KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p"

Transkrypt

1 KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni ( + ) = + PROENTY Poent Ułmek o minowniku 00 p p% = 00 Olizeni poentowe Oliznie poentu dnej lizy Oliznie lizy n podstwie dnego jej poentu Oliznie, ile poent jednej lizy stnowi dug liz Oliznie, o ile poent jedn liz jest większ (mniejsz) od dugiej lizy p% lizy = p 00 Liz x, któej p% jest ówne 00 x = p Liz stnowi > 00% lizy Liz jest o - 00% większ od lizy Liz jest o - 00% mniejsz od lizy POTĘGI Potęg n wykłdnik potęgi Potęg o wykłdniku ntulnym podstw potęgi n N n > n = n = = n = 0 i 0 0 = n zynników wwwzdjmypl intenetowy sewis dl gimnzjlistów

2 Potęg o wykłdniku łkowitym ujemnym Dl 0 i n N -n = n W szzególnośi - = To znzy: - jest odwotnośią lizy Notj wykłdniz Zpis lizy dodtniej w posti ilozynu, w któym piewszy zynnik jest lizą nie mniejszą od i mniejszą od 0, dugi zynnik jest łkowitą potęgą lizy 0 k ( 0, gdzie < 0 i k jest lizą łkowitą) Dziłni n potęg Twiedzenie o ilozynie potęg o jednkowy podstw n i k i ( 0, gdy n 0 lu k 0) n k = n+k Twiedzenie o ilozie potęg o n i k i 0 jednkowy podstw n n-k = k Twiedzenie o ilozynie potęg o jednkowy wykłdnik n i ( 0 i 0, gdy n 0) n n =( ) n Twiedzenie o ilozie potęg o n i 0 i ( 0, gdy n 0) jednkowy wykłdnik n n = n Twiedzenie o potęgowniu potęgi n i k i ( 0, gdy n 0 lu k 0) ( n ) k nk = PIERWISTKI Piewistek liz podpiewistkow symol piewistk dugiego stopni (kwdtowego) liz podpiewistkow Piewistek dugiego stopni 0 i 0 symol piewistk tzeiego stopni =, gdy = Piewistek tzeiego stopni =, gdy = Dziłni n piewistk 0 Twiedzenie o ilozynie piewistków dugiego stopni Twiedzenie o ilozynie piewistków tzeiego stopni Twiedzenie o ilozie piewistków dugiego stopni = i ( ) = = i ( ) = 0 i 0 = = 0 i > 0 wwwzdjmypl intenetowy sewis dl gimnzjlistów

3 Twiedzenie o ilozie piewistków tzeiego stopni = 0 = WIELKOŚI WPROST I ODWROTNIE PROPORJONLNE Wielkośi wpost popojonlne x, y wielkośi wpost popojonlne, Dwie wielkośi zmienne tkie, Ŝe w x = k, gdzie k jest wielkośią stłą i poesie zmin ty wielkośi i y y 0 iloz pozostje stły k - współzynnik popojonlnośi Popoj Równość dwó stosunków Popoj = 0, d 0 d, d wyzy skjne, - wyzy śodkowe Ilozyn wyzów skjny jest ówny ilozynowi wyzów śodkowy, to znzy: d = d Wielkośi odwotnie popojonlne Dwie wielkośi zmienne tkie, Ŝe w poesie zmin ty wielkośi i ilozyn pozostje stły x, y wielkośi odwotnie popojonlne, gdzie jest wielkośią stłą x y = WIELOKĄTY Tójkąt Wunek tójkąt Sum długośi dowolny dwó oków tójkąt jest większ od długośi tzeiego oku + > + > + > Tójkąt ównoozny Wszystkie oki ównej długośi Postokąt - wszystkie kąty poste i dwie py oków ównej długośi, - pzekątne ównej długośi i dzielą się n połowy Ow = + + P =,, długośi oków długość wysokośi popowdzonej do oku o długośi α + β + γ =80 = Ow = P = 4 długość oku długość wysokośi Ow = + P =, długośi oków α γ β wwwzdjmypl intenetowy sewis dl gimnzjlistów

4 Kwdt - wszystkie kąty poste i wszystkie oki ównej długośi, - pzekątne ównej długośi, postopdłe i dzielą się n połowy Równoległook - dwie py oków ównoległy i ównej długośi, - pzekątne dzielą się n połowy Ow = 4 P = P = = długość oku długość pzekątnej Ow = + P = =, długośi oków, długośi wysokośi Rom - wszystkie oki jednkowej długośi, - pzekątne postopdłe i dzielą się n połowy Ow = 4 P= P = d długość oku długość wysokośi, d długośi pzekątny d Deltoid - dwie py sąsiedni oków ównej długośi, - pzekątne są postopdłe, - punkt pzeięi pzekątny dzieli o njmniej jedną z ni n połowy Ow = + P = d, długośi oków, d długośi pzekątny d Tpez - o njmniej jedn p oków ównoległy Sześiokąt foemny - wszystkie oki jednkowej długośi i wszystkie kąty o ówny mi Ow = d + P =, długośi podstw, d długośi mion długość wysokośi Ow = 6 P = d długość oku 0 Włsnośi tójkątów postokątny o kąt osty 0, 60 oz 45, 45 Tójkąt postokątny ównomienny = wwwzdjmypl intenetowy sewis dl gimnzjlistów

5 Tójkąt postokątny kąt osty 0, 60 o = = 0 60 Wielokąt foemny - wszystkie oki ównej długośi, - wszystkie kąty wewnętzne o ówny mi α - mi kąt wewnętznego n kąt foemnego, gdzie n N i n > o o 60 α = 80 - n k liz pzekątny n kąt wypukłego, gdzie n N i n > n (n-) k = s sum mi kątów wewnętzny n kąt wypukłego, gdzie n N i n > s = (n ) 80 KOŁO Koło Ow = π P= π długość pomieni koł Liz π Stosunek długośi okęgu do długośi śedniy tego okęgu L π = d L długość okęgu d długość śedniy okęgu π,4 lu Pieśień kołowy P = π(r ) R długość pomieni koł długość pomieni koł R > π 7 R Długość łuku okęgu π α ł = o 80 α mi kąt śodkowego (w stopni) długość pomieni okęgu ł długość łuku okęgu α ł wwwzdjmypl intenetowy sewis dl gimnzjlistów

6 Pole wyink kołowego α π Pw = o 60 α mi kąt śodkowego (w stopni) długość pomieni koł P w pole wyink kołowego α Okąg opisny n tójkąie ównooznym i okąg wpisny w tójkąt ównoozny = 6 R = R = R + R = długość oku tójkąt ównooznego długość pomieni okęgu wpisnego w tójkąt ównoozny R długość pomieni okęgu opisnego n tójkąie ównooznym długość wysokośi tójkąt ównooznego TWIERDZENIE PITGORS JeŜeli tójkąt jest postokątny, to sum kwdtów długośi pzypostokątny jest ówn kwdtowi długośi pzeiwpostokątnej JeŜeli = 90, to + = TWIERDZENIE ODWROTNE DO TWIERDZENI PITGORS JeŜeli w tójkąie sum kwdtów JeŜeli + =, długośi dwó oków jest ówn to kwdtowi długośi oku tzeiego, = 90 to tójkąt jest postokątny TWIERDZENIE TLES JeŜeli mion kąt pzetniemy kilkom postymi ównoległymi, to odinki wyznzone pzez te poste n jednym mieniu kąt są popojonlne do odpowiedni (leŝąy między tymi smymi postymi ównoległymi) odinków wyznzony pzez te poste n dugim mieniu kąt JeŜeli D, to O = O D lu O = O D O D wwwzdjmypl intenetowy sewis dl gimnzjlistów

7 TWIERDZENIE ODWROTNE DO TWIERDZENI TLES JeŜeli mion kąt pzetniemy JeŜeli kilkom postymi tk, Ŝe odinki O wyznzone pzez te poste n =, O D jednym mieniu kąt są popojonlne do odpowiedni to O odinków wyznzony pzez te D poste n dugim mieniu kąt, to te poste są ównoległe D EY PRZYSTWNI TRÓJKĄTÓW e (ok, ok, ok) JeŜeli oki jednego tójkąt mj tkie sme długośi jk odpowiednie oki dugiego tójkąt, to te tójkąty są pzystjąe JeŜeli = i = i =, to e k (ok, kąt, ok) JeŜeli dw oki jednego tójkąt mją tkie sme długośi jk odpowiednie oki dugiego tójkąt i kąty między tymi okmi mją jednkowe miy, to te tójkąty są pzystjąe e kk (kąt, ok, kąt) JeŜeli ok jednego tójkąt m tką smą długość jk ok dugiego tójkąt i kąty jednego tójkąt leŝąe pzy tym oku mją tkie sme miy jk odpowiednie kąty dugiego tójkąt, to te tójkąty są pzystjąe JeŜeli = i = i =, to JeŜeli = i = i =, to EY PODOIEŃSTW TRÓJKĄTÓW e kk (kąt, kąt) JeŜeli dw kąty jednego tójkąt są ówne dwóm kątom dugiego tójkąt, to te tójkąty są podone JeŜeli = i =, to wwwzdjmypl intenetowy sewis dl gimnzjlistów

8 e (ok, ok, ok) JeŜeli długośi oków jednego tójkąt są popojonlne do odpowiedni oków dugiego tójkąt, to te tójkąty są podone JeŜeli = =, to e k (ok, kąt, ok) JeŜeli dw oki jednego tójkąt są popojonlne do dwó oków dugiego tójkąt oz kąty zwte między tymi okmi mją tę smą mię to te tójkąty są podone JeŜeli = oz = to Stosunek owodów figu podony JeŜeli figu f jest podon do figuy f w skli k, to stosunek owodu figuy f do owodu figuy f jest ówny skli podoieństw Owf f f w skli k, to k Ow = f Stosunek pól figu podony JeŜeli figu f jest podon do figuy f w skli k, to stosunek pol figuy f do pol figuy f jest ówny kwdtowi skli podoieństw Pf f f w skli k, to k P = f Stosunek ojętośi ył podony JeŜeli ył f jest podon do yły f w skli k, to stosunek ojętośi yły f do ojętośi yły f jest ówny sześinowi skli podoieństw Vf f f w skli k, to k V = f POL POWIERZNI I OJĘTOSI RYŁ Gnistosłup posty P = P p + P P pole powiezni łkowitej P p pole podstwy P pole powiezni oznej V = P p wysokość gnistosłup podstw wysokość Postopdłośin P = ( + + ) V =,, długośi kwędzi postopdłośinu wwwzdjmypl intenetowy sewis dl gimnzjlistów

9 Sześin P = 6 V = = d = długość kwędzi sześinu długość pzekątnej śiny sześinu d długość pzekątnej sześinu Gnistosłup pwidłowy zwookątny P = + 4 V = d długość kwędzi podstwy wysokość gnistosłup Gnistosłup pwidłowy tójkątny P = + 4 V = 4 długość kwędzi podstwy wysokość gnistosłup Ostosłup P = P p + P P pole powiezni łkowitej P p pole podstwy P pole powiezni oznej V = P p wysokość ostosłup Ostosłup pwidłowy zwookątny P = + 4 = + wysokość podstw V = długość kwędzi podstwy wysokość ostosłup wysokość śiny oznej Ostosłup pwidłowy tójkątny P = + 4 V = = 4 4 długość kwędzi podstwy wysokość ostosłup wysokość śiny oznej wwwzdjmypl intenetowy sewis dl gimnzjlistów

10 zwoośin foemny P = 4 4 V = 6 = = długość kwędzi zwoośinu foemnego wysokość zwoośinu foemnego Wle P = P p + P P pole powiezni łkowitej P p pole podstwy P pole powiezni oznej V = P p wysokość wl P p = π P = π P = π + π V=π pomień podstwy wysokość wl StoŜek P = P p + P P pole powiezni łkowitej P p pole podstwy P pole powiezni oznej wysokość stoŝk P p = π P = πl P = π + πl V = π V = Pp l pomień podstwy l długość twoząej wysokość stoŝk Kul P = 4π 4 V = π pomień kuli wwwzdjmypl intenetowy sewis dl gimnzjlistów

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu 9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)

Bardziej szczegółowo

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów. Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,

Bardziej szczegółowo

h a V. GEOMETRIA PŁASKA TRÓJKĄT :

h a V. GEOMETRIA PŁASKA TRÓJKĄT : pitgos..pl V. GEOMETRIA PŁASKA TRÓJKĄT : Wunek utwozeni tójkąt: sum ługośi wó kótszy oków musi yć większ o ługośi njłuższego oku. Śoek okęgu opisnego wyznzją symetlne oków. Śoek okęgu wpisnego wyznzją

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

11. STEREOMETRIA. V - objętość bryły D H. c p. Oznaczenia stosowane w stereometrii: - pole powierzchni całkowitej bryły - pole podstawy bryły

11. STEREOMETRIA. V - objętość bryły D H. c p. Oznaczenia stosowane w stereometrii: - pole powierzchni całkowitej bryły - pole podstawy bryły . STEREOMETRIA Oznczeni stosowne w steeometii: Pc - poe powiezcni cłkowitej yły Pp - poe podstwy yły P - poe powiezcni ocznej yły V - ojętość yły.. Gnistosłupy D Podstwy gnistosłup - dw ównoegłe i pzystjące

Bardziej szczegółowo

, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA)

, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA) Treść:, GEOMETRI N PŁSZCZYZNIE (PLNIMETRI) 1. Podstwowe pojęi geometrii (punkt, prost, płszzyzn, przestrzeń, półprost, odinek, łmn, figur geometryzn (płsk i przestrzenn). -------------------------------------------------------------------------------------------------------------.

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Planimetria czworokąty

Planimetria czworokąty Plnimetri czworokąty Emili Ruszczyk kl. II, I LO im. Stefn Żeromskiego w Ełku pod kierunkiem Grżyny iernot-lendo Klsyfikcj czworokątów zworokąty dzielą się n niewypukłe i wypukłe, wypukłe n trpezy i trpezoidy,

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w Stowzyszenie n zez Edukji Mtemtyznej Zestw 6 szkie ozwiązń zdń Znjdź wszystkie tójki (x, y, z) liz zezywistyh, któe są ozwiąznimi ównni 5(x +y +z ) = 4(xy +yz +zx)

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

ď ź ź Ä Ď É Ě Ź Ą Ü Á Ą Ń Đ ő ý ý ő ý Ú Ä Á Ą ô Ó Ó ŕ đ ý Á Ą Đ í ő É ä Ä Ä Ď ď ŕ Ń ř ý ő Ú Á Ĺ Ą Ď Ó í úł ő Ł Ä Á Ą Ď Ó ŕ Ď ý ý ő ý ĄÁ Á Ą Ď Ń ŕ Ü ä ý ő ý ý Đ ý ő Ú ď Ä Ą Ą É Ó Ł ő ý ő ý ý ŕ ŕ Á Ą Ń É

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Klasyfikacja trójkątów

Klasyfikacja trójkątów 9.. WŁASNOŚCI TRÓJKĄTÓW Klsyfikj trójkątów odził trójkątów ze względu n oki róŝnoozny równormienny równoozny odził trójkątów ze względu n kąty ostrokątny rostokątny rozwrtokątny Sum kątów wewnętrzny trójkąt

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Temat ćwiczenia. Pomiary kół zębatych

Temat ćwiczenia. Pomiary kół zębatych POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temt ćwiczeni Pomiy kół zębtych I. Cel ćwiczeni Zpoznnie studentów z metodmi pomiu uzębień wlcowych kół zębtych o zębch postych oz pktyczny pomi koł. II. Widomości

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

480 Przestrzenie metryczne

480 Przestrzenie metryczne 480 Pzestzenie metzne Definij Nieh X ęzie owolnm niepustm zioem. Owzoownie X X 0 nzwm metką n zioze X g 0 0 jenoznzność smeti z z wunek tójkąt. Sstem X nzwm pzestzenią metzną. Wtość nzwm oległośią mięz

Bardziej szczegółowo

Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych.

Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych. Senriusz lekji mtemtyki dl klsy III gimnzjum Temt: owtórzenie i utrwlenie widomośi dotyząy figur geometryzny Cel ogólny lekji: Uporządkownie i utrwlenie widomośi o figur płski i przestrzenny Cele operyjne:

Bardziej szczegółowo

IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI

IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI 1.1. Okąg opisny n wielokącie (s. 10) Zdni utwljące (s. ) 1.. Okąg wpisny w wielokąt (s. 4) Zdni utwljące (s. 35) 1.3. Wielokąty foemne (s. 37) Zdni utwljące (s. 43) Zdni

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D.

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D. Sprwdzin Potęgi i pierwistki. Piąt potęg liczby jest równ: A. 0 B. C. D. 4. Iloczyn jest równy: A. B. C. D.. Odległość Ziemi od Słońc jest równ 0 000 000 km. Odległość tą możn zpisć w postci iloczynu:

Bardziej szczegółowo

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu 9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Temat: Do czego służą wyrażenia algebraiczne?

Temat: Do czego służą wyrażenia algebraiczne? Projekt współfinnsowny przez Unię Europejską w rm Europejskiego Funduszu Społeznego Spotknie 14 Temt: Do zego służą wyrżeni lgerizne? Pln zjęć 1. Jkie wyrżenie nzywmy lgeriznym? Czym wyrżenie lgerizne

Bardziej szczegółowo

ZAKRES WYMAGAŃ Z MATEMATYKI

ZAKRES WYMAGAŃ Z MATEMATYKI ZAKRES WYMAGAŃ Z MATEMATYKI W RAMACH PRZYGOTOWAŃ DO EGZAMINU GIMNAZJALNEGO PRZYKŁADOWE ZAGADNIENIA CZĘŚĆ I. Elementrne dziłni n liczbch wymiernych. Dziłni wykonywne w pmięci. II. Liczby wymierne. Włsności

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków ..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa

Bardziej szczegółowo

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1 ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej. Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konś Powtók z fizyki - dl uczniów gimnzjów, któzy chcą wiedzieć to co tze nwet więcej, - dl uczniów liceów, któzy chcą powtózyć to co tze, y zozumieć więcej, - dl wszystkich, któzy chcą znć podstwy

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź

Bardziej szczegółowo

Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć

Bardziej szczegółowo

Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź

Bardziej szczegółowo

ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó

Bardziej szczegółowo

Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś

Bardziej szczegółowo

ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą

Bardziej szczegółowo

Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą

Bardziej szczegółowo

Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż

Bardziej szczegółowo

Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź

Bardziej szczegółowo

Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć

Bardziej szczegółowo

Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś

Bardziej szczegółowo

ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć

Bardziej szczegółowo

Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć

Bardziej szczegółowo

Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej

Bardziej szczegółowo

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo