Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grafy hamiltonowskie, problem komiwojażera algorytm optymalny"

Transkrypt

1 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999

2 2 Grfy hmiltonowski Df. Cykl (rog) Hmilton jst to cykl (rog), w którym kży wirzchołk grfu występuj okłni rz. Grf jst hmiltonowski (półhmiltonowski), o il posi cykl (rogę) Hmilton. Przykł Grf hmiltonowski Grf półhmiltonowski Grf ni jst ni hmiltonowski ni półhmiltonowski

3 3 Grfy hmiltonowski Tw. (Or, 1960) Jśli G jst grfm prostym o n 3 wirzchołkch i g(u) + g(v) n l kżj pry nisąsinich wirzchołków u i v, to grf G jst hmiltonowski. Dowó: Złóżmy, ż istnij grf G o ponych złożnich l ni jst hmiltonowski. Możmy złożyć, ż G posi rogę Hmilton v 1 v 2... v n orz {v 1,v n } E(G). Stą wynik, ż g(v 1 ) + g(v n ) n to ozncz, ż istnij inks i tki, ż {v 1,v i } E(G) orz {v i-1, v n } E(G), co pokzno n rysunku. To prowzi o sprzczności, gyż v 1 v 2... v i-1 v n v n-1... v i v 1 jst cyklm Hmilton. v 1 v 2 v 3 v i-1 v i v n-2 v n-1 v n

4 4 Grfy hmiltonowski Wniosk (Dirc, 1952) Jśli G jst grfm prostym o n 3 wirzchołkch i g(v) n/2 l kżgo wirzchołk v, to G jst hmiltonowski. Dowó: Wynik z poprznigo twirzni, gyż g(u) + g(v) n l kżj pry (równiż nisąsinich) wirzchołków. Uwg Problm polgjący n stwirzniu czy ny grf G jst hmiltonowski jst NP-zupłny. Ozncz to, ż ni są znn fktywn (ziłjąc w czsi wilominowym) lgorytmy rozwiązując tn problm. Ni jst równiż znn twirzni pojąc wrunki koniczn i osttczn n to, by G był hmiltonowski.

5 5 Problm komiwojżr Dny jst zbiór mist. Komiwojżr chc owizić wszystki mist (kż okłni rz) i powrócić o punktu wyjści. Problm polg n znlziniu njkrótszj trsy o tj włsności. Zfiniujmy powyższy problm w języku torii grfów. Nich bęzi ny grf płny G. Zkłmy, ż z kżą krwęzią i jst skojrzon jj wg (ługość) oznczn lj przz w i. Rozwiąznim problmu komiwojżr jst tki cykl Hmilton, którgo sum wg krwęzi jst minimln. Σ = 26 Przykł

6 6 Problm komiwojżr Uwgi problm komiwojżr jst NP-truny, co ozncz, ż ni są znn lgorytmy o wilominowj złożoności obliczniowj rozwiązując tn problm (przypuszczlni tki ni istniją) w prktyc jstśmy zmuszni posługiwć się wilominowymi lgorytmmi przybliżonymi, tzn. tkimi, któr szybko znjują rozwiązni, któr jst w przybliżniu równ optymlnmu Przykł Jnym z możliwych lgorytmów okłnych jst sprwzni wszystkich możliwych cykli Hmilton i wybrni njkrótszgo. Wą tkigo pojści jst to, ż liczb cykli jst zbyt uż, gyż l n-wirzchołkowgo grfu wynosi (n!)/2. Stą, jśli ysponujmy komputrm sprwzjącym milion prmutcji n skunę, to: n = 10 ilość cykli = (10!)/2 = czs obliczń = 1.8 s n = 20 ilość cykli = (20!)/ czs obliczń 40 tys. lt

7 7 Problm komiwojżr lgorytm optymlny ni jst znny żn wilominowy optymlny lgorytm l tgo problmu i jst mło prwopoobn, ż tki lgorytm w ogól istnij omówiony lj lgorytm polg n przszukiwniu cłj przstrzni rozwiązń poczs obliczń n biżąco uktulnin jst oln oszcowni n ługość optymlnj trsy, zięki czmu wimy, których rozwiązń częściowych n pwno ni się rozszrzyć n rozwiązni optymln i część obliczń możn pominąć rozwżmy przypk nico ogólnijszy, w którym ny jst n wjściu obciążony grf skirowny

8 8 Drzwo przszukiwń Df. Drzwo przszukiwń finiujmy jko zkorznion rzwo, którgo kży wirzchołk opowi pwnmu pozbiorowi rozwiązń. Pozbiory rozwiązń opowijąc synom węzł wynikją z sposobu poziłu zbioru rozwiązń ojc. Uwg: Dl problmu komiwojżr przyjmujmy nstępującą postć rzw przszukiwń: kży wirzchołk opowi rozwiązniom problmu, któr zwirją pwn łuki i jnoczśni innych wybrnych łuków ni zwirją (np. pwnmu wirzchołkowi opowiją optymln trsy zwirjąc łuki (,b),(,h) orz ni zwirjąc łuków (,),(,) i (b,) ) Kży węzł m wóch synów. Po wybrniu nowgo łuku, jn z synów opowi rozwiązniom o ogrnicznich nłożonych w ojcu orz zwirjących, ntomist rugi ni zwirjących.

9 9 Oszcowni oln Uwg: Poczs rlizcji lgorytmu (tzn. poczs trwrsowni rzw przszukiwń) pmiętmy wrtość njlpszgo znlziongo otychczs rozwiązni. Oznczmy ją przz min_sol. Uwg: Z kżym wirzchołkim v rzw przszukiwń jst związn zminn LB. Jst to liczb, któr stnowi oszcowni oln n wrtość kżgo rozwiązni nlżącgo o tgo wirzchołk. Wówczs: jśli LB > min_sol, to wimy, ż ni wrto przszukiwć porzw zkorzniongo w wirzchołku v, jśli LB = min_sol, to porzwo być moż zwir rozwiązni orównując otychczsowmu njlpszmu. Jśli zni polg n wyznczniu owolngo rozwiązni optymlngo, to ni przszukujmy porzw zkorzniongo w wirzchołku v jśli LB < min_sol, to nlży przszukiwć porzwo zkorznion w v (być moż ni cł).

10 10 Rukcj mcirzy Lmt Jśli M jst mcirzą sąsiztw grfu G, to: o owolngo cyklu Hmilton nlży okłni jn lmnt z kżgo wirsz M i okłni jn z kżj kolumny jśli o wszystkich lmntów w wybrnym wirszu (kolumni) ojmimy stłą, to ługość kżgo cyklu Hmilton jst o mnijsz o ługości tgo smgo cyklu, lcz prz ojęcim stłj jśli o wirszy i kolumn wilokrotni ojmimy stł tk,by kży wirsz i kolumn zwirły co njmnij jno zro, to sum ojętych liczb stnowi oln oszcowni optymlngo rozwiązni. Df. Procs ojmowni stłych o wirszy (kolumn) mcirzy sąsiztw nzywmy rukcją. Wniosk Jśli łuk (i,j) nlży o optymlnj trsy komiwojżr znlzionj n postwi zrukownj mcirzy sąsiztw, to (i,j) nlży rowniż o optymlnj trsy w wyjściowym grfi.

11 11 Algorytm rukcji procur Ruc( M ) bgin r := 0; for i := 1 to n o bgin min_row := njmnijszy lmnt w i-tym wirszu; if ( min_row > 0 ) thn bgin ojmij min_row o kżgo lmntu w wirszu i; r := r + min_row; n n; for i := 1 to n o bgin min_col := njmnijszy lmnt w i-tj kolumni; if ( min_col > 0 ) thn bgin ojmij min_col o kżgo lmntu w wirszu i; r := r + min_col; n n; rturn r; n Zminn: M mcirz sąsiztw rozmiru n r sum ojętych wrtości o wirszy i kolumn (jk wynik z poprznigo lmtu, jst to oln oszcowni n ługość cyklu w M)

12 12 Przykł rukcji M= b c b c b c b c r = = 80 Stą, o wrtości LB potomków węzł omy 80 b c b c

13 13 Krytrium wyboru łuku procurfineg( M, r, c ) bgin mx := 1; for i := 1 to n o for j := 1 to n o if Mi,j = 0 thn bgin min_r := wrtość njmnijszgo lmntu w wirszu i z pominięcim Mi,j; min_c := wrtość njmnijszgo lmntu w kolumni j z pominięcim Mi,j; if min_r + min_c > mx thn bgin mx := min_r + min_c; (r,c) := (i,j); n n; rturn mx; n Zminn: M mcirz sąsiztw n rozmir M (r,c) łuk o poziłu zbioru rozwiązń Uwg: Aby utworzyć potomków w rzwi przszukiwń, wybirmy tki łuk, który powouj njwiększy wzrost olngo oszcowni w prwym porzwi. Wrtość, o którą wzrośni LB wyznczmy w zminnj mx.

14 14 Wybór łuku - przykł min_r+min_c=5+3=8 2+0=2 Zrukow. M= 0+0=0 b c b c =12 0+1=1 3+5=8 o poziłu zbioru rozwiązń wybirmy łuk (c,) lwy potomk opowi wszystkim rozwiązniom (cyklom) zwirjącym łuk (c,) prwy potomk zwir wszystki rozwiązni bz (c,)

15 15 Tworzni lwgo syn złóżmy, ż wybrno łuk (c,) w clu utworzni potomków wirzchołk v, lwy syn zwir wówczs zbiór rozwiązń o tych smych ogrnicznich, co w przypku v orz otkowo zwirjących łuk (c,), ozncz to, ż możmy zmnijszyć rozmir mcirzy sąsiztw o 1 poprzz usunięci c-tgo wirsz i -tj kolumny, koljn uproszczni mcirzy polg n zblokowniu łuku (,c) tzn. lmnt mcirzy n przcięciu -tgo wirsz i c-tj kolumny przyjmuj wrtość niskończoność, blokujmy równiż łuk, który tworzy cykl wrz z łukmi onymi poprznio o rozwiązni, wrtość LB wyliczmy ojąc o wrtości LB ojc liczbę r wyliczoną w procurz Ruc

16 16 Dl węzł wyjściowgo v (tutj korzń rzw) LB(v)=0 Zrukow. M= b c Lwy syn - przykł b c (usunięci wirsz c i kolumny ) b b c (zblokowni łuku (,c)) Wrtość oszcowni olngo LB(v l ) l lwgo potomk wynosi ztm LB(v)+r = 0+80 b b c (blokowni łuków tworzących cykl z otychczs wybrnymi ) b b c

17 17 Tworzni prwgo syn złóżmy, ż wybrno łuk (c,) w clu utworzni potomków wirzchołk v, prwy syn zwir wówczs zbiór rozwiązń o tych smych ogrnicznich, co w przypku v orz otkowo ni zwirjących łuku (c,), blokujmy więc łuk (c,) poprzz wpisni wrtości niskończoność n przcięciu c-tgo wirsz i -tj kolumny w mcirzy sąsiztw ni nstępuj zmnijszni rzęu mcirzy sąsiztw w tym przypku wrtość LB wyliczmy ojąc o wrtości LB ojc liczbę r wyliczoną w procurz Ruc orz wrtość wrtość mx wyliczoną w procurz FinEg

18 18 Prwy syn - przykł Dl węzł wyjściowgo r (tutj korzń rzw) LB(r)=0 Zrukow. M= b c b c (zblokowni łuku (c,)) Wrtość oszcowni olngo LB(r p ) l prwgo potomk wynosi ztm LB(r) + r + mx = = 92 b c b c

19 19 Wrunki końc rkurncji Przypk 1: wrtość LB w wirzchołku v jst większ lub równ o njlpszgo znlziongo otychczs rozwiązni. Wówczs rzwo zkorznion w v ni jst przszukiwn. Przypk 2: M jst stopni 2. M on wówczs jną z wóch postci: M= + 0 lub 0 + M= Ztm bz wzglęu n postć mcirzy ni m wyboru co o tgo jki łuki nlży włączyć o końcowgo rozwiązni. Jśli kolumny opowiją wirzchołkom w,x ntomist wirsz u,v to: jśli Mu,w = 0, to o cyklu komiwojżr nlżą łuki (u,w), (v,x) jśli Mu,x = 0, to o cyklu komiwojżr nlżą łuki (v,w), (u,x)

20 20 Algorytm procur TrvrsTr( M, C, LB ) bgin r := Ruc( M ); if LB + r < min_sol thn if C = n 2 thn bgin ołącz w łuki o C i uktulnij min_sol orz zpmiętj now rozwiązni jśli jst lpsz o otychczsowych; n ls bgin mx := FinEg( M, c, ); TrvrsTr( M *, C {(c,)}, LB + r ); if LB + r + mx < min_sol thn bgin Mc, := + ; TrvrsTr(M,C, LB + r ); Mr,c := 0; n n; otwórz mcirz M o postci sprz rukcji; n Zminn: M mcirz sąsiztw C krwęzi nlżąc o cyklu LB wrtość olngo oszcowni l ngo węzł M * powstj z M poprzz usunięci c-tgo wirsz, -tj kolumny i zblokowni łuku (,c) i łuków tworząych cykl z C {(c,)} min_sol inicjlni równ +

21 Przykł M= b c b c LB=0 r = 35 mx=34 21 LB=35 r = 35 mx=5 LB=35 r = 0 mx=41 b c b c b (b,) (,c) > min_sol LB=69 r = 34 mx=23 b c > min_sol b c > min_sol LB=70 r = 0 b 0 0 min_sol =70 (c,) LB+r+mx = =75> min_sol=70 M mcirz wyjściow (prz rukcją), ntomist w wszystkich potomkch pokzno mcirz po rukcji

22 22 Złożoność Czs ziłni procury Ruc wynosi O(n 2 ) Czs ziłni procury FinEg wynosi O(n 3 ) Zpmiętni i otworzni mcirzy to oprcj rzęu O(n 2 ) Zpmiętywni nowgo njlpszgo rozwiązni w czsi O(n) Ozncz to, ż rlizcj lgorytmu TrvrsTr w obrębi jngo węzł wymg czsu O(n 3 ) Złożoność cłgo lgorytmu możn oszcowć ztm przz O(f(n)n 3 ), gzi f(n) jst liczbą węzłów rzw poszukiwń owiznych przz procurę TrvrsTr. Liczb wykonnych obliczń zlży o konkrtnych nych wjściowych i w psymistycznym przypku jst wykłnicz.

Grafy hamiltonowskie, problem komiwojaera algorytm optymalny

Grafy hamiltonowskie, problem komiwojaera algorytm optymalny 2 Grfy hmiltonowski, prolm komiwojr lgorytm optymlny 3 Grfy hmiltonowski Df. Cykl (rog) Hmilton jst to ykl (rog), w którym ky wirzhołk grfu wystpuj okłni rz. Grf jst hmiltonowski (półhmiltonowski), o il

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Dnyh. Gry. Drzwo rozpinj. Minimln rzwo rozpinj. Bożn Woźn-Szzśnik wozn@gmil.om Jn Długosz Univrsity, Poln Wykł 9 Bożn Woźn-Szzśnik (AJD) Algorytmy i Struktury Dnyh. Wykł 9 1 / 4 Pln

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9 ELEMENTY PROSTOKĄTNE nomcj tcniczn 1 Knły 2 Koln 3 Tójniki 5 Oszki Czwóniki 7 Pzjści 8 ELEMENTY DACHOWE Postwy cow 9 Wyzutni 11 Czpni powitz 13 Wywitzki 15 Koln czpn 15 NOX STANLESS STEEL 58-512 St Kminic

Bardziej szczegółowo

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie Stron 1 z 7 Połązni Instrukj otyzą systmu Winows w przypku rukrki połązonj loklni Uwg: Przy instlowniu rukrki połązonj loklni, jśli ysk CD-ROM Oprogrmowni i okumntj ni osługuj ngo systmu opryjngo, nlży

Bardziej szczegółowo

5. Zadania tekstowe.

5. Zadania tekstowe. 5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość

Bardziej szczegółowo

Klasa problemów #P. Paweł Gora 11/20/2008 1

Klasa problemów #P. Paweł Gora 11/20/2008 1 Kls prolmów #P Pwł Gor /2/28 Agn Prolmy klsy #P Prolmy #P-zupłn Przykł prolmu #PC: zlizni roszrzń liniowyh Przykłow lgorytmy zlizni rozszrzń liniowyh /2/28 2 Kls polmów #P Kls #P kls prolmów zlizni związnyh

Bardziej szczegółowo

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Wyznacznik macierzy. - wyznacznik macierzy A

Wyznacznik macierzy. - wyznacznik macierzy A Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb. Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej

Bardziej szczegółowo

Załącznik nr 2 LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ

Załącznik nr 2 LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ Minimlny zkrs pytń. List moż yć rozszrzn przz KK w zlżnośi o wymgń ngo progrmu EWT LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ lp. Nr projktu Tytuł projktu Nzw nfijnt Okrs rlizji

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

4.6. Gramatyki regularne

4.6. Gramatyki regularne 4.6. Grmtyki regulrne G = < N,T,P,Z > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i) U xv x T * U,V N ( ii) U x G = < N,T,P,Z > jest grmtyką prwostronnie regulrną, jeśli jej produkcje

Bardziej szczegółowo

Wynik bezpośredniego spotkania między zainteresowanymi drużynami w przypadku 3 lub więcej drużyn tworzona jest małą tabele

Wynik bezpośredniego spotkania między zainteresowanymi drużynami w przypadku 3 lub więcej drużyn tworzona jest małą tabele REGULAMIN I PRZEPISY GRY W PIŁKĘ NOŻNA OBOWIĄZUJĄCE PODCZAS V EDYCJI LIGI LET S MOVE WIOSNA 2013 Rozgrywk Lt s mov mją hrktr mtorsk tzn., h uzstnkm n mogą yć zwony zynn grjąy lu zgłoszn o rozgrywk płkrskh

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY!

Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY! Frgmnt rmowy uostępniony przz Wywnictwo w clch promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY! Wszlki prw nlżą o: Wywnictwo Zilon Sow Sp. z o.o. Wrszw 2015 www.zilonsow.pl Prw łoń, lw łoń. Przyłóż obywi łoni

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

Badanie regularności w słowach

Badanie regularności w słowach Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

5. WYKORZYSTANIE GRAFÓW PRZEPŁYWU SYGNAŁÓW DO BUDOWY MODELI MATEMATYCZNYCH

5. WYKORZYSTANIE GRAFÓW PRZEPŁYWU SYGNAŁÓW DO BUDOWY MODELI MATEMATYCZNYCH 5. Worzstni grów rzłwu sgnłu o uow moli mtmtznh 5. WYKORZYSTANIE RAFÓW PRZEPŁYWU SYNAŁÓW DO UDOWY MODELI MATEMATYCZNYCH 5.. Wrowzni o grów rzłwowh Njzęśij sotną ostią grizną ułów utomti są shmt struturln

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Macierzy rzadkie symetryczne

Macierzy rzadkie symetryczne Mcierzy rzkie symetryczne Istnieje wielu problemów technicznych i nukowych, w których zstosownie formlizcji mtemtycznej oprowzi o ziłń n mcierzmi rzkimi symetrycznymi. To są zni mechniki, hyromechniki,

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

KSZTAŁTKI DLA SPECJALNYCH ZASTOSOWAŃ TRÓJNIKI I REDUKCJE MIMOŚRODOWE

KSZTAŁTKI DLA SPECJALNYCH ZASTOSOWAŃ TRÓJNIKI I REDUKCJE MIMOŚRODOWE KSZTŁTKI DL SPECJLNYCH ZSTOSOWŃ 2 3 Pryzyjn rozwiązni dl szzgólnyh wymgń! TRÓJNIKI Z MIMOŚRODOWYM DOPŁYWEM. Ksztłtki kilihow/ zkilihow Siodł kilihow/ zkilihow.. Klsy nośnośi w zlżnośi od potrz klint Zminn

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu 24 mj 2012 r. Ankit solwnt Wyni I Sttus oowiązująy Symol Stron 1/5 ANKIETA ABSOLWENTA Losy zwoow solwntów PWSZ w Riorzu Dro Asolwntko, Droi Asolwni! HASŁO DO ANKIETY: Prosimy o okłn przzytni pytń i zznzni

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 2005

UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 2005 Jnusz Sierosłwski, Piotr Jbłoński Instytut Psychitrii i Neurologii Krjowe Biuro s. Przeciwziłni Nrkomnii UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 25 BADANIA ANKIETOWE W SZKOŁACH NA TEMAT UŻYWANIA

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2 6.7. ntrukcj zczegółow Grup:... 4.. 6.7. Cel ćwiczeni Celem ćwiczeni jet zpoznnie ię z metodmi pomirowymi i przepimi dotyczącymi ochrony przeciwporżeniowej w zczególności ochrony przed dotykiem pośrednim.

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

12. CZWÓRNIKI PARAMETRY ROBOCZE I FALOWE CZWÓRNIK U

12. CZWÓRNIKI PARAMETRY ROBOCZE I FALOWE CZWÓRNIK U OBWODY SYGNAŁY Wykłd : Czwórniki prmtry robocz i flow. CWÓRN PARAMETRY ROBOCE FALOWE.. PARAMETRY ROBOCE Jżli do jdnych wrót czwórnik dołączono źródło wymuszń, ntomist drui wrot iążono dwójnikim bzźródłowym,

Bardziej szczegółowo

Zastosowanie matematyki w ekonomii

Zastosowanie matematyki w ekonomii Jrosł Kokoszk Zstosoni mtmtki konomii Copright b Colorul Mdi Kopioni, ksroni, umiszczni ormi lktronicznj Intrnci bz konsultcji z łścicilm pr zbronion! Spis trści kliknij n intrsując Cię tmt. Podsto idomości.....

Bardziej szczegółowo

2. Regulamin uchwala Rada Nadzorcza na podstawie 69 Statutu Spółdzielni Mieszkaniowej Arka we Wrocławiu.

2. Regulamin uchwala Rada Nadzorcza na podstawie 69 Statutu Spółdzielni Mieszkaniowej Arka we Wrocławiu. Rgulmin rmontów orz wykorzystywni śroków z funuszu rmontowgo Spółzilni Miszkniowj Ark w Wrołwiu złąznik o uhwły 67/03 I Postnowini ogóln 1. Rgulmin okrśl oowiązki Spółzilni i jj Członków w zkrsi nprw wwnątrz

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Prezentacja kierunków pracy naukowej

Prezentacja kierunków pracy naukowej Prznj kirunków pry nukowj Driusz Drniowski Kr Algorymów i Molowni Sysmów Polihnik Gńsk Kirunki wz Uporząkown kolorowni grów Szrgowni zń w śroowisku wiloprosorowym Wyszukiwni lmnów w zęśiowyh porząkh Przszukiwni

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego

Bardziej szczegółowo

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów Młodzieżowe Uniwersytety Mtemtyczne Projekt współfinnsowny przez Unię Europejską w rmch Europejskiego Funduszu Społecznego Hipotez Černego, czyli jk zciekwić uczni teorią grfów Adm Romn, Instytut Informtyki

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (WE) NR 1223/2009 z dnia 30 listopada 2009 r. dotyczące produktów kosmetycznych

ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (WE) NR 1223/2009 z dnia 30 listopada 2009 r. dotyczące produktów kosmetycznych 22.12.2009 Dzinnik Urzęowy Unii Europjskij L 342/59 ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (WE) NR 1223/2009 z ni 30 listop 2009 r. otyzą prouktów kosmtyznyh (wrsj przksztłon) (Tkst mjąy znzni

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019

Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019 Kolokwium główne Wrint A Przetworniki lektromszynowe st. n. st. sem. V (zim 018/019 Trnsormtor Trnsormtor trójzowy m nstępujące dne znmionowe: S 00 kva 50 Hz HV / LV 15 ±x5% / 0,4 kv poł. Dyn Pondto widomo,

Bardziej szczegółowo

Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia

Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia Wykªd 1 Mcierze i wyznczniki 11 Mcierze podstwowe okre±leni Denicj 1 Mcierz (rzeczywist ) wymiru m n, gdzie m, n N, nzywmy prostok tn tblic zªo»on z m n liczb rzeczywistych ustwionych w m wierszch i n

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykłd 6 RBD Relcyjne Bzy Dnych Bzy Dnych - A. Dwid 2011 1 Bzy Dnych - A. Dwid 2011 2 Sum ziorów A i B Teori ziorów B A R = ) ( Iloczyn ziorów A i B ( ) B A R = Teori ziorów Różnic ziorów ( A) i B Iloczyn

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Sieæ koordynatorów pobierania i przeszczepiania narz¹dów w Polsce w 2013 r.

Sieæ koordynatorów pobierania i przeszczepiania narz¹dów w Polsce w 2013 r. Siæ kooryntorów poirni i przszzpini nrz¹ów w Pols w 2013 r. N koni 2013 r. unkjê trnsplntyjngo p³ni³o w Pols ³¹zni 274 osoy. Njwiêksz¹ zœæ, 228 osó, stnowili szpitlni kooryntorzy poirni nrz¹ów. Kooryntorzy

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo