; -1 x 1 spełnia powyższe warunki. Ale

Wielkość: px
Rozpocząć pokaz od strony:

Download "; -1 x 1 spełnia powyższe warunki. Ale"

Transkrypt

1 AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także unkcja. Dokłaając warunek cąłośc unkcj [ ] Q elmnujem ten przpaek. Jeżel to ne stneje unkcja bęąca rozwązanem problemu ale stneje unkcja spełnająca warunk zaana. Powó. W punkce ne stneje stczna ABC ająca sę rozwkłać ze wzlęu na ale aje sę rozwkłać ze wzlęu na. Intucja. Funkcja różnczkowalna w punkce zachowuje sę w otoczenu teo punktu poobne o swej lnowej aproksmacj. Twerzene o unkcj uwkłanej. Prost owó eja F. achunek różnczkow całkow. Jeżel to unkcja ma cąle pochone cząstkowe w otoczenu punktu. la każej ostateczne małej lczb ε > stneje taka lczba δ > że każej wartośc z przezału -δ δ opowaa okłane jeno rozwązane równana należące o przezału -ε ε. unkcja jest cąła w przezale -δ δ ma w nm cąłą pochoną wrażoną wzorem ' ze Przkła.. Wkorzstując wzór Talora znajź przblżene unkcj uwkłanej welomanem stopna trzeceo w otoczenu punktu. Funkcja uwkłana zaana jest równanem cos. W otoczenu punktu są spełnone założena tw. o unkcj uwkłanej węc równane cos określa w tm otoczenu unkcję prz czm. ' '' ''' r!!! 4 Kolejne pochone unkcj w punkce wlczam różnczkując równane cos[ ] [ ]

2 AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl otrzmujem sn[ ][ ' ] '[ ] a stą la uwzlęnając że otrzmujem. óżnczkując równane otrzmujem ' cos[ ][ ' ] sn[ ][' '' ] '' a stą la uwzlęnając że ' otrzmujem ''. 8 óżnczkując równane otrzmujem 4 sn[ ][ ' ] cos[ ][ ' ][' '' ] sn[ ]['' ''' ] ''' ''' a stą la uwzlęnając że ' 7 7!!! 8 Ostateczne r4 '' 8 otrzmujem kstrema unkcj uwkłanch metoa rozwkłana oranczeń wjaśnć Przkła wprowazając Zbaać ekstrema unkcj uwkłanej określonej równanem. Zakłaam reularność unkcj tak ab wlczone ponżej pochone mał sens czl że są spełnone założena twerzena o unkcj uwkłanej. o le ma ekstremum w punkce z WK Otrzmalśm węc WK stnena ekstremum unkcj uwkłanej ozwązujem perwsz ukła ostajem punkt krtczne P WK la którch sprawzam ostatn warunek. Baane rozaju ekstremum może przebeać za pomocą baana znaku w otoczenu punktu krtczneo P lub baana znaku. Perwsz sposób jest neco kłopotlw. Nawet baane znaku orm kwaratowej wmaało specjalneo narzęza krterum Slvestera są też nne. óżnczkując ponowne otrzmam

3 AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl w punktach krtcznch wec - tlko w punkce krtcznm P > ma w punkce mnmum lokalne właścwe kstrema warunkowe Np. otwart cąła Oznaczm { } nech czl nepust. ozpatrzm unkcję obcętą o kstremum unkcj obcętej o nazwać bęzem ekstremum warunkowm unkcj po warunkem De. Funkcja ma w punkce maksmum lokalne warunkowe właścwe S S < Jak znaleźć ekstremum warunkowe? wprowazene o meto arane a Zakłaając że równane określa unkcje uwkłaną problem sprowaza sę o szukana ekstremum unkcj jenej zmennej. Zakłaając reularność z WK stnena ekstremum otrzmujem ' a z warunku oblczam. Stą otrzmujem WK Można zauważć że równane perwsze WK jest wnkem ruowana parametru z następująceo ukłau równań ze

4 AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl 4 ewe stron są pochonm cząstkowm unkcj WK jest węc Baane sprowaza sę o baana unkcj arane a z mnożnkem arane a. Metoę tę można uoólnć la unkcj welu zmennch. Metoa mnożnków arane a szukane ekstremum unkcj po warunkem { } Alortm Tworzm unkcję arane a Warunek koneczn P Warunek wstarczając. Traktując mnożnk jako parametr wznaczć w punktach krtcznch ruą różnczkę prz czm przrost spełnają równane Wznaczając jeen z przrostów np. jako unkcję rueo przrostu baam określoność. Przkła. Wznaczć ekstrema warunkowe unkcj prz warunku - Pokazać obe meto. W metoze arane a zwrócć szczeólną uwaę na koneczność krępowana przrostów w WW. metoa rozwkłana oranczeń - - Funkcja ma w punkce maksmum lokalne równe 4 węc unkcja ma w punkce maksmum lokalne warunkowe. Metoa arane'a

5 AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl WK P } prz czm. Wobec teo WW lokalne warunkowe. < la wec ma w punkce maksmum Przkłaowe zaana z unkcj uwkłanch. Znaleźć ekstrema lokalne unkcj uwkłanej określonej równanem a -. b e W ostateczne małm otoczenu punktu narsować wkres unkcj uwkłanej określonej równanem ln-ln. 5

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej

Rachunek różniczkowy funkcji jednej zmiennej Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow

Bardziej szczegółowo

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych

Rozwiązywanie równań różniczkowych Rozwiązwanie równań różniczkowch. Równanie różniczkowe zwczajne. rzęu A. Metoa rkfie - zaimplementowana w Mathcazie metoa Rungego-Kutt. rzęu ze stałm krokiem całkowania: rkfie(,,ma, N, P) gzie: ma N P

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 + Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

WYBRANE PROBLEMY DOTYCZĄCE OPTYMALIZACJI FUNKCJI UŻYTECZNOŚCI

WYBRANE PROBLEMY DOTYCZĄCE OPTYMALIZACJI FUNKCJI UŻYTECZNOŚCI STDIA I RACE WYDIAŁ NAK EKONOMICNYCH I ARĄDANIA NR 6 Henrk Kowgier niwerstet Szczeciński WYRANE ROLEMY DOTYCĄCE OTYMALIACJI NKCJI ŻYTECNOŚCI STRESCENIE W artkule ukazano niektóre aspekt optmalizacji warunkowej

Bardziej szczegółowo

(rachunek różniczkowy dot. funkcji ciągłych)

(rachunek różniczkowy dot. funkcji ciągłych) Podstaw matematczne (rachunek różniczkow dot. unkcji ciągłch) 1) Pochodna unkcji 1 zmiennej () de. () d ( ) d d d lim h ( h) h ( ) (h) () h UWAGA: () tg(α) tangens kąta nachlenia stcznej Warunki e k s

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5. WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja

Bardziej szczegółowo

Programowanie wypukłe i kwadratowe. Tadeusz Trzaskalik

Programowanie wypukłe i kwadratowe. Tadeusz Trzaskalik Proramowanie wpukłe i kwaratowe Taeusz Trzaskalik 6.. Wprowazenie Słowa kluczowe Zaanie proramowania nielinioweo Ekstrema lobalne i lokalne Zbior wpukłe Funkcje wklęsłe i wpukłe Zaanie proramowania wpukłeo

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15

Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15 Analiza Matematczna II., kolokwium rozwiazania 9 stcznia 05, godz. 6:5 9:5 0. Podać definicj e zbioru miar 0. Udowodnić, że jeśli A = {(x,, z) : (x )(x + + z ) = 0}, to l (A) = 0. Zbiorem miar zero jest

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam

Bardziej szczegółowo

Ń Ą Ę Ł Ł Ł Ł ź Ł Ł Ł Ł Ł Ł ź Ł Ł Ł Ł Ś Ś źć Ą ź ź ć ź ć Ś ć Ą ć Ż ć ć Ę ć Ą Ł Ł Ł ź Ś Ą ź Ą Ą Ł Ś Ą Ż Ą Ł Ł ć Ż Ś ź Ó ź Ó ć Ć ź Ś ć Ł ć ć ć ć ć ć Ą Ą Ą Ł Ą ć ć ć ć Ą Ł ź ć ćź ć ć ź Ś ć ć Ą Ą Ą ć Ą ć Ż

Bardziej szczegółowo

ć ć ć ć ć ć ć źć ć ć ć ć ć ć ź Ś ź ć ć ć Ż ć Ę ć ć ć ć ć ć Ę Ę ć ć ć Ż ź ź ź ć ć ć ć ć Ś ć ć ć ć ć Ż ćż ć ć ć ć ć ć Ż ć ć ć ć ź ć ź Ę ć ć ź ć ć Ś Ż ć ć ć Ą Ż ć ć ć Ę ć ć Ż ć ć ć Ś ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

Podstawowe twierdzenia

Podstawowe twierdzenia Rozdzał 3 Podstawowe twerdzena 3.1 Istnene rozwazań lokalnych Rozpocznjmy od odpowedz na ogólne pytane: jake warunk mus spełnać równane różnczkowe zwyczajne, aby stnało jego rozwązane kedy rozwązane to

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Przybli anie ilorazu wymiernego jego sko czonym rozwini ciem X D. dokładno ilorazu okre lona precyzj wyznaczenia liczby m

Przybli anie ilorazu wymiernego jego sko czonym rozwini ciem X D. dokładno ilorazu okre lona precyzj wyznaczenia liczby m Algort oblczenowe Janusz Bernat, 7-6-Oblczena nuer.oc, 7 gruna 4 NUM Przbl ane lorazu wernego ego sko czon rozwn ce R X R D X D X Q R D D R D }: { okłano lorazu okre lona precz wznaczena lczb R R R...

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

Algebra WYKŁAD 2 ALGEBRA 1

Algebra WYKŁAD 2 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną

Bardziej szczegółowo

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Optymalizacja funkcji

Optymalizacja funkcji MARCIN BRAŚ Opymalzacja funcj ) Opymalzacja w obszarze neoranczonym WK: y. y WW: > > y y Znaleźć mnmum funcj: (, y) ( ) y ( ) y y ( ) y solve, P(, ) y y solve, y ( ) y ( ) y y y ( ) y W W W > (, y) > Op.

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład IX

Modelowanie przepływu cieczy przez ośrodki porowate Wykład IX Modelowane przepływu ceczy przez ośrodk porowate Wykład IX Metody rozwązywana metodam analtycznym równań hydrodynamk wód podzemnych płaskch zagadneń fltracj. 9.1 Funkcja potencjału zespolonego. Rozważana

Bardziej szczegółowo

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych Matematka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowch. Znale¹ ekstrema lokalne funkcji f(, ) = ( 2 + 2 2 )e (2 + 2 ) Odp. Jedno minimum (w p. (, )),

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

Wykład Mikro- i makrostany oraz prawdopodobie

Wykład Mikro- i makrostany oraz prawdopodobie Wykład 6 5.5 Mkro- makrostany oraz prawdopodobeństwo termodynamczne cd. 5.6 Modele fzyczne 5.7 Aproksymacja Strlna 5.8 Statystyka Boseo-Enstena 5.10 Statystyka Fermeo-Draca 5.10 Statystyka Maxwell a-boltzmann

Bardziej szczegółowo

2+3*5= 2+3/5= 2+3spacja/5= <Shift+6> 3 spacja / spacja <Shift+6> 1/3 = ( ) a:10. zmienna π jest już zdefiniowana w programie

2+3*5= 2+3/5= 2+3spacja/5= <Shift+6> 3 spacja / spacja <Shift+6> 1/3 = ( ) a:10. zmienna π jest już zdefiniowana w programie Mathca - Postaw r inż. Konra Witkiewicz kwit.zut.eu.pl Proste obliczenia Włączam pasek narzęzi Math: View Toolbars Math. Klikam na pierwszą ikonę paska Math ab wświetlić pasek narzęzi Calculator: Obliczć

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

Programowanie wielokryterialne

Programowanie wielokryterialne Prgramwane welkryteralne. Pdstawwe defncje znaczena. Matematyczny mdel sytuacj decyzyjnej Załóżmy, że decydent dknując wybru decyzj dpuszczalnej x = [ x,..., xn ] D keruje sę szeregem kryterów f,..., f.

Bardziej szczegółowo

Elementy algebry i analizy matematycznej II

Elementy algebry i analizy matematycznej II Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu

Bardziej szczegółowo

Johann Wolfgang Goethe Def.

Johann Wolfgang Goethe Def. "Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad

Bardziej szczegółowo

FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x +

FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x + FINAŁ 0 marca 007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut ZADANIE Największ wspóln dzielnik dwóch liczb naturalnch wnosi 6, a ich najmniejsza wspólna wielokrotność tch liczb równa jest

Bardziej szczegółowo

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1 Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Postać równana

Bardziej szczegółowo

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów. Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

VIII. NIELINIOWE ZAGADNIENIA MECHANIKI

VIII. NIELINIOWE ZAGADNIENIA MECHANIKI Konerla P. Metoa Eleentów Skończonych, teora zastosowana 57 VIII. NIELINIOWE ZAGADNIENIA MECHANIKI. Rozaje nelnowośc a) Nelnowość fzyczna: nelnowe zwązk konstytutywne, plastyczność, lepkoplastyczność,

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec

Bardziej szczegółowo

5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy

5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy 5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego NIELINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego ma postać:

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo

APROKSYMACJA QUASIJEDNOSTAJNA

APROKSYMACJA QUASIJEDNOSTAJNA POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny

Bardziej szczegółowo

Drgania układu o wielu stopniu swobody

Drgania układu o wielu stopniu swobody Drgana układu welu stpnu swbd Drgana własne Zasada d laberta Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc.

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x Wykład z Podsaw maemayk dla sudenów Inżyner Środowska Wykład 8. CŁKI NIEOZNCZONE Defnca (funkca perwona) Nech F es funkcą perwoną funkc f na przedzale I, eżel F '( ) f ( ) dla każdego I. Udowodnć, że funkce

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

ś Ę ś Ę ź ś Ó ś ś Ś ć ś ź Ź ść ć ś Ż ś ś Ż Ż Ż ś Ż ź ś ś ć Ż ś ś Ż ś ś ś ś Ó ś Ż ź ś ź ś ć ź ś ś ś ć ć Ń ś ś ś ź ś ś ś ś Ń ś Ż ś ś ś Ź Ó ć Ę ś ś ś Ń Ż Ś Ż ś ś ź ź ć Ó Ó ś ś ź Ś ć Ż Ń ś ź Ą ś ś Ż ć ć ść

Bardziej szczegółowo

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1 Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Postać równana

Bardziej szczegółowo

METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH

METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH RAFAŁ PALEJ, RENATA FILIPOWSKA METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH APPLICATION OF THE SHOOTING METHOD TO A BOUNDARY VALUE PROBLEM WITH AN EXCESSIVE

Bardziej szczegółowo

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską

Bardziej szczegółowo

Badania zginanych belek

Badania zginanych belek Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia

Bardziej szczegółowo

Kolokwium poprawkowe z Optymalizacji II (Ściśle tajne przed godz. 16 : stycznia 2016.)

Kolokwium poprawkowe z Optymalizacji II (Ściśle tajne przed godz. 16 : stycznia 2016.) Kolokwum z Optymalzacj II Ścśle tajne przed godz 4 : 00 8 grudna 05) Proszę uważne przeczytać treść zadań Na ocenę bardzo duży wpływ będze mała czytelność rozwązań poprawność uzasadnena każdej odpowedz

Bardziej szczegółowo

Ś Ę Ś Ą Ł Ę Ę Ę Ą ć Ę Ę ź ź Ń Ń Ę Ń Ń ź ź Ą ć Ą ć Ę Ą Ń Ń Ą Ę Ę ć Ą Ę ź Ą ć ć Ęć ć Ń ć ć ć ć ć Ś ć Ą ć ć ć Ń Ę Ś Ę Ę Ę ć Ę ć ć Ł ć Ń Ń Ęć Ę ź ć Ą Ę ź ć Ę Ę ź Ę Ą Ę Ą ć ź ź Ę ź Ę Ń ć ź ć ź Ę Ń Ę Ł Ę Ę ć

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.

Bardziej szczegółowo

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1 Nr: Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Postać równana nelnowego Równane nelnowe jednej zmennej o ogólnej postac: rozwązane analtyczne : znalezene takej

Bardziej szczegółowo