MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna WIELOMIANY SZACHOWE

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna WIELOMIANY SZACHOWE"

Transkrypt

1 MAEMAYKA DYKENA (0/0) r h. iż. Młgorzt ter mlgorzt.ster@s.put.poz.pl WIELOMIANY ZACHOWE

2 Mtemtyk Dyskret Młgorzt ter B WIELOMIANY ZACHOWE Wielomiy szhowe opisują lizę możliwyh rozmieszzeń k wzjemie ie tkująyh się wież szhowiy o wymirze. szhowi o wymirze pewe pol są zroioe oszr pól opuszzlyh B moż umieśić o jwyżej jeą wieżę w wierszu i kolumie r k ozz lizę możliwyh rozmieszzeń k wzjemie ie tkująyh się wież szhowiy B o wymirze (k ) wielomi szhowy r B (x) m postć: r B (x) = + r x + r x r k x k r x wielomiy szhowe są przykłem fukji tworząyh

3 Mtemtyk Dyskret Młgorzt ter ZAOOWANIA WIELOMIANÓW ZACHOWYCH Wiele prolemów prktyzyh moż sprowzić o zgiei rozmieszzi wież szhowiy. rzykł osoy,,, mją o wykoi pre,,, ze wzglęu ogrizei zrowote ie wszystkie przyziły osó o zń są możliwe prow m o yspozyji k ettów (k =,,, ) ile jest możliwyh przyziłów l poszzególyh wrtośi k? kży przyził jest reprezetowy przez umieszzeie jeej wieży szhowiy B r k ozz lizę możliwyh rozmieszzeń k wież zyli możliwyh przyziłów k ettów szukmy współzyików wielomiu szhowego: r B (x) = + r x + r x + r x + r x

4 Mtemtyk Dyskret Młgorzt ter r - liz możliwyh rozmieszzeń wieży r =8

5 Mtemtyk Dyskret Młgorzt ter r - liz rozmieszzeń wież r =9

6 Mtemtyk Dyskret Młgorzt ter r - liz rozmieszzeń wież r = 6

7 Mtemtyk Dyskret Młgorzt ter r - liz rozmieszzeń wież r = 8 r =9 r = r = zuky wielomi szhowy m postć: r B (x) = + 8x + 9x + x +x 7

8 Mtemtyk Dyskret Młgorzt ter ZAOOWANIA WIELOMIANÓW ZACHOWYCH Olizeie wielomiu szhowego w sposó ezpośrei (z pomoą lizy przypków) ie musi yć łtwiejsze o rozwiązi prolemu orygilego. Włśiwośi wielomiów szhowyh pozwlją ih ekompozyję i rziej efektywe rozwiązywie prolemów. rzykł N ile sposoów moż rozszerzyć stępująy prostokąt łiński o jee wiersz? 8

9 kolum elemet kże rozmieszzeie wież, to rozszerzeie prostokąt o jee wiersz liz możliwyh rozszerzeń prostokąt, to współzyik r w wielomiie szhowym l oszru B Młgorzt ter Mtemtyk Dyskret 9

10 Mtemtyk Dyskret Młgorzt ter moż zuwżyć, że tli B zwier rozłąze oszry ie zwierjąe wspólyh wierszy i kolum, w któryh wieże mogą yć rozmieszze iezleżie C: C: D: D: w opriu o wielomiy szhowe l pooszrów C i D moż wyzzyć wielomi szhowy oszru wyjśiowego B 0

11 Mtemtyk Dyskret Młgorzt ter C: C: C: C: C: r = C: C: r = r C (x) = + x + x

12 Mtemtyk Dyskret D: r D (x) = + 6x + 9x + x Młgorzt ter D: D: D: D: D: D: r =6 D: D: D: D: D: D: D: D: D: r =9 r = D: D:

13 Mtemtyk Dyskret Młgorzt ter wielomi szhowy oszru wyjśiowego jest ilozyem wielomiów szhowyh l pooszrów C: D: r C (x) = + x + x r D (x) = + 6x + 9x + x z prw ilozyu r B (x) = r C (x)r D (x) = (+x+x ) (+6x+9x +x )= +0x+x +0x +6x +x

14 Mtemtyk Dyskret Młgorzt ter prostokąt łiński moż rozszerzyć r = sposoów C: D: r C (x) = + x + x r D (x) = + 6x + 9x + x r B (x)=+0x+x +0x +6x +x zyik r x =x w r B (x) pohozi z ilozyu r x =x w r C (x) i r x =x w r D (x) C: C: D: D:

15 Mtemtyk Dyskret Młgorzt ter prostokąt łiński moż rozszerzyć r = sposoów C: D: D: C: D: D:

16 prostokąt łiński moż rozszerzyć r = sposoów Młgorzt ter Mtemtyk Dyskret 6

17 Mtemtyk Dyskret Młgorzt ter WIEDZENIE Jeśli B jest tlią, któr może yć pozielo wie zęśi C i D ie mjąe wspólyh wierszy i kolum, to: r B (x) = r C (x)r D (x) 7

18 Mtemtyk Dyskret Młgorzt ter DOWÓD WIEDZENIA Jeśli B jest tlią, któr może yć pozielo wie zęśi C i D ie mjąe wspólyh wierszy i kolum, to: r B (x) = r C (x)r D (x) Nleży wykzć, że współzyiki r k wielomiów szhowyh są ietyze po ou stroh rówi. współzyik przy x k w r B (x) = z prw ilozyu = liz rozmieszzeń k wież B = = liz rozmieszzeń 0 wież C liz rozmieszzeń k wież D + + liz rozmieszzeń wież C liz rozmieszzeń k- wież D + + liz rozmieszzeń wież C liz rozmieszzeń k- wież D liz rozmieszzeń k wież C liz rozmieszzeń 0 wież D = = współzyik przy x 0 w r C (x) współzyik przy x k w r D (x) + + współzyik przy x w r C (x) współzyik przy x k- w r D (x) + + współzyik przy x w r C (x) współzyik przy x k- w r D (x) współzyik przy x k w r C (x) współzyik przy x 0 w r D (x) = = współzyik przy x k w r C (x) r D (x) 8

19 Mtemtyk Dyskret Młgorzt ter z wierzei wyik, że tli o rozmirze z wolą przekątą m wielomi szhowy posti (+x) szhowię moż rozłożyć rozłązyh pojeyzyh pól kże z tyh pól m wielomi szhowy posti: (+x) szhowi m wielomi szhowy posti: (+x)(+x)...(+x) =(+x) 9

20 Mtemtyk Dyskret Młgorzt ter WIEDZENIE Nieh B ęzie tlią szhową i ieh: s ozz jeo, określoe pole tej szhowiy, B ozz szhowię otrzymą z B przez usuięie pol s, B ozz szhowię otrzymą z B przez usuięie wiersz i kolumy zwierjąyh s wówzs: r B (x)=r B (x)+xr B (x) s B : B : 0

21 Mtemtyk Dyskret Młgorzt ter DOWÓD WIEDZENIA r B (x)=r B (x)+xr B (x) B B s B współzyik przy x k w r B (x)= = liz rozmieszzeń k wież B = = liz rozmieszzeń k wież B ez użyi s + liz rozmieszzeń k wież B z użyiem s = = liz rozmieszzeń k wież B + liz rozmieszzeń k- wież B = = współzyik przy x k w r B (x) + współzyik przy x k- w r B (x)= = współzyik przy x k w r B (x) + współzyik przy x k w xr B (x)= = współzyik przy x k w r B (x) + xr B (x)

22 Mtemtyk Dyskret Młgorzt ter WYZNACZENIE WIELOMIANÓW ZACHOWYCH N moy wierzei i wierzei możliw jest ekompozyj prolemu wyzzei wielomiu szhowego. rzykł osoy,,, mją o wykoi pre,,, ze wzglęu ogrizei zrowote ie wszystkie przyziły osó o zń są możliwe prow m o yspozyji k ettów (k =,,, ) ile jest możliwyh przyziłów l poszzególyh wrtośi k? r B (x)=? r B (x)=+r x+r x +r x +r x r, r, r, r?

23 r =8 r =9 r = r = Młgorzt ter Mtemtyk Dyskret

24 Mtemtyk Dyskret r B (x)= (+x)(+x+x )+x(+x) + x((+x)+x(+x)+x(+x+x )) s Młgorzt ter =+8x+9x +x +x s w. s ((+x)(+x+x )) + x(+x) ((+x)+x(+x)) +x(+x+x ) w. w. s (+x+x ) (+x) (+x+x ) (+x) w. (+x) +x(+x) w. w. (+x) (+x+x ) (+x) (+x)

25 Mtemtyk Dyskret Młgorzt ter WIEDZENIE Nieh B ęzie tlią o wymirze o wielomiie szhowym r B (x) = + r x + r x r k x k r x i ieh B ęzie opełieiem B wzglęem szhowiy. Wówzs liz sposoów rozmieszzei B wzjemie ie tkująyh się wież wyosi: r ( ) r( i i)! i0 i r B (x)=+r x+r x +...+r k x k +...+r x r B (x)=+r x+r x +...+r k x k +...+r x owó opier się zstosowiu zsy włązi i wyłązi

26 Mtemtyk Dyskret Młgorzt ter ZYKŁAD r B (x) = +0x+x +0x +6x +x r =!-!0+!-!0+!6-0!= = r = r B (x) = +x+7x +x +96x +x!-!+!7-!+!96-0!= = 6

27 Mtemtyk Dyskret Młgorzt ter DOWÓD WIEDZENIA ziór wszystkih ukłów ie tkująyh się wzjemie wież tliy B o wymirze s - kży ukł wież jest rówowży permutji N= =! = włsość k ozz, że wież w k-tym wierszu zjuje się ozwoloym polu (tz. leżąym o oszru B) N ozz lizę rozmieszzeń wież ie posijąyh żej z włsośi k (k=,,...,) zyli lizę rozmieszzeń opełieiu B tliy B N =N( )= r = N -[N( )+N( )+...+ N( )]+ +[N( )+N( )+...+N( - )] (-) N(... ) 7

28 wszystkie poziory -elemetowe Mtemtyk Dyskret Młgorzt ter rozwżmy przykłowo N( i j k ), zyli lizę rozmieszzeń wież w wierszh i, j, k opuszzlyh polh, pozostłe - wież może yć rozmieszzoe wszystkie (-)! możliwe sposoy w pozostłyh wierszh p. N(,, )=(liz rozmieszzeń wież B w wierszh,,)(-)! N( )+ N( )+...+ N( )+...+ N( - - ) =(liz rozmieszzeń wież B w wierszh,,)(-)! +(liz rozmieszzeń wież B w wierszh,,)(-)! (liz rozmieszzeń wież B w wierszh,,)(-)! (liz rozmieszzeń wież B w wierszh -,-,)(-)! =(liz rozmieszzeń wież B w wierszh)(-)! =(r )(-)! uogóliją l rozmieszzeń spełijąyh k wruków: r k (-k)! 8

29 Mtemtyk Dyskret Młgorzt ter r ( ) r i( i)! i0 i N =N( ) r = = N -[N( )+N( )+...+ N( )] +[N( )+N( )+...+N( - )] -[N( )+N( )+...+N( - - )] + +(-) N(... ) =! - r (-)! + r (-)! - r (-)! + + (-) r (-)! r ( ) r i( i)! i0 i 9

30 Mtemtyk Dyskret Młgorzt ter WIELOMIANY ZACHOWE A LICZBA NIEOZĄDKÓW ieporząkiem liz,,..., zywmy permutję, w której elemet i zjuje się pozyji różej o i kże rozmieszzeie wież wyzz jee z ieporząków liz ieporząków, to liz możliwyh rozmieszzeń wież szhowiy B, zyli współzyik r 0

31 Mtemtyk Dyskret Młgorzt ter r k współzyik r łtwiej wyzzyć w opriu o opełieie oszru B k r! ( )!r r =!-(-)!r +(-)!r - +(-) 0!r opełieie B m wielomi szhowy posti ze wzoru wumiowego zyli (x y) ( )!r k0 x k k y... ( ) k rk x ( x) k0 k wyik ( x ) k0 0! r! ( )! ( )!... ( )!!!!... ( ) k ( )!!!! k0 k! 0! k x k

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa / WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH METODY NUMERYCZNE Wykłd. Cłkowie umeryze dr h. iż. Ktrzy Zkrzewsk, pro. AGH Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rihrdso Metod Romerg Metod Simpso wzór prol Metod Guss Cłkowie umeryze -

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1 METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss

Bardziej szczegółowo

Minimalizacja automatu

Minimalizacja automatu Minimlizj utomtu Minimlizj utomtu to minimlizj lizy stnów. Jest to trnsformj utomtu o nej tliy przejśćwyjść n równowżny mu (po wzglęem przetwrzni sygnłów yfrowyh) utomt o mniejszej lizie stnów wewnętrznyh.

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

a a a ; ; ; (1.2) przez [ a ij ], czyli zbiór elementów w i-tym wierszu i w j-tej kolumnie. Wymiary ( n m) stanowią stopień macierzy.

a a a ; ; ; (1.2) przez [ a ij ], czyli zbiór elementów w i-tym wierszu i w j-tej kolumnie. Wymiary ( n m) stanowią stopień macierzy. . PODSWY LGEBY CIEZY.. Ukły równń liniowyh Ukł n równń o m niewiomyh x K x m m L L L L L x K x n nm m n możn zpisć w posti tli liz (mierzy): (.) x x x x x x x x x x zpisć w posti mierzowej. Wprowzją nstępująe

Bardziej szczegółowo

Od wzorów skróconego mnoŝenia do klasycznych nierówności

Od wzorów skróconego mnoŝenia do klasycznych nierówności Hery Pwłowsi IV LO Toruń O wzorów sróoego moŝei o lsyzyh ierówośi Uzą w szole wzorów sróoego moŝei zzymy o owozei wóh toŝsmośi: () ( ) () ( ) Nstępie uŝywmy ih o przesztłi wyrŝeń Tym rzem zrómy z ih iy

Bardziej szczegółowo

Działania wewnętrzne i zewnętrzne

Działania wewnętrzne i zewnętrzne Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel miel@gedupl Dziłi wewętrze i zewętrze Nie X ędzie ustlym iepustym zirem Def Dwurgumetwym dziłiem wewętrzym w zirze X zywmy fukję Jeśli X i y X t y X zywmy wyikiem

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 2 Ha i 2 Lb 2011 str 1

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 2 Ha i 2 Lb 2011 str 1 Zres teriłu oowiązująy do egziu poprwowego z tetyi s H i 0 str Dził progrowy Fuj wdrtow Wieoiy iągi Wieoąty Trygooetri Przyłdowe zdi: Fuj wdrtow:. D jest fuj: y 0 Zres reizji Włsośi fuji (p. ootoizośd,

Bardziej szczegółowo

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:

Bardziej szczegółowo

Macierze w MS Excel 2007

Macierze w MS Excel 2007 Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy

Bardziej szczegółowo

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej. WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k

Bardziej szczegółowo

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów. Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,

Bardziej szczegółowo

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY Rys. 9.. Wyrównnie spostrzeżeń zwrunkownyh jednkowo dokłdnyh C. KRAKOWIANY 9.9. Informje wstępne o krkowinh Krkowin jest zespołem liz rozmieszzonyh w prostokątnej teli o k kolumnh i w wierszh, dl którego

Bardziej szczegółowo

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2)

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2) Połązenie () Optymlizj poleeń SQL zęść. Metody połązeń, metody sortowni, wskzówki Operj inrn zwsze udził iorą dwie tele, jedn zostje nzwn telą zewnętrzną, drug telą wewnętrzną. W przypdku poleeni łąząego

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa Projekt pn. Wzmonienie potenjłu dydktyznego UMK w Toruniu w dziedzinh mtemtyzno-przyrodnizyh relizowny w rmh Poddziłni 4.1.1 Progrmu Operyjnego Kpitł Ludzki Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj Czoków, Jrosłw Piers 213-1-14 1 Przypomnienie Łńuh Mrkow jest proesem stohstyznym (iągiem zmiennyh losowyh), w którym rozkłd zmiennej w hwili t zleży wyłąznie

Bardziej szczegółowo

Podstawy Automatyki. Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania.

Podstawy Automatyki. Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Politehik Gdńsk Wydził Elektrotehiki i Automtyki Ktedr Iżyierii Systemów Sterowi Podstwy Automtyki Lizy zesoloe Mteriły omoize do ćwizeń termi T5 Orowie: Kzimierz Duzikiewiz, dr h. iż. Mihł Grohowski,

Bardziej szczegółowo

ę Ł Ó ę ę ć ę ę ż ę ę Ź Ć ć ę ę ż ę ę Ł ć ż ż ć ć ź ć ę Ń ć ę ż ę ć ęż Ń ć ż ć ź ę ę ź ę ć ż ć Ź ż ę Ł Ż ż ć Ź ę Ń ż ć ę ę ż ę ę ć ę ż ż ż Ł ę żę ż ć ź ę Ó ć ć ż ć ę ę ę ę ę ć ę Źć ę ę ę ę ę ę ż ż ż ć

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO WOJSKOWA AKADEMIA TECHNICZNA im. Jrołw Dąrowkiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEO Przemiot: PODSTAWY AUTOMATYKI (tui tjore I topi) ĆWICZENIE RACHUNKOWE Nr STABILNOŚĆ UKŁADÓW DYNAMICZNYCH Wrzw ĆWICZENIEE

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST Projekt współfinnsowny przez Unię Europejską w rmh Europejskiego Funuszu Społeznego est in trining E-Pr@ownik ojrzłe kry społezeństw informyjnego n Mzowszu Numer Projektu: POKL.08.01.01-14-217/09 PRE TEST

Bardziej szczegółowo

Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó

Bardziej szczegółowo

ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń

Bardziej szczegółowo

Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź

Bardziej szczegółowo

Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź

Bardziej szczegółowo

Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim (

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim ( AM11 zadaia 8 Przypom e kilka dosyć ważyh grai, które już pojawiły się a zajeiah e 1 lim 1 l(1+) (1+) 1, lim 1, lim a 1 si a, lim 1 0 0 0 0 l 2 lim 0, lim a 0 dla każdego a R, lim (1 + 1 e ) e, lim 1/

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo

ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś

Bardziej szczegółowo

ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy. Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego

Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego 0 Podzi kàtów ze wzgl du mir Przyk dy kàtów 0 B B W soêi Kàt wkl s y m mir wi kszà od 80 i miejszà od 60. Kàty wyuk e to kàty, któryh mir jest wi ksz àdê rów 0 i miejsz àdê rów 80, lu rów 60. Ni ej rzedstwimy

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

Ł Ą Ą Ń ć ź Ł Ł Ł Ś Ł ź Ź ć ź ć Ź ć Ź ć ć Ź ź ć ć Ó Ś Ę Ś Ś Ń ć ć ć ć Ś Ź Ź ć ć ć ć Ź ź Ę ć ć Ę ć ć ć ć Ź ć ć Ć ć Ę ź ź ć ź ć Ź Ę Ź ź ź Ę Ź Ę Ś Ą ć Ź ź ć ź ć Ę Ę ć Ę ć Ń Ś Ę Ó Ó ć Ó Ę Ź Ę Ę ź ć ć ć Ć

Bardziej szczegółowo

Ł ń ń ć ź Ą ć Ń ć Źń Ą ć ź ź ń ź ń ń ń Ą ń ź Ą ć Ą ń Ą ń ń Źń ń ć ń ń ć ń ć ń ź ź ź ź ć Źń ń Ń ć ć ć ń ć ń ź ń ć Ł ć ć Ł Ń ć Ń ć ń ć ć ć ź ć ć ńń ź ź ć ń ć ć Źń ń ź ć ń ń źć ć ń ć ń ć ć ń ń ć ć ź ń ć ć

Bardziej szczegółowo

Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż

Bardziej szczegółowo

FILTRY ANALOGOWE Spis treści

FILTRY ANALOGOWE Spis treści FILTRY AALOGOWE Spis treśi. Modele iltrów aalogowyh. Idealy iltr doloprzepustowy 3. Rzezywiste iltry doloprzepustowe 4. Stabilość iltrów 5. Filtr Butterwortha 6. Filtr Czebyszewa 7. Filtry eliptyze 8.

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury. Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Szkice rozwiązań zadań zawody rejonowe 2019

Szkice rozwiązań zadań zawody rejonowe 2019 XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.

Bardziej szczegółowo

Ó Ę Ę ź ź ź Ź ź ź ź Ż Ś Ś Ż Ś ź ź Ó Ś Ż ź ć Ść Ź Ż ć Ż Ć ć ź Ź Ź Ó Ś ć ć Ż Ć Ś ć ź Ż ć Ść ć ć Ż Ś Ż ć Ż ź ć ź Ż ź ć ć Ś Ź Ż ć ć ć ć ć Ś Ś Ż ź Ę Ś Ś Ś Ż ć ź ć ć ć Ż Ż ć ć Ż Ź ć Ś Ś Ś Ś Ź Ó Ś Ś ć Ś ć Ć ź

Bardziej szczegółowo

ć Ń Ż Ł ć ć Ś ź ŚĆ Ą ć ź ć ć Ż Ś ź Ą ć Ń Ć Ć ć ć Ą ć źć Ń Ł Ł Ł ź ć Ą ź Ś ź ć Ń Ń ć Ć Ć ź Ś ź ć Ś Ś Ł ź Ś Ś ź ć ź ć Ś ć Ś ć ć Ż ć Ż ź ź Ą ć Ł Ń Ć ć Ż Ś ć ć ć ć Ś ć ć ć Ą ć ć ź ć ć ć ć ć Ń Ż Ż Ż Ż Ś ć Ą

Bardziej szczegółowo

Ś ć ć Ż ć ć Ż ć ć ć ć ć Ę Ź Ż Ż ć Ę ć Ę Ź Ź Ó ć ć Ź ć Ó Ś ć Ź Ę Ę Ę ć Ń ć Ś ć Ż ć Ę Ę ć Ż Ł ź Ź Ś Ą ć Ą Ą ć Ą Ę ć ć Ę ć ć ć Ż ć Ź Ą Ł ć ć ć ć Ę ć Ź ć Ź ć Ą ć Ą ć ć ć ć Ą ć Ą ć Ż Ą ć ć ć ć ć ć Ść ć źć Ę

Bardziej szczegółowo

Ę Ę ć Ó ć ć Ń ź ź Ó Ć Ó ć ć ź ź ć ć ć Ń ć Ó ć ć ć ć Ó Ó ć Ó ć ć Ó Ę Ó ÓÓ Ę ć Ó ć ć Ó ć ć Ó Ę ć Ć Ó Ź Ę Ó Ó Ó ć Ó ź Ó ź Ń Ę Ó Ę Ę Ę ć ć Ć ć Ę Ę Ó Ó Ó ć ź Ń ć Ź ć ź ć ć Ę ć Ę ć ź ć Ó Ó Ę ć ć ć ź ć Ę ć Ź

Bardziej szczegółowo

ż Ą ż Ó Ę Ś ć ż ć ż ć Ś ż Ś ż Ń ż ż Ź ż Ź ż Ą Ś ż ć ć Ś Ą ż ż ż ź ż ż Ń Ę ż ż ć Ń ż Ń ż ż ź ż ż ż ż ż ź Ś ż ż ź ż Ś Ś ż ź ź ż ź Ą ż Ź ż ź ź Ź ź Ź ź ż Ź ż ź Ę ż ż Ę ż Ó Ń ż ź ć ż ź ż Ę ż ć ż ź ź ź ż ż

Bardziej szczegółowo

Ę Ś ź Ę Ę ć ć ź ć ć ć ć ć źć ć ć ć ć Ź ź Ś ć Ł Ę ć ć Ą ź ć Ó Ł ź ć ć Ź Ł ć ć ć ć ć ć ć ź ć ć ć ć ź Ź ć ź ć ć ź ć ź Ź Ź ź ź ź Ś ź ź ć ć Ś Ę ć ź ć ć Ś ć ć ć ć ź ź ć ź ć ć ć Ź Ź ć Ś Ę ć Ć ć ź ć Ę ć ć ć ć

Bardziej szczegółowo

Ł Ę Ł Ż ż Ń Ą Ó Ó ż Ś Ź ć ż ż ć Ć ż Ż ć Ó ż Ś Ó Ś ż Ó ż Ś ć ć Ż Ł ż ż ż ć ć ż Ó Ó Ę Ż Ó Ż ż Ó ż Ó Ź Ż ż Ó Ó ć Ó ż ż ć ż Ś Ż ć Ó ż Ś Ś ż ć ć Ó ż Ó Ó ż Ź Ę Ł Ż Ł Ź Ż ż Ó ż ż ż ż Ż ż ż Ż ż Ł ć Ż ż Ż ż Ó Ż

Bardziej szczegółowo

ć Ł ć ć ź Ą ć ć ć źć Ź Ź ŹĆ ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ł ć ć ć ć ć ć ć ŚĆ Ś ź ć ć ć Ć Ó Ć ć Ą Ł Ł Ł ź Ś Ł ć ć Ą Ą ź ć ć Ą ć ź ć ź ź ć ź ź Ą Ą Ń ć ź Ł ć Ć ć ź ć Ś ć ć ć ć ć ć ć Ś ć ć ć ć

Bardziej szczegółowo

Ł Ł Ź Ź ź ź ć ź ć Ę Ź Ś Ś ć ć Ś ć ć ć Ź ć źć ć ć ć ć Ź ć ć ć ć ć ć ź ć Ś ć ć Ą ć Ź ć Ś Ó Ź Ś ź ć ź Ś ć Ł Ą ć ć ć ć Ź Ź ć Ź ć ć ć Ź ź ć ć ć ć ć Ś ć ć ć ć ć Ł ć Ś ć Ź Ź Ź ć ć Ś Ś ć ć ć ź Ą ć ć ć ć ć ć ć

Bardziej szczegółowo

ń ć ć ń Ń ź ć ć ć ć ź ć ć ń ć źć ń ź ć ć ć ć ć Ę ć ń ć ć ć Ę ź ń ń ć ć ń ć ć ć ć ć ć ć ć ć ć ń ć ź ć ć ć ć ź ć ń ć ć ć ń ć ć ć Ń ć ź ć ć ń ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ź Ń ń ź ń ć ń ć ć ć Ę ć

Bardziej szczegółowo

Ó ż ń Ą ź ń ż ć Ó ń ć Ć Ą ż Ą ć Ł Ę Ę Ą ć Ó ź ć ć ć ń Ń Ą ć ć ż Ó ź Ł Ł Ę ć ż ć Ę Ł ć Ń Ą Ł Ł Ę Ł ć ż ż ż Ł ć ć Ę Ń Ę Ą ń Ą ń ń ż ż ń ż ź Ń ź ć ź ń Ó ń ć Ł Ą Ą ż ż ć Ó Ł ć ć ź Ó ź ź Ę ć ć ń źć Ą ż Ą ż

Bardziej szczegółowo

Ć Ć Ą ź ń ć ń Ź ń ć Ą ć ć ć Ę ć ń Ą Ą ź ń ź ń ń Ę ń ć ć Ę Ę ć Ę Ź Ź Ą Ę ń ń ń Ę ń ń Ą ń ń Ą Ą Ć Ą ć ń ć ń ć Ć ń ń Ą ń Ą Ą ć ć ź ź Ź ć ń ń Ą ń ń ń Ę Ą ć ń Ą ć Ą Ę ć ć Ę ń Ć Ę ń Ą Ź Ę ń Ę ń ń ć ć Ń ń Ą ń

Bardziej szczegółowo

Ł Ż ć Ę Ę Ę Ę Ż Ę Ź ć ć ć Ł Ż ć Ę ć Ł ć Ę ź Ż ć Ę ć ć Ł Ł ć ź Ż Ż Ż ć ć Ż ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć ć Ę Ę Ł ć Ś ć Ł Ż Ę ć ć ć Ż Ż Ę Ł Ę ć Ę ć ć ć ć ć Ę ć ć ć Ł ź Ż Ę Ż Ż ć Ę źć źć ź Ż Ł ć ć ć Ż Ę ź

Bardziej szczegółowo

Ł Ś ÓŻ Ż Ż Ż Ż Ś Ś Ę Ł ć Ą ŚĆ Ś Ą ć Ą Ś Ą Ś ź ć ź ć ć Ą ć Ą Ń ź ź ć Ą ć ć Ą ź Ę Ś Ą ź Ś ź Ą Ą ć Ę ć ź Ą ć Ą ć ć ć Ą Ą Ą Ą ŚĆ Ść ć Ń Ś ć ć Ę Ź ć Ę Ń ć Ć ć ć ć ć Ę Ń ć ć ć Ł ć Ą ć Ą Ą Ę Ć źć ć Ś ź Ę Ą Ś

Bardziej szczegółowo

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

Zadanie 3. (7 pkt.) Rozłożona kostka

Zadanie 3. (7 pkt.) Rozłożona kostka Zadanie 1. (7 pkt.) Mniej zy więej? Z sześioma kartami (trzema dodatnimi i trzema ujemnymi) szansa Pawła na wygraną Pawła 12/30, a Piotra 18/30. Z pięioma kartami (trzema dodatnimi i dwiema ujemnymi) szansa

Bardziej szczegółowo

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że AŁKA NIEOZNAZONA f - fukj określo w rzedzile E. Fukją ierwotą fukji f w rzedzile E zywy fukję F tką, że F N. fukją ierwotą fukji f = + R jest fukj F = + o F +, Zuwży, że fukje F = + + 5 i F = + też są

Bardziej szczegółowo

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb. Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

MATEMATYKA W EKONOMII I ZARZĄDZANIU

MATEMATYKA W EKONOMII I ZARZĄDZANIU MATEMATYA W EONOMII I ZARZĄDZANIU Wykłd - Alger iiow) eszek S Zre Wektore zywy iąg liz ) p 567) 5) itp W ekooii koszyk dór zpisuje się jko wektory Np 567) jko koszyk dór wyspie Hul Gul oŝe ozzć 5 jłek

Bardziej szczegółowo

1 Kryterium stabilności. 2 Stabilność liniowych układów sterowania

1 Kryterium stabilności. 2 Stabilność liniowych układów sterowania Kryterium stbilości Stbilość liiowych ukłdów sterowi Ukłd zmkięty liiowy i stcjory opisy rówiem () jest stbily, jeŝeli dl skończoej wrtości zkłócei przy dowolych wrtościch początkowych jego odpowiedź ustlo

Bardziej szczegółowo

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem

Bardziej szczegółowo

Rozmaite techniki dowodzenia nierówności

Rozmaite techniki dowodzenia nierówności Rozmite tehiki dowodzei ierówośi Pweł Józik 5 styzi 07 N kółku gimzjlym zjmujemy się rozdziłmi -6; kółku lielym zjmujemy się rozdziłmi 4-8; kółku olimpijskim zjmujemy sie rozdziłmi 9-. Dziś zkłdmy, że

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

Sprawozdanie z wykonania budżetu Miasta Białegostoku za 2011 r.

Sprawozdanie z wykonania budżetu Miasta Białegostoku za 2011 r. PREZYDENT MIST IŁEGOSTOKU Załącznik nr 1 do Zarządzenia Nr 1932/12 Prezydenta Miasta iałegostoku z dnia 30 marca 2012 r. Sprawozdanie z wykonania budżetu Miasta iałegostoku za 2011 r. IŁYSTOK MRZE 2012

Bardziej szczegółowo

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności. CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.

Bardziej szczegółowo

def T a JeŜeli granica po prawej stronie znaku równości jest skończona, to mówimy, Ŝe całka niewłaściwa def def

def T a JeŜeli granica po prawej stronie znaku równości jest skończona, to mówimy, Ŝe całka niewłaściwa def def CAŁKI NIEWŁAŚCIWE CAŁKI NIEWŁAŚCIWE IERWSZEGO ROZAJU e ł iewłśiw półprostej Nieh uj :[ R ęzie łowl przeziłh [T] l Ŝego T> Cłę iewłśiwą pierwszego rozju uji przezile [ eiiujem wzorem: e T T JeŜeli gri po

Bardziej szczegółowo

Symbol Newtona liczba wyborów zbioru k-elementowego ze zbioru n elementów. Symbol Newtona

Symbol Newtona liczba wyborów zbioru k-elementowego ze zbioru n elementów. Symbol Newtona B Głut Symol Newto Symol Newto licz wyoów ziou -elemetowego ze ziou elemetów ) ( A B B B t t żd dog: odciów do góy Ile ozwiązń m ówie: 4 6 gdzie i są ieujemymi liczmi cłowitymi? 9 84 4 4 5 Licz ozwiązń

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

Szeregi trygonometryczne Fouriera. sin(

Szeregi trygonometryczne Fouriera. sin( Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś

Bardziej szczegółowo