KLUCZ PUNKTOWANIA ODPOWIEDZI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "KLUCZ PUNKTOWANIA ODPOWIEDZI"

Transkrypt

1 Egzmin mturlny mj 009 INFORMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI

2 Informtyk poziom podstwowy CZ I Nr zdni Nr podpunktu Mks. punktj z z zdni Mks. punktj z zdnie 1. Z poprwne uzupe nienie wyniku w speyfikji 1 punkt np.: TAK, gdy i g liz jest rosn y, NIE w przeiwnym przypdku odpowied TAK w przypdku, gdy k dy nst pny wynik zwodnik jest lepszy od poprzedniego, w przeiwnym przypdku NIE Z podnie trzeh poprwnyh wrto i w kolumnie ile_rzy (7, 4, 1) punkty Z podnie poprwnyh wrto i w kolumnie ile_rzy 1 punkt. Z podnie w pe ni poprwnego lgorytmu wyznzj ego njwi ksz liz w i gu punkty, w tym z: poprwn inijj zmiennyh 1 punkt poprwny wrunek w p tli 1 punkt poprwn instrukj wrunkow i ktulizj wyniku w p tli 1 punkt Przyk dowe rozwi znie: 1. mx pierwsz liz z dnego i gu. je li nie m wi ej liz w i gu, wypisz mx i zko z wykonywnie lgorytmu. nst pn kolejn liz z dnego i gu 4. je li nst pn jest wi ksz od mx, to mx nst pn 5. wró do punktu

3 Informtyk poziom podstwowy Z podnie ztereh poprwnyh wrto i w teli (4,5; 100,10; 5,00; 110,00) punkty (z poprwne wyniki uznjemy tk e 4,5; 100,1; 5; 110) Z podnie dwóh lu trzeh poprwnyh wrto i w teli 1 punkt Z w pe ni poprwny lgorytm 4 punkty, w tym z: inijj zmiennyh 1 punkt poprwny wrunek w p tli dl z i kowitej 1 punkt poprwne olizeni w p tli 1 punkt uwzgl dnienie z i u mkowej 1 punkt.. Przyk dowe rozwi zni: Przyk d I: w = yfr(s[0]); i=1; while (s[i] <>, ) {w=w* + yfr(s[i]); i++} i++; w = w + 0,5* yfr(s[i]); i++; w = w + 0,5* yfr(s[i]); Przyk d II: krok 1: w = 0,00; k = 0,5; krok : x = osttni yfr i gu s; krok : dopóki s jeszze yfry w i gu s wykonuj: {w = w + k*x; k = k*; x = kolejn yfr i gu liz od ko } Z wszystkie poprwne odpowiedzi w k dym z podpunktów 1 punkt ) PFP, ) PFF, ) PFF, d) PPF, e) PFF, f) PFP, g) FPF, h) PFP

4 Informtyk poziom podstwowy CZ II Nr zdni Nr podpunktu Mks. punktj z z zdni Mks. punktj z zdnie Z podnie poprwnej njni szej redniej roznej tempertury (4,74 ± 0,01) 1 punkt Z podnie poprwnego roku jej wyst pieni (189) 1 punkt Z podnie poprwnej njwy szej redniej roznej tempertury (9,8 ± 0,01) 1 punkt Z podnie poprwnego roku jej wyst pieni (1989) 1 punkt Z poprwne zestwienie minimlnyh tempertur dl k dego miesi 1 punkt Z poprwne zestwienie mksymlnyh tempertur dl k dego miesi 1 punkt 4. I II III IV V VI VII VIII IX X XI XII -1,5-1,7-6,9,4 7,9 1,0 14,6 14,0 9,1 1,8 -,4-14,8,5 5,1 7,4 1, 18,,4,5,8 16,8 1,6 7,6,9 5 1 d Z poprwny wykres punkty, w tym z: poprwny doór dnyh 1 punkt poprwny typ wykresu 1 punkt poprwny opis osi i tytu 1 punkt Z podnie poprwnej lizy lt, w któryh rednie tempertury sierpni tworz njd u szy mlej y podi g (6) 1 punkt Z podnie poprwnego poz tkowego roku (198) 1 punkt Z podnie poprwnego ko owego roku (1987) 1 punkt 5. Z odpowiedzi (5, 198, 1987) lu (5, 198, 1986), przy któryh d wynik z pomini i roku zerowego lo osttniego, w njd u szym mlej ym podi gu punkty Z poprwn zwrto pliku zd_5.txt zwierj ego kwdrty liz pierwszyh i poprwny lgorytm 8 punktów Z plik z jednym dem ( dn jedn liz lu rk jednej lizy) 6 punktów Z plik z dwom dmi punkty 8 8 9

5 Informtyk poziom podstwowy 6. d Z podnie poprwnej lizy osó, które s w iielmi wi ej ni jednego mieszkni ( osoy) punkty Z podnie wyniku: osoy 1 punkt Z podnie poprwnego zestwieni punkty, po 1 punkie z k de dw poprwne identyfiktory mieszkni 8/009 9/009 /009 69/009 Z podnie poprwnyh nzwisk i imion osó, które smotnie mieszkj w loklu o metr u powy ej 90 m punkty (po 1 punkie z poprwne dne k dej osoy) Nzimek Tdeusz Cepend Jonn Z podnie poprwnej lizy koiet (184) i poprwnej lizy m zyzn (9) punkty Z podnie jednej poprwnej wrto i 1 punkt 10 Poprwn zwrto pliku zd_5.txt:

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzmin mturlny mj 009 INFORMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Informtyk poziom podstwowy CZĘŚĆ I Nr zdni Nr podpunktu Mks. punktcj z część zdni Mks. punktcj z zdnie 1. c Z poprwne uzupełnienie

Bardziej szczegółowo

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015

Bardziej szczegółowo

Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz?

Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? ZADANIE 1. (4pkt./12min.) Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? 1. Wszelkie potrzebne dane

Bardziej szczegółowo

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka]

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka] Rozził moy Wykrsy wytrzymłośi zwriowj wług EC Wykrsy wytrzymłośi zwriowj wług EN 439-1/EC 439-1 Bni typu zgoni z EN 439-1 W trki ni typu systmu przprowzn zostją nstępują ni systmów szyn ziorzyh Rittl jk

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

Instalacja. Zawartość. Wyszukiwarka. Instalacja... 1. Konfiguracja... 2. Uruchomienie i praca z raportem... 4. Metody wyszukiwania...

Instalacja. Zawartość. Wyszukiwarka. Instalacja... 1. Konfiguracja... 2. Uruchomienie i praca z raportem... 4. Metody wyszukiwania... Zawartość Instalacja... 1 Konfiguracja... 2 Uruchomienie i praca z raportem... 4 Metody wyszukiwania... 6 Prezentacja wyników... 7 Wycenianie... 9 Wstęp Narzędzie ściśle współpracujące z raportem: Moduł

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

RUCH KONTROLI WYBORÓW. Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu 6 września 2015 r.

RUCH KONTROLI WYBORÓW. Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu 6 września 2015 r. RUCH KONTROLI WYBORÓW Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu września r. Plik zawiera - dwie tabele pomocnicze do zliczania wyników cząstkowych

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

Formularz wyliczenia nale no ci za wycofane zbo e Izb_P6_f2

Formularz wyliczenia nale no ci za wycofane zbo e Izb_P6_f2 Stron: 1/5 I Z B 0 6 0 2 V 9 1. Tu prosz nklei nlepk identyfikcyjn /Je eli przedsi biorc nie posid nlepki identyfikcyjnej prosz wpis poni ej numer rejestrcyjny otrzymny w ARR/ * Piecz tk kncelrii Dt wp

Bardziej szczegółowo

Wskaźniki oparte na wolumenie

Wskaźniki oparte na wolumenie Wskaźniki oparte na wolumenie Łukasz Bąk Wrocław 2006 1 Wolumen Wolumen reprezentuje aktywność inwestorów krótko- i długoterminowych na rynku. Każda jednostka wolumenu jest wynikiem działania dwóch osób

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Twierdzenie Bayesa Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Niniejszy skrypt ma na celu usystematyzowanie i uporządkowanie podstawowej wiedzy na temat twierdzenia Bayesa i jego zastosowaniu

Bardziej szczegółowo

18 TERMODYNAMIKA. PODSUMOWANIE

18 TERMODYNAMIKA. PODSUMOWANIE Włodzimierz Wolczyński 18 TERMODYNAMIKA. PODSUMOWANIE Zadanie 1 Oto cykl pracy pewnego silnika termodynamicznego w układzie p(v). p [ 10 5 Pa] 5 A 4 3 2 1 0 C B 5 10 15 20 25 30 35 40 V [ dm 3 ] Sprawność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ Anna Gutt- Kołodziej ZASADY OCENIANIA Z MATEMATYKI Podczas pracy

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Język POZIOM PODSTAWOWY

KRYTERIA OCENIANIA ODPOWIEDZI Język POZIOM PODSTAWOWY rosyjski Zadanie 1. Język rosyjski. Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Język POZIOM PODSTAWOWY Za każde poprawne rozwiązanie przyznajemy 1 punkt. Maksimum 5. 1.1. Ванесса Мэй очаровала зрителей

Bardziej szczegółowo

OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania

OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania Teresa Kutajczyk, WBiA OKE w Gdańsku Okręgowa Komisja Egzaminacyjna w Gdańsku OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania

Bardziej szczegółowo

ć ż ź ć ć Ń ć ż ż ż ż ż ć ż ż ć ż Ź ż ż ż ż ź ź ż ż ń ż ćż ż ź ć ń ć Ń Ą ż ń ż ż ż ż ć ż ć ż ż Ń ż ż ń ż ć ż ń ż ń ż Ź ż ż ń ż ć ć ź ż ż ż ź ż ń ź ż ń ż Ń ć Ą Ę ż ż ć ń ć ż ż ń ż ż ż ć ć ć ń ż Ź ć ż ć

Bardziej szczegółowo

Ś ź ź Ś Ś Ź ć ź Ń ź Ś Ś ć ć Ź Ś ź Ź Ź Ń ź Ś ć Ł ź ź ć Ś ć ć ć ć Ś ź ź Ź Ń ź ź Ś ć Ś ź ć ź ź ć ź ź ć Ł Ź ź ź ź ź ź ć ź ź ć ź ć ć Ź ź ź Ń ź ź ć ź ź ć Ń Ś Ś Ź Ń Ś ź ć Ś ź ź ź ć Ś Ź Ń ź ź Ś ć Ź ź ć ć ź Ł ć

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2 6.7. ntrukcj zczegółow Grup:... 4.. 6.7. Cel ćwiczeni Celem ćwiczeni jet zpoznnie ię z metodmi pomirowymi i przepimi dotyczącymi ochrony przeciwporżeniowej w zczególności ochrony przed dotykiem pośrednim.

Bardziej szczegółowo

REGULAMIN REKRUTACJI do IV Liceum Ogólnokształcącego im. Komisji Edukacji Narodowej w Bielsku-Białej na rok szkolny 2016/2017

REGULAMIN REKRUTACJI do IV Liceum Ogólnokształcącego im. Komisji Edukacji Narodowej w Bielsku-Białej na rok szkolny 2016/2017 REGULAMIN REKRUTACJI do IV Liceum Ogólnokształcącego im. Komisji Edukacji Narodowej w Bielsku-Białej na rok szkolny 2016/2017 Podstawa prawna Postanowienie Śląskiego Kuratora Oświaty Nr OP-DO.110.2.4.2016

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:

Bardziej szczegółowo

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie

Kuratorium Oświaty w Lublinie Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2014/2015 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 12 zadań. 2. Przed

Bardziej szczegółowo

REGULAMIN WSPARCIA FINANSOWEGO CZŁONKÓW. OIPiP BĘDĄCYCH PRZEDSTAWICIELAMI USTAWOWYMI DZIECKA NIEPEŁNOSPRAWNEGO LUB PRZEWLEKLE CHOREGO

REGULAMIN WSPARCIA FINANSOWEGO CZŁONKÓW. OIPiP BĘDĄCYCH PRZEDSTAWICIELAMI USTAWOWYMI DZIECKA NIEPEŁNOSPRAWNEGO LUB PRZEWLEKLE CHOREGO Załącznik nr 1 do Uchwały Okręgowej Rady Pielęgniarek i Położnych w Opolu Nr 786/VI/2014 z dnia 29.09.2014 r. REGULAMIN WSPARCIA FINANSOWEGO CZŁONKÓW OIPiP BĘDĄCYCH PRZEDSTAWICIELAMI USTAWOWYMI DZIECKA

Bardziej szczegółowo

Technikum w ZSP Żelechów ponownie najlepsze

Technikum w ZSP Żelechów ponownie najlepsze w ZSP Żelechów ponownie najlepsze Instytut Badań Edukacyjnych opublikował w ostatnich dniach najnowsze dane dotyczące Edukacyjnej Wartości Dodanej () dla wszystkich szkół ponadgimnazjalnych w Polsce. Wskaźniki

Bardziej szczegółowo

Pytania i odpowiedzi oraz zmiana treści SIWZ

Pytania i odpowiedzi oraz zmiana treści SIWZ Warszawa, dnia 08.11.2013 r. Pytania i odpowiedzi oraz zmiana treści SIWZ Dotyczy: postępowania na rozbudowę sieci lokalnej, strukturalnej i dedykowanej 230V w budynku Teatru Wielkiego Opery Narodowej,

Bardziej szczegółowo

Regulamin Zarządu Pogórzańskiego Stowarzyszenia Rozwoju

Regulamin Zarządu Pogórzańskiego Stowarzyszenia Rozwoju Regulamin Zarządu Pogórzańskiego Stowarzyszenia Rozwoju Art.1. 1. Zarząd Pogórzańskiego Stowarzyszenia Rozwoju, zwanego dalej Stowarzyszeniem, składa się z Prezesa, dwóch Wiceprezesów, Skarbnika, Sekretarza

Bardziej szczegółowo

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność

Bardziej szczegółowo

UMOWA ZLECENIE. zobowiązuje się wykonać wymienione w l czynności w okresie od 01.07.2009 do

UMOWA ZLECENIE. zobowiązuje się wykonać wymienione w l czynności w okresie od 01.07.2009 do Dinter Polsk Sp. z o. O. ul Grżyny 15 02-548 Wrszw REGON 010406268 UMOWA ZLECENIE N/P 521-10-03-920 Zwrt dni 30 czerwc 2009.w Kozietułch.pomiędzy: DINTER POLSKA SP Z O.O.z siedzibą w Wrszwie, ul. Grżyny

Bardziej szczegółowo

Wtedy wystarczy wybrać właściwego Taga z listy.

Wtedy wystarczy wybrać właściwego Taga z listy. Po wejściu na stronę pucharino.slask.pl musisz się zalogować (Nazwa użytkownika to Twój redakcyjny pseudonim, hasło sam sobie ustalisz podczas procedury rejestracji). Po zalogowaniu pojawi się kilka istotnych

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

WYKRESY FUNKCJI NA CO DZIEŃ

WYKRESY FUNKCJI NA CO DZIEŃ TEMAT NUMERU 13 Adam Wojaczek WYKRESY FUNKCJI NA CO DZIEŃ W zreformowanych szkołach ponadgimnazjalnych kładziemy szczególny nacisk na praktyczne zastosowania matematyki. I bardzo dobrze! (Szkoda tylko,

Bardziej szczegółowo

Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE

Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE OKE Kraków 2012 Zadanie egzaminacyjne zostało opracowane

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Strona Wersja zatwierdzona przez BŚ Wersja nowa 26 Dodano następujący pkt.: Usunięto zapis pokazany w sąsiedniej kolumnie

Strona Wersja zatwierdzona przez BŚ Wersja nowa 26 Dodano następujący pkt.: Usunięto zapis pokazany w sąsiedniej kolumnie Zmiany w Podręczniku Realizacji PIS (wersja z dnia 25 sierpnia 2008) (W odniesieniu do wersji z 11 lipca 2008 zatwierdzonej warunkowo przez Bank Światowy w dniu 21 lipca 2008) Strona Wersja zatwierdzona

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego

Bardziej szczegółowo

WYMAGANIA OFERTOWE. Przetarg nr PZ-451

WYMAGANIA OFERTOWE. Przetarg nr PZ-451 WYMAGANIA OFERTOWE Przetarg nr PZ-451 dotyczący: Dostosowanie (zabudowa) samochodu Ford Transit Jumbo do potrzeb mobilnego biura obsługi klienta. Warszawa, dn. 10.05.2016 1. Dane Ogólne 1.1. RWE Polska

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

Komputer i urządzenia z nim współpracujące

Komputer i urządzenia z nim współpracujące Temat 1. Komputer i urządzenia z nim współpracujące Realizacja podstawy programowej 1. 1) opisuje modułową budowę komputera, jego podstawowe elementy i ich funkcje, jak również budowę i działanie urządzeń

Bardziej szczegółowo

W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego.

W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego. W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego. Ad. IV. Wykaz prac według kolejności ich wykonania. Ten

Bardziej szczegółowo

III. GOSPODARSTWA DOMOWE, RODZINY I GOSPODARSTWA ZBIOROWE

III. GOSPODARSTWA DOMOWE, RODZINY I GOSPODARSTWA ZBIOROWE III. GOSPODARSTWA DOMOWE, RODZINY I GOSPODARSTWA ZBIOROWE 1. GOSPODARSTWA DOMOWE I RODZINY W województwie łódzkim w maju 2002 r. w skład gospodarstw domowych wchodziło 2587,9 tys. osób. Stanowiły one 99,0%

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

Najskuteczniejsze formacje i 3 proste zagrania, które dają zarobić. Łukasz Nowak

Najskuteczniejsze formacje i 3 proste zagrania, które dają zarobić. Łukasz Nowak Najskuteczniejsze formacje i 3 proste zagrania, które dają zarobić Łukasz Nowak Elementy teorii fal Elliotta praktycznie nigdy ceny akcji na rynku nie poruszają się w linii prostej (same wzrosty lub same

Bardziej szczegółowo

Stowarzyszenie na Rzecz Dzieci z Zaburzeniami Genetycznymi Urlop bezpłatny a prawo do zasiłków związanych z chorobą i macierzyństwem

Stowarzyszenie na Rzecz Dzieci z Zaburzeniami Genetycznymi Urlop bezpłatny a prawo do zasiłków związanych z chorobą i macierzyństwem Źródło: http://podatki.pl Co o urlopie bezpłatnym stanowi Kodeks pracy Zgodnie z Kodeksem pracy pracodawca może udzielić pracownikowi, na jego pisemny wniosek, urlopu bezpłatnego (art. 174 kp). Pracodawca,

Bardziej szczegółowo

KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA

KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA 1. Krótka forma użytkowa 1.1. Kryteria oceniania 1.2. Uściślenie kryteriów oceniania Treść Poprawność językowa 2. Dłuższa forma użytkowa

Bardziej szczegółowo

Warunki Oferty PrOmOcyjnej usługi z ulgą

Warunki Oferty PrOmOcyjnej usługi z ulgą Warunki Oferty PrOmOcyjnej usługi z ulgą 1. 1. Opis Oferty 1.1. Oferta Usługi z ulgą (dalej Oferta ), dostępna będzie w okresie od 16.12.2015 r. do odwołania, jednak nie dłużej niż do dnia 31.03.2016 r.

Bardziej szczegółowo

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiotowe zasady oceniania zgodne z Wewnątrzszkolnymi Zasadami Oceniania obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiot: biologia Nauczyciel przedmiotu: Anna Jasztal, Anna Woch 1. Formy sprawdzania

Bardziej szczegółowo

ZARZĄDZENIE nr 1/2016 REKTORA WYŻSZEJ SZKOŁY EKOLOGII I ZARZĄDZANIA W WARSZAWIE z dnia 15.01.2016 r.

ZARZĄDZENIE nr 1/2016 REKTORA WYŻSZEJ SZKOŁY EKOLOGII I ZARZĄDZANIA W WARSZAWIE z dnia 15.01.2016 r. ZARZĄDZENIE nr 1/2016 REKTORA WYŻSZEJ SZKOŁY EKOLOGII I ZARZĄDZANIA W WARSZAWIE z dnia 15.01.2016 r. w sprawie zmian w zasadach wynagradzania za osiągnięcia naukowe i artystyczne afiliowane w WSEiZ Działając

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Projektowanie bazy danych

Projektowanie bazy danych Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Wolontariat w Polsce. Gimnazjum Szkoła ponadgimnazjalna. Scenariusz lekcji wychowawczej z wykorzystaniem burzy mózgów. 45 min

Wolontariat w Polsce. Gimnazjum Szkoła ponadgimnazjalna. Scenariusz lekcji wychowawczej z wykorzystaniem burzy mózgów. 45 min Gimnazjum Szkoła ponadgimnazjalna Scenariusz lekcji wychowawczej z wykorzystaniem burzy mózgów 45 min Wolontariat w Polsce Autorka scenariusza: Małgorzata Wojnarowska Cele lekcji: Uczeń: wyjaśnia znaczenie

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 MATEMATYKA

EGZAMIN MATURALNY 2013 MATEMATYKA entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Obszar standardów Zadanie (0 ) Opis wymagań pojęcia

Bardziej szczegółowo

Uchwała Nr.. /.../.. Rady Miasta Nowego Sącza z dnia.. listopada 2011 roku

Uchwała Nr.. /.../.. Rady Miasta Nowego Sącza z dnia.. listopada 2011 roku Projekt Uchwała Nr / / Rady Miasta Nowego Sącza z dnia listopada 2011 roku w sprawie określenia wysokości stawek podatku od środków transportowych Na podstawie art 18 ust 2 pkt 8 i art 40 ust 1 ustawy

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

Obowiązek wystawienia faktury zaliczkowej wynika z przepisów o VAT i z faktu udokumentowania tego podatku.

Obowiązek wystawienia faktury zaliczkowej wynika z przepisów o VAT i z faktu udokumentowania tego podatku. Różnice kursowe pomiędzy zapłatą zaliczki przez kontrahenta zagranicznego a fakturą dokumentującą tę Obowiązek wystawienia faktury zaliczkowej wynika z przepisów o VAT i z faktu udokumentowania tego podatku.

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Podstawa prawna. 4. Ustawa z dnia 24 kwietnia 2003 r. o działalności pożytku publicznego i wolontariacie (Dz. U. nr 96 poz.873);

Podstawa prawna. 4. Ustawa z dnia 24 kwietnia 2003 r. o działalności pożytku publicznego i wolontariacie (Dz. U. nr 96 poz.873); Regulamin rekrutacji do II Liceum Ogólnokształcącego im. Hetmana Jana Tarnowskiego w Zespole Szkół Ogólnokształcących nr 2 w Tarnowie Rok szkolny 2016/2017 Podstawa prawna 1 Rekrutacja do II LO im. Hetmana

Bardziej szczegółowo

REGULAMIN RADY RODZICÓW SZKOŁY PODSTAWOWEJ NR 6 IM. ROMUALDA TRAUGUTTA W LUBLINIE. Postanowienia ogólne

REGULAMIN RADY RODZICÓW SZKOŁY PODSTAWOWEJ NR 6 IM. ROMUALDA TRAUGUTTA W LUBLINIE. Postanowienia ogólne REGULAMIN RADY RODZICÓW SZKOŁY PODSTAWOWEJ NR 6 IM. ROMUALDA TRAUGUTTA W LUBLINIE Postanowienia ogólne 1 Niniejszy Regulamin określa cele, zadania i organizację Rady Rodziców działającej w Szkole Podstawowej

Bardziej szczegółowo

Egzamin maturalny 2013 w województwie śląskim. Informacje o wynikach

Egzamin maturalny 2013 w województwie śląskim. Informacje o wynikach Egzamin maturalny 2013 w województwie śląskim Informacje o wynikach Jaworzno 2013 Spis treści Wstęp 3 1. Informacje o zdających egzamin w maju 2013 r. 3 2. Absolwenci ubiegający się o świadectwo dojrzałości

Bardziej szczegółowo

Kielce, dnia 12 stycznia 2016 r. Poz. 207 UCHWAŁA NR XVII/155/2015 RADY MIEJSKIEJ W KOŃSKICH. z dnia 30 grudnia 2015 r.

Kielce, dnia 12 stycznia 2016 r. Poz. 207 UCHWAŁA NR XVII/155/2015 RADY MIEJSKIEJ W KOŃSKICH. z dnia 30 grudnia 2015 r. DZIENNIK URZĘDOWY WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Kielce, dnia 12 stycznia 2016 r. Poz. 207 UCHWAŁA NR XVII/155/2015 RADY MIEJSKIEJ W KOŃSKICH z dnia 30 grudnia 2015 r. w sprawie określenia kryteriów naboru

Bardziej szczegółowo

Instalacja programu. Omówienie programu. Jesteś tu: Bossa.pl

Instalacja programu. Omówienie programu. Jesteś tu: Bossa.pl Jesteś tu: Bossa.pl Program Quotes Update to niewielkie narzędzie ułatwiające pracę inwestora. Jego celem jest szybka i łatwa aktualizacja plików lokalnych z historycznymi notowaniami spółek giełdowych

Bardziej szczegółowo

Rozdział 6. KONTROLE I SANKCJE

Rozdział 6. KONTROLE I SANKCJE Rozdział 6. KONTROLE I SANKCJE 6.1. AUDYT I KONTROLE FINANSOWE Komisja w czasie realizacji projektu i do 5 lat po jego zakończeniu może zlecić przeprowadzenie audytu finansowego. Audyt może obejmować:

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

Na podstawie art.4 ust.1 i art.20 lit. l) Statutu Walne Zebranie Stowarzyszenia uchwala niniejszy Regulamin Zarządu.

Na podstawie art.4 ust.1 i art.20 lit. l) Statutu Walne Zebranie Stowarzyszenia uchwala niniejszy Regulamin Zarządu. Na podstawie art.4 ust.1 i art.20 lit. l) Statutu Walne Zebranie Stowarzyszenia uchwala niniejszy Regulamin Zarządu Regulamin Zarządu Stowarzyszenia Przyjazna Dolina Raby Art.1. 1. Zarząd Stowarzyszenia

Bardziej szczegółowo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych. Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych LICEUM Klucz odpowiedzi do zadań zamkniętych 6 7 8 9 0 6 7 8 9 0 D A D A A B A B B C B D C C C D B C C B Zadanie. (pkt) Rozwiąż

Bardziej szczegółowo

Drogie dzieci, Autorki

Drogie dzieci, Autorki Drogie dzieci, przekazujemy Wam kolejny zeszyt prac domowych. Możecie w nim rysować, pisać, liczyć. Zawarte w nim ćwiczenia pomogą mile spędzić czas i wprowadzą Was w tajemniczy i bogaty świat wiedzy.

Bardziej szczegółowo

PROCEDURA AWANSU ZAWODOWEGO NA STOPIEŃ NAUCZYCIELA MIANOWANEGO W ZESPOLE SZKÓŁ INTEGRACYJNYCH NR 1 W KATOWICACH

PROCEDURA AWANSU ZAWODOWEGO NA STOPIEŃ NAUCZYCIELA MIANOWANEGO W ZESPOLE SZKÓŁ INTEGRACYJNYCH NR 1 W KATOWICACH PROCEDURA AWANSU ZAWODOWEGO NA STOPIEŃ NAUCZYCIELA MIANOWANEGO W ZESPOLE SZKÓŁ INTEGRACYJNYCH NR 1 W KATOWICACH Opracowano na podstawie następujących aktów prawnych: - rozdział 3a Karty Nauczyciela, ustawa

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Aneks nr 3 do Statutu Zespołu Szkół Nr 3 wprowadzony uchwałą Rady Pedagogicznej z dnia 8 grudnia 2010r. Szkoła dzienna

Aneks nr 3 do Statutu Zespołu Szkół Nr 3 wprowadzony uchwałą Rady Pedagogicznej z dnia 8 grudnia 2010r. Szkoła dzienna Aneks nr 3 do Statutu Zespołu Szkół Nr 3 wprowadzony uchwałą Rady Pedagogicznej z dnia 8 grudnia 2010r. 1) W 8 wykreśla się słowa: Dyrektor Szkoły może wyznaczyć miejsce przeznaczone na palarnię. 2) 19

Bardziej szczegółowo

EKONOMICZNE ASPEKTY LOSÓW ABSOLWENTÓW

EKONOMICZNE ASPEKTY LOSÓW ABSOLWENTÓW EKONOMICZNE ASPEKTY LOSÓW ABSOLWENTÓW Uniwersytet Warszawski Instytut Ameryk i Europy Gospodarka przestrzenna, studia stacjonarne, drugiego stopnia Raport dotyczy 10 absolwentów, którzy uzyskali dyplom

Bardziej szczegółowo

KLAUZULE ARBITRAŻOWE

KLAUZULE ARBITRAŻOWE KLAUZULE ARBITRAŻOWE KLAUZULE arbitrażowe ICC Zalecane jest, aby strony chcące w swych kontraktach zawrzeć odniesienie do arbitrażu ICC, skorzystały ze standardowych klauzul, wskazanych poniżej. Standardowa

Bardziej szczegółowo

UWAGA! PRZECZYTAJ NAJPIERW:

UWAGA! PRZECZYTAJ NAJPIERW: UWAGA! PRZECZYTAJ NAJPIERW: Aby korzystać z Wydziałowego VPNa należy, w skrócie, na komputerze zdalnym z którego chcemy się łączyć mieć zainstalowane 3 certyfikaty (ROOT-CA, SUB-CA-01 i certyfikat osobisty)

Bardziej szczegółowo

WITAMY W KOMPANII DR. NONA INTERNATIONAL Ltd

WITAMY W KOMPANII DR. NONA INTERNATIONAL Ltd WITAMY W KOMPANII DR. NONA INTERNATIONAL Ltd 3 Podstawowe założenia Plan marketingowy mówi TAK! Rejestracja Aby zostać Klubowiczem Kompanii należy: Aby zostać Konsultantem Kompanii należy: Plan marketingowy

Bardziej szczegółowo

ROZPORZÑDZENIE MINISTRA OBRONY NARODOWEJ. z dnia 16 grudnia 2009 r.

ROZPORZÑDZENIE MINISTRA OBRONY NARODOWEJ. z dnia 16 grudnia 2009 r. Dziennik Ustaw Nr 221 17453 Poz. 1744 1744 ROZPORZÑDZENIE MINISTRA OBRONY NARODOWEJ z dnia 16 grudnia 2009 r. w sprawie nale noêci pieni nych o nierzy zawodowych za przeniesienia, przesiedlenia i podró

Bardziej szczegółowo

Terminowe umowy o pracę na nowych zasadach

Terminowe umowy o pracę na nowych zasadach PORADNIKI KADROWE Terminowe umowy o pracę na nowych zasadach Najważniejsze pytania i odpowiedzi Zamów książkę w księgarni internetowej Warszawa 2016 Tekst pochodzi z Serwisu Prawa Pracy i Ubezpieczeń Społecznych

Bardziej szczegółowo

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015 Centralna Komisja Egzaminacyjna ul. J. Lewartowskiego 6, 00-190 Warszawa www.cke.edu.pl sekret.cke@cke.edu.pl SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015 Cześć! W kwietniu

Bardziej szczegółowo

Stypendia USOS Stan na semestr zimowy 2013/14

Stypendia USOS Stan na semestr zimowy 2013/14 Stypendia USOS Stan na semestr zimowy 2013/14 Wnioski Wnioski dostępne w USOS Deklaracja programu Wniosek zbierający informacje o dochodach rodziny studenta Wniosek o przyznanie stypendium socjalnego Wniosek

Bardziej szczegółowo

System Zarządzania Relacyjną Bazą Danych (SZRBD) Microsoft Access 2010

System Zarządzania Relacyjną Bazą Danych (SZRBD) Microsoft Access 2010 System Zarządzania Relacyjną Bazą Danych (SZRBD) Microsoft Access 2010 Instrukcja do zajęć laboratoryjnych Część 1. ĆWICZENIE 1 ZADANIE 1 Utworzyć bazę danych Osoby, składającą się z jednej tabeli o następującej

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

NA POZIOMIE B1 TEST PRZYK 0 9ADOWY. Za ca 0 0y egzamin mo 0 4esz uzyska 0 4 120 punkt w

NA POZIOMIE B1 TEST PRZYK 0 9ADOWY. Za ca 0 0y egzamin mo 0 4esz uzyska 0 4 120 punkt w 1 3EGZAMIN CERTYFIKACYJNY Z J 0 0ZYKA HINDI NA POZIOMIE B1 TEST PRZYK 0 9ADOWY Za ca 0 0y egzamin mo 0 4esz uzyska 0 4 120 punkt w Egzamin trwa 120 minut Do wszystkich cz 0 1 0 2ci egzaminu do 0 0 0 2czone

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM

WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM PSO jest uzupełnieniem Wewnątrzszkolnego Systemu Oceniania obowiązującego w GCE. Precyzuje zagadnienia

Bardziej szczegółowo

POWIATOWY URZĄD PRACY

POWIATOWY URZĄD PRACY POWIATOWY URZĄD PRACY ul. Piłsudskiego 33, 33-200 Dąbrowa Tarnowska tel. (0-14 ) 642-31-78 Fax. (0-14) 642-24-78, e-mail: krda@praca.gov.pl Załącznik Nr 3 do Uchwały Nr 5/2015 Powiatowej Rady Rynku Pracy

Bardziej szczegółowo

1. PSO obejmuje ocenę wiadomości, umiejętności i postaw uczniów;

1. PSO obejmuje ocenę wiadomości, umiejętności i postaw uczniów; Przedmiotowy system Oceniania z języka angielskiego jest zgodny ze Szkolnym Systemem Oceniania w Szkole Podstawowej im. Edmunda Bojanowskiego w Kunowie. 1. PSO obejmuje ocenę wiadomości, umiejętności i

Bardziej szczegółowo

JĘZYK ROSYJSKI POZIOM ROZSZERZONY

JĘZYK ROSYJSKI POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 JĘZYK ROSYJSKI POZIOM ROZSZERZONY ROZWIĄZANIA ZAAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 ZAANIA OTWARTE Zadanie 1. Przetwarzanie tekstu (0,5 pkt) 1.1. туристов 1.2.

Bardziej szczegółowo

Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015

Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015 Załącznik Nr 2 do Uchwały Nr XIX/75/2011 Rady Miejskiej w Golinie z dnia 29 grudnia 2011 r. Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015

Bardziej szczegółowo

Waldemar Szuchta Naczelnik Urzędu Skarbowego Wrocław Fabryczna we Wrocławiu

Waldemar Szuchta Naczelnik Urzędu Skarbowego Wrocław Fabryczna we Wrocławiu 1 P/08/139 LWR 41022-1/2008 Pan Wrocław, dnia 5 5 września 2008r. Waldemar Szuchta Naczelnik Urzędu Skarbowego Wrocław Fabryczna we Wrocławiu WYSTĄPIENIE POKONTROLNE Na podstawie art. 2 ust. 1 ustawy z

Bardziej szczegółowo