)
1. Alger wetorów Welość wetorową chrterue wrtość, cl moduł, erune, wrot. Możn ą predstwć w sposó grfcn o odcne serown o długośc proporconlne do modułu lu te w sposó nltcn. Sposó nltcn poleg n podnu rutów,,
Mechanizmy zębate Przekładnie zębate
Mechanimy ębate Prekładnie ębate Prekładnie ębate - cel V M Prekładnia SILNIK = M M w w M w w ORGAN ROBOCZY Preniesienie ruchu jednego wału na drugi Zmiana momentu Zmiana prędkości obrotowej Podiał kryterium:
Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
METODY KOMPUTEROWE 11
METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH
Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono
Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę
Analityczne metody kinematyki mechanizmów
J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy
Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM
MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika
Matematyka stosowana i metody numeryczne
Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx
Regionalne Koło Matematyczne
Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
STAN USTALONY MASZYNY SYNCHRONICZNEJ:
=f f =t STAN STALONY ASYNY SYNCHRONCNJ: Chrkterystyk begu jłowego: N f - moowy prą wbue pry begu jłowym f N fn.5 f N Chrkterystyk ewętre: =f, =t f =t =t -leżość pęc cskch o prąu twork pry stłej wrtośc
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Algebra WYKŁAD 2 ALGEBRA 1
Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną
Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ
Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś
Ź Ę Ę Ś Ś Ś ć Ę ć Ś ć Ź Ż Ś ć Ż Ź Ż Ą Ż Ę Ś Ź Ę Ź Ż Ó Ś ć ć Ś Ż Ć ź Ś Ń Ź ć Ó ź Ś Ń ź Ń Ź Ź ź Ż Ź Ź Ź Ź Ż Ź ć Ż Ę ź Ę ź ć Ń ć ć ć ć Ź Ę Ą ć Ę ć Ń ć ć Ź Ż ć Ó Ó Ó Ż ć Ó Ż Ę Ą Ź Ó Ń Ł ź ź Ń ć ć Ż ć Ś Ą
Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż
Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12
Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara
TENSOR W ZAPISIE LAGRANGE A I EULERA
TENSOR W ZAPISIE LAGRANGE A I EULERA N postwe skłowych wektor przemeszczeń obczmy skłowe tensor oksztłcen. Tensor oksztłcen może być w zpse Lgrnge b Eer. We współrzęnych Lgrnge rch cząsteczk est opsny
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE
.. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP
CZAKI THERMO-PRODUCT ul. 19 Kwietni 58 05-090 Rszyn-Ryie tel. (22) 7202302 fx. (22) 7202305 www.zki.pl hndlowy@zki.pl PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP-201-10 INSTRUKCJA OBSŁUGI GWARANCJA Spis treśi 1.
Ź Ł Ęć ę ę ę ę Ę ń ę ń Ę Ś Ę ę ę ę ę ę ę ć ę ę ę ę Ę ę ń ź ć ć ć Ź ę Ę ć Ś ę ę ń ć Ę ź ę ę Ś Ę ę ę ę ę Ł ę Ź ć Ęę ę ę ń Ł Ś Ą ę ź ę ę Ę Ź Ę ę ń ę Ą ę ę Ę ę ę Ś Ś ź ź ń ń ź Ź ę ń Ę Ą ę Ę Ą ź ć Ę ę ń ę Ę
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
Wykład 6. Stabilność układów dynamicznych
Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A
ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy
WYKRESY PARĆ HYDROSTATYCZNYCH
dm Pweł Koioł WYKESY PĆ HYOSTTYNYH Prykłdy Wersj 1.d PK (2006-2013) Od utor Skrypt (eook) Wykresy prć hydrosttycnych jest prencony dl studentów studiów diennych, wiecorowych i ocnych wydiłów o kierunkch
EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.
Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do
Nadokreślony Układ Równań
Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).
10.3. Przekładnie pasowe
0.0. Przekłdnie 0.3. Przekłdnie psowe Przekłdni psow przekłdni kołow ciern z elementmi pośrednimi w postci elstycznych cięgieł, njczęściej o konstrukcji wielodrożnej. Przekłdnie psowe Ps klinowy Ps płski
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
Zadanie 5. Kratownica statycznie wyznaczalna.
dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
5.4.1. Ruch unoszenia, względny i bezwzględny
5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Planimetria czworokąty
Plnimetri czworokąty Emili Ruszczyk kl. II, I LO im. Stefn Żeromskiego w Ełku pod kierunkiem Grżyny iernot-lendo Klsyfikcj czworokątów zworokąty dzielą się n niewypukłe i wypukłe, wypukłe n trpezy i trpezoidy,
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
symbol dodatkowy element graficzny kolorystyka typografia
Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /
Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne
Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia
1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej
Precesja koła rowerowego
Precesja koła rowerowego L L L L g L t M M F L t F O y [( x ( x s r S y s Twerene Stenera y r s s ] x Z efncj ukłau śroka asy: y s s - oent bewłanośc wgęe os równoegłej o os prechoącej pre śroek cężkośc
TEORIA WAGNERA UTLENIANIA METALI
TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST
Projekt współfinnsowny przez Unię Europejską w rmh Europejskiego Funuszu Społeznego est in trining E-Pr@ownik ojrzłe kry społezeństw informyjnego n Mzowszu Numer Projektu: POKL.08.01.01-14-217/09 PRE TEST
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI
Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene
Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.
Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy)
Rysz Chybicki TORY PLANET (Rozwżni n tet ksztłtów toów uchu lnety wokół stcjonnej gwizy) (Posługiwnie się zez osoby tzecie ty tykułe lub jego istotnyi fgenti bez wiezy uto jest wzbonione) MIELEC Plnecie
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą
W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b
u Spis treści: Nr 80 6 p a ź d z i e rn i k 2 0 0 6 I n f o r m a c j e p o d a t k o w e 2 P o s e l s k i p r o j e k t n o w e l i z a c j i 3 k o d e k s u p r a c y K o n s u l t a c j e s p o ł e
Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja
Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.
3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie
Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe