Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Wielkość: px
Rozpocząć pokaz od strony:

Download "Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury"

Transkrypt

1 Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1

2 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. Elementy wspólne punkt przecięcia, punkt przebicia, krawędź Konstrukcja punktu przebicia, metoda ogólna Konstrukcja punktu przebicia - zadanie Konstrukcja krawędzi - zadanie Cień jako rzut środkowy i równoległy Cień własny, rzucony i wzajemny Konstrukcja cienia na rzutnie i cienia wzajemnego jako punktu przebicia promienia świetlnego - zadania 2

3 ELEMENTY WSPÓLNE punkt przecięcia, punkt przebicia, krawędź 3

4 Konstrukcja punktu przebicia, metoda ogólna p a 4

5 Konstrukcja punktu przebicia, metoda ogólna 1. Przyjmujemy pomocniczą płaszczyznę g przechodzącą przez prostą p. p g a 5

6 Konstrukcja punktu przebicia, metoda ogólna 1. Przyjmujemy pomocniczą płaszczyznę g przechodzącą przez prostą p. 2. Wyznaczamy krawędź przecięcia się płaszczyzn g i a (k). p k g a 6

7 Konstrukcja punktu przebicia, metoda ogólna 1. Przyjmujemy pomocniczą płaszczyznę g przechodzącą przez prostą p. 2. Wyznaczamy krawędź przecięcia się płaszczyzn g i a (k). S p k g 3. Punkt przecięcia się prostej p i krawędzi k jest szukanym punktem przebicia (S). a 7

8 ZADANIE 1 Konstrukcja punktu przebicia Wyznaczyć punkt przebicia odcinka AB z trójkątem PQR. Określić widoczność. B A A B 8

9 Konstrukcja punktu przebicia, metoda ogólna 1. Przyjmujemy pomocniczą płaszczyznę g przechodzącą przez odcinek AB. 2. Wyznaczamy krawędź przecięcia się pł. g z trójkątem k. Q 1 B g 3. Punkt S - przecięcie się krawędzi k z odcinkiem AB jest szukanym punktem przebicia. S k R A P 2 9

10 ZADANIE 1 Konstrukcja punktu przebicia Przyjmujemy płaszczyznę g przechodzącą przez odcinek AB. Ze względu na specyfikę konstrukcji w rzutach Monge a, przyjmujemy położenie rzutujące płaszczyzny, bez znaczenia czy będzie to płaszczyzna poziomo czy pionowo rzutująca. W tym przypadku wybrano położenie pionowo rzutujące. g A B A B 10

11 ZADANIE 1 Konstrukcja punktu przebicia B Płaszczyzna g przecina się z trójkątem PQR wzdłuż prostej k. 1 Zatem punkty 1 i 2 to miejsca przecięcia się prostej k z bokami trójkąta. A 2 g =k A B 11

12 ZADANIE 1 Konstrukcja punktu przebicia Wyznaczamy rzuty poziome punktów 1 i 2. 1 B 2 g =k A A 1 B 12 2

13 ZADANIE 1 Konstrukcja punktu przebicia B Wyznaczamy rzut poziomy prostej k. 1 2 A g =k 1 A k B 13 2

14 ZADANIE 1 Konstrukcja punktu przebicia B Odcinek AB i prosta k leżą na tej samej płaszczyźnie g, 1 a zatem przecinają się. W rzucie poziomym widoczny 2 jest ich punkt przecięcia S. Zaznaczamy rzut poziomy A punktu S, a następnie jego rzut pionowy -. g =k A S k 1 B 14 2

15 ZADANIE 1 Konstrukcja punktu przebicia B Określamy widoczność. 1 2 A g =k 1 A S k B 15 2

16 ZADANIE 1 Konstrukcja punktu przebicia Określamy widoczność. 4 1 =5 B g =k 3 A 1 A S B 3 =4 k

17 ZADANIE 2 Konstrukcja krawędzi przecięcia Skonstruować krawędź m przecięcia się płaszczyzn a = PQR i b= m,n. n Określić widoczność trójkąta PQR. m n' 17

18 ZADANIE 2 Konstrukcja krawędzi przecięcia Krawędź przecięcia wyznaczamy stosując dwukrotnie konstrukcję przebicia. Wybieramy dowolnie jeden z danych elementów (jedną z prostych określających Q m n S b płaszczyznę b (m,n ) lub jeden z boków trójkąta PQR i szukamy jego punktu przebicia z drugą płaszczyzną. P R 18

19 ZADANIE 2 Konstrukcja krawędzi przecięcia n =e W tym przypadku wybrano prostą n. Przyjęto przechodzącą przez nią pionowo rzutującą płaszczyznę pomocniczą e. m m n' 19

20 ZADANIE 2 Konstrukcja krawędzi przecięcia 1 n =e =k Płaszczyzna e przecina się z trójkątem PQR wzdłuż krawędzi k. m Przy pomocy punktów 1, 2 wyznaczamy jej rzut poziomy. 2 2 m n' 1 20 k

21 ZADANIE 2 Konstrukcja krawędzi przecięcia 1 n =e =k Proste n i k leżą na tej samej płaszczyźnie e, T m a zatem przecinają się. W rzucie poziomym widoczny jest ich punkt przecięcia T. Zaznaczamy rzut poziomy 2 2 punktu T, a następnie jego rzut pionowy - T. T m n' 1 21 k

22 ZADANIE 2 Konstrukcja krawędzi przecięcia 1 n =e =k m Jako drugi element wybrano odcinek PR. Przyjęto przechodzącą przez niego pionowo rzutującą płaszczyznę pomocniczą d. 2 2 T d T m n' 1 22 k

23 ZADANIE 2 Konstrukcja krawędzi przecięcia 1 n =e =k m Płaszczyzna d przecina się z płaszczyzną a =m,n wzdłuż krawędzi l. Przy pomocy punktów 3, 4 wyznaczamy jej rzut poziomy. T 2 =3 2 d =l m 4 T l n' k

24 ZADANIE 2 Konstrukcja krawędzi przecięcia 1 n =e =k m Odcinek PR i prosta l leżą na tej samej płaszczyźnie d, a zatem przecinają się. W rzucie poziomym widoczny jest ich punkt przecięcia U. Zaznaczamy rzut poziomy T 2 =3 2 d =l U m 4 punktu U, a następnie jego rzut pionowy - U. T l U n' k

25 ZADANIE 2 Konstrukcja krawędzi przecięcia 1 n =e =k m Punkty T i U wyznaczają szukaną krawędź przecięcia q. T 2 =3 d =l U 4 2 m q T l U n' k

26 ZADANIE 2 Konstrukcja krawędzi przecięcia Krawędź q przecina się również z innymi elementami płaszczyzn (punkty 5 i 6). q 5 T 2 =3 1 d =l U n =e =k m 4 6 Ich rzuty powinny się zgadzać (leżeć na odpowiednich odnoszących). q 2 5 T 3 l 1 U m n' k

27 ZADANIE 2 Konstrukcja krawędzi przecięcia Określamy widoczność. q 5 T 2 =3 1 d =l U n =e =k m m q 5 T 3 l 1 U n' k

28 CIENIE B Konstrukcja punktu przebicia = s Cień Wyznaczyć cień punktu B na trójkąt PQR = Wyznaczyć punkt przebicia promienia świetlnego przechodzącego przez B z trójkątem PQR. A A B 28 s

29 CIENIE B Konstrukcja punktu przebicia = s Cień B c Wyznaczyć cień punktu B na trójkąt PQR = Wyznaczyć punkt przebicia promienia świetlnego przechodzącego przez B z trójkątem PQR. B c B 29 s

30 Cień jako rzut środkowy 30 Obraz S. Can Hoogstratena Taniec Cieni (1675)

31 Cień jako rzut równoległy 31

32 Rodzaje cienia - własny - rzucony - wzajemny wzajemny własny rzucony 32

33 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Wyznaczyć cień trójkąta ABC na rzutnię poziomą i pionową. s x12 33 s

34 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Rozpoczynamy od wyznaczenia cienia trójkąta na rzutnię poziomą. Przez punkty P i Q prowadzimy promienie świetlne w rzucie pionowym. Ich przecięcia się z rzutnią poziomą to cienie na tą Qc1 rzutnię. Punkt R, leżący na rzutni jednoczy się ze swoim punktem cienia (ze względu na czytelność rysunku nie opisuje się takich punktów). 34 Pc1 s s x 12 = p 1

35 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Prowadzimy promienie świetlne w rzucie poziomym, wyznaczamy rzuty poziome cieni punktów P i Q. Qc1 s Qc1 Pc1 x 12 = p 1 35 Pc1 s

36 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Po połączeniu cieni punktów otrzymujemy cień trójkąta. Qc1 s Qc1 Pc1 x12 Pc1 s 36

37 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Po połączeniu cieni punktów otrzymujemy cień trójkąta. Qc1 s Qc1 Pc1 x12 Pc1 s 37

38 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Część cienia wypada za rzutnią pionową, a więc realnie nie będzie istnieć. Qc1 s Qc1 Pc1 x12 Wnioskujemy zatem, że cień załamie się i wystąpi na rzutni pionowej. Pc1 s 38

39 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Konstruujemy cień punktu Q (którego cień na rzutnię poziomą wypadł za rzutnią pionową) na rzutnię pionową. Qc1 s Qc1 Na promieniu świetlnym przechodzącym przez punkt Q w rzucie poziomym zaznaczamy jego przecięcie z rzutnią pionową - to cień na tą rzutnię. Pc1 Pc1 Qc2 s x 12 = p 2

40 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 5 Na promieniu świetlnym w rzucie pionowym wyznaczamy cień punktu Q na rzutnię pionową w rzucie pionowym Qc1 Qc2 s Qc1 Pc1 Qc2 x 12 = p 2 Pc1 s 40

41 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Łącząc cień punktu Q na rzutnię pionową z punktami cienia trójkąta leżącymi na osi rzutów x 12 (M i N) otrzymujemy szukany fragment cienia trójkąta na rzutnię pionową. Qc1 Qc1 N Pc1 Qc2 Qc2 M s x 12 = p 2 41 Pc1 s

42 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3 Określamy widoczność cienia. Qc1 Qc2 s Qc1 N Pc1 Qc2 M x12 Pc1 s 42

43 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Wyznaczyć cień trójkąta ABC na rzutnię poziomą i na trójkąt PQR Qc1 Qc2 B s Qc1 N Pc1 Qc2 M C =A x12 s Pc1 B =C A

44 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Wyznaczamy cień punktu B na rzutnię poziomą. Qc1 Qc2 B s Qc1 N Pc1 Bc1 Bc1 Qc2 M C =A s x12 Pc1 B =C A

45 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Rysujemy cień trójkąta ABC na rzutnię poziomą. Qc1 Qc2 B s Qc1 N Pc1 Bc1 Bc1 Qc2 M C =A s x12 Pc1 B =C A

46 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Zaznaczamy widoczność cienia. Qc1 Qc2 B s Qc1 N Pc1 Bc1 Bc1 Qc2 M C =A s x12 Pc1 B =C A

47 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Szukamy cienia wzajemnego punktu B na trójkąt PQR. Przyjmujemy pomocniczą płaszczyznę e. Płaszczyzna przecina się z trójkątem wzdłuż krawędzi k. Qc1 Qc1 N Pc1 Bc1 Bc1 Qc2 2 Qc2 M 1 C B e =k =A s s x12 Pc1 B =C A

48 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a e =k B 1 Qc2 s Qc1 Wyznaczamy rzut poziomy krawędzi k. 2 Qc1 N Pc1 Bc1 Bc1 Qc2 M k C 1 =A s x12 Pc1 2 B =C A

49 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Przecięcie się krawędzi k z promieniem świetlnym z punktu B jest cieniem wzajemnym punktu na trójkąt. Qc1 Qc1 N Pc1 Pc1 Bc1 Bc1 Qc2 2 Qc2 2 Ba M Ba k 1 C 1 B B =C e =k =A s A s x12

50 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Wyznaczamy pozostałe cienie wzajemne korzystając z promieni wstecznych. Qc1 Qc1 N Pc1 Pc1 Bc1 Bc1 Qc2 2 Qc2 2 Ba M k 3c1 Ba 1 C 1 4c1 B 4 a 3 a B =C =3 e =k 4 =A s A s x12

51 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Wyznaczamy pozostałe cienie wzajemne korzystając z promieni wstecznych. Qc1 Qc1 N Pc1 Pc1 Bc1 Bc1 Qc2 2 Qc2 2 Ba M Ba k 1 C 1 4c1 B 4a 3a B =C =3 e =k 4 =A s A s x12

52 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a Wyznaczamy rzut pionowy cienia wzajemnego. Qc1 Qc2 Ba 1 B e =k s Qc1 N Pc1 Bc1 Bc1 2 Qc2 M 3a C k 1 4c1 3 4a 4 =A s x12 Pc1 2 Ba 4a 3a B =C 4 A

53 Konstrukcja cienia jako punktu przebicia promienia świetlnego Zadanie 3a e =k B 1 Qc2 s Qc1 Ba 2 Qc1 N Pc1 Bc1 Bc1 Qc2 M 3a C k 1 4c1 4a =A s x12 Pc1 2 Ba 4a 3a B =C 4 A

54 Konstrukcja cienia przy oświetleniu z punktu świetlnego S. Zadanie 4 Wyznaczyć cień trójkąta PQR na rzutnię poziomą i pionową. x12 54

55 Konstrukcja cienia przy oświetleniu z punktu świetlnego S. Zadanie 4 Wyznaczamy cień punktu P na rzutnię poziomą. Pc1 x12 Pc1 55

56 Zadanie 4 Ponieważ punkt Q leży wyżej niż punkt świetlny S, nie rzuci realnego cienia na rzutnię poziomą. W takim przypadku do wyznaczenia cienia boku PQ posłużymy się dowolnym punktem pomocniczym leżącym na tym boku (np. punkt 1). 1 1c1 1c1 Pc1 x12 Pc1 1 56

57 Zadanie 4 Z tego samego powodu do wyznaczenia cienia boku QR także posłużymy się dowolnym punktem pomocniczym leżącym na tym boku (np. punkt 2). 1 1c1 2 1c1 Pc1 2c1 x12 57 Pc1 1 2c1 2

58 Zadanie 4 Mając wyznaczone cienie punktów 1 i 2 można już narysować cień trójkąta na rzutnię poziomą. 1 1c1 2 1c1 Pc1 2c1 x12 58 Pc1 1 2c1 2

59 Zadanie 4 Ponieważ punkt Q leży na rzutni pionowej i mamy punkty cienia na osi (M, N) rzutów można wyznaczyć cień na tej rzutni. 1 1c1 2 1c1 Pc1 2c1 x12 59 Pc1 1 2c1 2

60 Zadanie 4 Zaznaczamy widoczność. 1 1c1 2 1c1 Pc1 2c1 x12 60 Pc1 1 2c1 2

61 Materiały do wykładu: Zad. 1. Konstrukcja punktu przebicia Zad. 2. Konstrukcja krawędzi przecięcia B m A n A B m n' 61

62 Materiały do wykładu: Zad.3. Wyznaczyć cień trójkąta ABC na rzutnię poziomą i pionową s 62 s

63 Materiały do wykładu: Zad.3. Wyznaczyć cień trójkąta ABC na rzutnię poziomą i trójkąt PQR. B Qc2 s Qc1 Qc1 N Pc1 Qc2 M C =A x12 s Pc1 A B =C

64 Materiały do wykładu: Zad. 4. Wyznaczyć cień trójkąta PQR na rzutnię poziomą i pionową. x12 64

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość.

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość. Grafika inżynierska geometria wykreślna 2. Przynależność. Równoległość. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i

Bardziej szczegółowo

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów.

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. Grafika inżynierska geometria wykreślna 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka

Bardziej szczegółowo

Geometria wykreślna. 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 6. Punkty

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu. Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje. Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek

Bardziej szczegółowo

Geometria wykreślna 7. Aksonometria

Geometria wykreślna 7. Aksonometria Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the

Bardziej szczegółowo

Geometria wykreślna. 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław

Geometria wykreślna. 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław Geometria wykreślna 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c).

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c). Konstrukcje podstawowe 1. Konstrukcja elementu przynależnego (KEP) 1.1. przynależność punktu do prostej (typowe zadania to wykreślenie punktu leżącego na prostej A m oraz wykreślenia prostej przechodzącej

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

METODA RZUTÓW MONGE A (II CZ.)

METODA RZUTÓW MONGE A (II CZ.) RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 9. Aksonometria

Grafika inżynierska geometria wykreślna. 9. Aksonometria Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria

Bardziej szczegółowo

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem przebicie ostrosłupa prostą, przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem WSA - wykład VII w dn. 12. I. 2014 r: Przenikanie wzajemne brył nieobrotowych (graniastosłupów,

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany.

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany. Grafika inżynierska geometria wykreślna 11. Rzut cechowany. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 11. Rzut cechowany.

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty

Bardziej szczegółowo

Imię i NAZWISKO:... Grupa proj.: GP... KOLOKWIUM K1 X 1. Geometria Wykreślna 2018/19. z plaszczyznami skarp o podanych warstwicach.

Imię i NAZWISKO:... Grupa proj.: GP... KOLOKWIUM K1 X 1. Geometria Wykreślna 2018/19. z plaszczyznami skarp o podanych warstwicach. A1 Zad. 1. Podaj definicję rzutu przestrzeni 3D na płaszczyznę D Zad.. Wymień wszystkie znane sposoby definicji płaszczyzny w przestrzeni 3D Zad. 3. Podaj definicję rzutu cechowanego Zad. 4. Co daje założenie

Bardziej szczegółowo

Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej

Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej 1. Perspektywa dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 04

Geometria odwzorowań inżynierskich Zadania 04 Scriptiones Geometrica Volumen I (2014), No. Z4, 1 3. Geometria odwzorowań inżynierskich Zadania 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Punkt przebicia p laszczyzny prost a w aksonometrii

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej

Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej 3a. Projekt drogi z odwodnieniem dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...

Bardziej szczegółowo

Wskazówki do zadań testowych. Matura 2016

Wskazówki do zadań testowych. Matura 2016 Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY Instytut Geologii, Uniwersytet im. A. Mickiewicza w oznaniu GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY prof. UAM, dr hab. Jędrze Wierzbicki racownia Geologii Inżynierskie i Geotechniki p. 251, e-mail: wi@amu.edu.pl

Bardziej szczegółowo

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie

Bardziej szczegółowo

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2. WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. Zadania 10A

Geometria odwzorowań inżynierskich. Zadania 10A Scriptiones Geometrica Volumen I (2014), No. Z10A, 1 7. Geometria odwzorowań inżynierskich. Zadania 10A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Twierdzenia o rozpadzie linii przenikania W

Bardziej szczegółowo

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości

Bardziej szczegółowo

CIENIE OBIEKTÓW GEOMETRYCZNYCH NA POWIERZCHNI TOPOGRAFICZNEJ 55 ODWZOROWANIU RZUTU CECHOWANEGO

CIENIE OBIEKTÓW GEOMETRYCZNYCH NA POWIERZCHNI TOPOGRAFICZNEJ 55 ODWZOROWANIU RZUTU CECHOWANEGO CIENIE OBIEKTÓW GEOMETRYCZNYCH NA POWIERZCHNI TOPOGRAFICZNEJ 55 Andrzej Koch 1, Tomasz Wieja 2 CIENIE OBIEKTÓW GEOMETRYCZNYCH NA POWIERZCHNI TOPOGRAFICZNEJ W ODWZOROWANIU RZUTU CECHOWANEGO Promienie świetlne

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna

Grafika inżynierska geometria wykreślna Grafika inżynierska geometria wykreślna 13. Powierzchnia topograficzna. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)

Bardziej szczegółowo

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A

Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A g H e D c H' E g' h e' O d A C' d' C A' F' f' I' G' B' G I F f INWERSJA Inwersją o środku O i promieniu r nazywamy takie przekształcenie płaszczyzny (bez punktu O), które każdemu punktowi X O przyporządkowuje

Bardziej szczegółowo

3. Model Kosmosu A. Einsteina

3. Model Kosmosu A. Einsteina 19 3. Model Kosmosu A. Einsteina Pierwszym rozwiązaniem równań pola grawitacyjnego w 1917 r. było równanie hiperpowierzchni kuli czterowymiarowej, przy założeniu, że materia kosmiczna tzw. substrat jest

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 0, grupa zaawansowana (7.03.010) krąg dziewięciu

Bardziej szczegółowo

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne 2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.

Bardziej szczegółowo

Wielokąty i Okręgi- zagadnienia

Wielokąty i Okręgi- zagadnienia Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Geometria wykreślna. 10. Geometria dachów.

Geometria wykreślna. 10. Geometria dachów. Geometria wykreślna. 10. Geometria dachów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 10. Geometria dachów. Geometryczne

Bardziej szczegółowo

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć Odkrywamy własności wielokątów metodą składania kartki papieru Uczniowie pracują z kartkami A4. Ćwiczenie 1 Wykonaj z kartki A4 kwadrat. D C A B Zegnij kartkę wzdłuż EF tak, aby wierzchołek A znalazł się

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

... T"" ...J CD CD. Frez palcowy walcowo-cz%wy. RESZKA GRZEGORZ JG SERVICE, Lublin, PL POLITECHNIKA LUBELSKA, Lublin, PL

... T ...J CD CD. Frez palcowy walcowo-cz%wy. RESZKA GRZEGORZ JG SERVICE, Lublin, PL POLITECHNIKA LUBELSKA, Lublin, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217266 (13) 81 (21) Numer zgłoszenia 392522 (51) Int.CI 823851/04 (2006.01) 823C 5/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa

Bardziej szczegółowo

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.

Bardziej szczegółowo

SZa 98 strona 1 Rysunek techniczny

SZa 98 strona 1 Rysunek techniczny Wstęp Wymiarowanie Rodzaje linii rysunkowych i ich przeznaczenie 1. linia ciągła cienka linie pomocnicze, kreskowanie przekrojów, linie wymiarowe, 2. linia ciągła gruba krawędzie widoczne 3. linia kreskowa

Bardziej szczegółowo

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA

Bardziej szczegółowo

GRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY

GRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska GRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY Prowadzący

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90 KONSTRUKCJE ZA POMOCĄ CYRKLA Ćwiczenia Czas: 90 TWIERDZENIE MOHRA-MASCHERONIEGO jeżeli dana konstrukcja geometryczna jest wykonalna za pomocą cyrkla i linijki, to jest wykonalna za pomocą samego cyrkla,

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

Inwersja w przestrzeni i rzut stereograficzny zadania

Inwersja w przestrzeni i rzut stereograficzny zadania Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

Wyciągnięcie po ścieŝce, dodawanie Płaszczyzn

Wyciągnięcie po ścieŝce, dodawanie Płaszczyzn Wyciągnięcie po ścieŝce, dodawanie Płaszczyzn Przykład wg pomysłu dr inŝ. Grzegorza Linkiewicza. Zagadnienia. Tworzenie brył przez Dodanie/baza przez wyciągnięcie po ścieŝce, Geometria odniesienia, Płaszczyzna,

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Rzuty, przekroje i inne przeboje

Rzuty, przekroje i inne przeboje Rzuty, przekroje i inne przeboje WYK - Grafika inżynierska Piotr Ciskowski, Sebastian Sobczyk Wrocław, 2015-2016 Rzuty prostokątne Rzuty prostokątne pokazują przedmiot z kilku stron 1. przedmiot ustawiamy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.

Bardziej szczegółowo

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

= [6; 2]. Wyznacz wierzchołki tego równoległoboku. ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość

Bardziej szczegółowo

Własności punktów w czworokątach

Własności punktów w czworokątach Własności punktów w czworokątach Autor: Michał Woźny Gimnazjum nr 2 im. A. Mickiewicza w Krakowie Opiekun pracy: dr Jacek Dymel Spis treści 1. Wstęp str. 3 2. Badanie punktów będących środkami boków w

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2 (14-19.10.2009) nalogie i różnice miedzy trójkątem

Bardziej szczegółowo

Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.

Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE WPROWADZENIE Wykonywanie rysunku technicznego - zastosowanie Rysunek techniczny przedmiotu jest najczęściej podstawą jego wykonania, dlatego odwzorowywany przedmiot nie powinien

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo