2. FUNKCJE WYMIERNE Poziom (K) lub (P)

Wielkość: px
Rozpocząć pokaz od strony:

Download "2. FUNKCJE WYMIERNE Poziom (K) lub (P)"

Transkrypt

1 Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy podobne w sumie lgebricznej dodje, odejmuje i mnoży sumy lgebriczne przeksztłc wyrżeni lgebriczne, uwzględnijąc kolejność wykonywni dziłń przeksztłc wyrżenie lgebriczne z zstosowniem wzorów skróconego mnożeni stosuje wzory skróconego mnożeni do wykonywni dziłń n liczbch postci + b c rozwiązuje równni kwdrtowe niepełne metodą rozkłdu n czynniki orz stosując wzory skróconego mnożeni rozwiązuje równni kwdrtowe, stosując wzory n pierwistki przedstwi trójmin kwdrtowy w postci iloczynowej rozwiązuje równni wyższych stopni, korzystjąc z definicji pierwistk i włsności iloczynu Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: rozwiązuje zdni tekstowe prowdzące do równń kwdrtowych rozwiązuje równni wyższych stopni, stosując zsdę wyłączni wspólnego czynnik przed nwis Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące rozwiązywni równń wyższego stopni korzystjąc z wykresu wielominu, podje miejsc zerowe, zbiór rgumentów, dl których wielomin przyjmuje wrtości dodtnie/ujemne/niedodtnie/nieujemne rozwiązuje zdni tekstowe z zstosowniem wykresu lub wzoru wielominu 2. FUNKCJE WYMIERNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: wskzuje wielkości odwrotnie proporcjonlne stosuje zleżność między wielkościmi odwrotnie proporcjonlnymi do rozwiązywni prostych zdń wyzncz współczynnik proporcjonlności podje wzór proporcjonlności odwrotnej, znjąc współrzędne punktu nleżącego do wykresu szkicuje wykres funkcji f ( ) =, gdzie ¹ 0 i podje jej włsności (dziedzinę, zbiór wrtości, przedziły monotoniczności) szkicuje wykresy funkcji f ( ) = + q orz f ( ) = i odczytuje jej włsności - p wyzncz symptoty wykresu powyższych funkcji dobier wzór funkcji do jej wykresu wyzncz dziedzinę prostego wyrżeni wymiernego oblicz wrtość wyrżeni wymiernego dl dnej wrtości zmiennej skrc i rozszerz proste wyrżeni wymierne wykonuje dziłni n wyrżenich wymiernych (proste przypdki) i podje odpowiednie złożeni rozwiązuje proste równni wymierne wykorzystuje wyrżeni wymierne do rozwiązywni prostych zdń tekstowych Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: rozwiązuje zdni tekstowe, stosując proporcjonlność odwrotną szkicuje wykres funkcji f ( ) = w podnych przedziłch wyzncz współczynnik tk, by funkcj f ( ) = spełnił podne wrunki

2 wyzncz wzory funkcji f ( ) = + q orz f ( ) = spełnijących podne wrunki - p wyzncz dziedzinę wyrżeni wymiernego, korzystjąc z prostych równń kwdrtowych wykonuje dziłni n wyrżenich wymiernych i podje odpowiednie złożeni przeksztłc wzory, stosując dziłni n wyrżenich wymiernych rozwiązuje równni wymierne wykorzystuje wyrżeni wymierne do rozwiązywni trudniejszych zdń tekstowych wykorzystuje wielkości odwrotnie proporcjonlne do rozwiązywni zdń tekstowych dotyczących prędkości Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji i wyrżeń wymiernych przeksztłc wzór funkcji homogrficznej do postci knonicznej i szkicuje wykres funkcji f ( ) = + q orz podje jej włsności - p 3. FUNKCJE WYKŁADNICZE I LOGARYTMY Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: oblicz potęgi o wykłdnikch wymiernych zpisuje dną liczbę w postci potęgi o wykłdniku wymiernym zpisuje dną liczbę w postci potęgi o dnej podstwie uprszcz wyrżeni, stosując prw dziłń n potęgch (proste przypdki) porównuje liczby przedstwione w postci potęg (proste przypdki) wyzncz wrtości funkcji wykłdniczej dl podnych rgumentów sprwdz, czy punkt nleży do wykresu funkcji wykłdniczej wyzncz wzór funkcji wykłdniczej i szkicuje jej wykres, znjąc współrzędne punktu nleżącego do jej wykresu szkicuje wykres funkcji wykłdniczej, stosując przesunięcie o wektor i określ jej włsności szkicuje wykres funkcji, będący efektem jednego przeksztłceni wykresu funkcji wykłdniczej i określ jej włsności oblicz logrytm dnej liczby stosuje równości wynikjące z definicji logrytmu do prostych obliczeń wyzncz podstwę logrytmu lub liczbę logrytmowną, gdy dn jest jego wrtość rozwiązuje równni wykłdnicze, stosując logrytm oblicz logrytm iloczynu, ilorzu i potęgi, stosując odpowiednie twierdzeni o logrytmch Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: uprszcz wyrżeni, stosując prw dziłń n potęgch porównuje liczby przedstwione w postci potęg odczytuje rozwiązni nierówności n postwie wykresów funkcji wykłdniczych podje odpowiednie złożeni dl podstwy logrytmu lub liczby logrytmownej podje przybliżoną wrtość logrytmów dziesiętnych z wykorzystniem tblic stosuje twierdzenie o logrytmie iloczynu, ilorzu i potęgi do uzsdnieni równości wyrżeń wykorzystuje włsności funkcji wykłdniczej i logrytmu do rozwiązywni zdń o kontekście prktycznym Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: dowodzi twierdzeni o logrytmch wykorzystuje twierdzenie o zminie podstwy logrytmu w zdnich rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji wykłdniczej i logrytmicznej

3 4. CIĄGI Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: wyzncz kolejne wyrzy ciągu, gdy dnych jest kilk jego początkowych wyrzów szkicuje wykres ciągu wyzncz wzór ogólny ciągu, mjąc dnych kilk jego początkowych wyrzów wyzncz początkowe wyrzy ciągu określonego wzorem ogólnym lub słownie wyzncz, które wyrzy ciągu przyjmują dną wrtość podje przykłdy ciągów monotonicznych, których wyrzy spełniją dne wrunki uzsdni, że dny ciąg nie jest monotoniczny, mjąc dne jego kolejne wyrzy wyzncz wyrz n+ 1 ciągu określonego wzorem ogólnym podje przykłdy ciągów rytmetycznych wyzncz wyrzy ciągu rytmetycznego, mjąc dny pierwszy wyrz i różnicę wyzncz wzór ogólny ciągu rytmetycznego, mjąc dne dowolne dw jego wyrzy sprwdz, czy dny ciąg jest rytmetyczny (proste przypdki) wyzncz wzór ogólny ciągu geometrycznego, mjąc dne dowolne dw jego wyrzy sprwdz, czy dny ciąg jest geometryczny (proste przypdki) stosuje średnią rytmetyczną do wyznczni wyrzów ciągu rytmetycznego (proste przypdki) określ monotoniczność ciągu rytmetycznego i geometrycznego oblicz sumę n początkowych wyrzów ciągu rytmetycznego i geometrycznego podje przykłdy ciągów geometrycznych wyzncz wyrzy ciągu geometrycznego, mjąc dny pierwszy wyrz i ilorz stosuje monotoniczność ciągu geometrycznego do rozwiązywni prostych zdń stosuje włsności ciągu rytmetycznego lub geometrycznego do rozwiązywni prostych zdń oblicz wysokość kpitłu przy różnym okresie kpitlizcji oblicz oprocentownie lokty (proste przypdki) Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: wyzncz wzór ogólny ciągu spełnijącego podne wrunki bd monotoniczność ciągów rozwiązuje zdni z prmetrem dotyczące monotoniczności ciągu wyzncz wrtości zmiennych tk, by wrz z podnymi wrtościmi tworzyły ciąg rytmetyczny lub geometryczny sprwdz, czy dny ciąg jest rytmetyczny sprwdz, czy dny ciąg jest geometryczny rozwiązuje równni z zstosowniem wzoru n sumę wyrzów ciągu rytmetycznego rozwiązuje równni z zstosowniem wzoru n sumę wyrzów ciągu geometrycznego określ monotoniczność ciągu rytmetycznego i geometrycznego stosuje włsności ciągu rytmetycznego i geometrycznego w zdnich rozwiązuje zdni związne z kredytmi dotyczące okresu oszczędzni i wysokości oprocentowni Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o podwyższonym stopniu trudności dotyczące monotoniczności ciągu wyzncz wyrzy ciągu określonego rekurencyjnie dowodzi wzór n sumę n początkowych wyrzów ciągu rytmetycznego stosuje średnią geometryczną do rozwiązywni zdń rozwiązuje zdni o zncznym stopniu trudności dotyczące ciągów 5. TRYGONOMETRIA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: podje definicje funkcji trygonometrycznych kąt ostrego w trójkącie prostokątnym podje wrtości funkcji trygonometrycznych kątów 30, 45, 60 oblicz wrtości funkcji trygonometrycznych kątów ostrych w trójkącie prostokątnym odczytuje z tblic wrtości funkcji trygonometrycznych dnego kąt ostrego znjduje w tblicch kąt ostry, gdy dn jest wrtość jego funkcji trygonometrycznej

4 rozwiązuje trójkąty prostokątne w prostych zdnich oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny sinus, cosinus kąt podje związki między funkcjmi trygonometrycznymi tego smego kąt stosuje zleżności między funkcjmi trygonometrycznymi do uprszczni wyrżeń zwierjących funkcje trygonometryczne stosuje funkcje trygonometryczne do rozwiązywni prostych zdń osdzonych w kontekście prktycznym zzncz kąt w ukłdzie współrzędnych wyzncz wrtości funkcji trygonometrycznych kąt, gdy dne są współrzędne punktu leżącego n jego końcowym rmieniu określ znki funkcji trygonometrycznych dnego kąt oblicz wrtości funkcji trygonometrycznych szczególnych kątów, np.: 90, 120, 135 Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: oblicz wrtości funkcji trygonometrycznych kątów ostrych w brdziej złożonych sytucjch stosuje funkcje trygonometryczne do rozwiązywni zdń prktycznych o podwyższonym stopniu trudności rozwiązuje trójkąty prostokątne oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny tngens kąt uzsdni związki między funkcjmi trygonometrycznymi Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o podwyższonym stopniu trudności dotyczące funkcji trygonometrycznych stosuje związek między współczynnikiem kierunkowym kątem nchyleni prostej do osi OX 6. PLANIMETRIA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: podje i stosuje wzory n długość okręgu, długość łuku, pole koł i pole wycink koł określ wzjemne położenie okręgów, mjąc dne promienie tych okręgów orz odległość ich środków oblicz pol figur, stosując zleżności między okręgmi (proste przypdki) określ liczbę punktów wspólnych prostej i okręgu przy dnych wrunkch stosuje włsności stycznej do okręgu do rozwiązywni prostych zdń rozpoznje kąty wpisne i środkowe w okręgu orz wskzuje łuki, n których są one oprte stosuje twierdzenie o kącie środkowym i kącie wpisnym, oprtych n tym smym łuku (proste przypdki) podje różne wzory n pole trójkąt oblicz pole trójkąt, dobierjąc odpowiedni wzór (proste przypdki) rozwiązuje zdni dotyczące okręgu wpisnego w trójkąt prostokątny lub równoboczny rozwiązuje zdni związne z okręgiem opisnym n trójkącie podje wzory n pole równoległoboku, rombu i trpezu wykorzystuje funkcje trygonometryczne do wyznczni pól czworokątów (proste przypdki) oblicz odległość punktów w ukłdzie współrzędnych oblicz odwód wielokąt, mjąc dne współrzędne jego wierzchołków stosuje wzór n odległość między punktmi do rozwiązywni prostych zdń wyzncz współrzędne środk odcink, mjąc dne współrzędne jego końców rysuje figury symetryczne w dnej symetrii osiowej konstruuje figury symetryczne w dnej symetrii środkowej określ liczbę i wskzuje osi symetrii figury wskzuje środek symetrii figury znjduje obrzy figur geometrycznych w symetrii osiowej względem osi ukłdu współrzędnych znjduje obrzy figur geometrycznych w symetrii środkowej względem środk ukłdu współrzędnych stosuje włsności symetrii osiowej i środkowej do rozwiązywni prostych zdń Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: stosuje wzory n długość okręgu, długość łuku okręgu, pole koł i pole wycink koł do obliczni pól

5 i obwodów figur oblicz pole figury, stosując zleżności między okręgmi stosuje włsności stycznej do okręgu do rozwiązywni trudniejszych zdń stosuje twierdzenie o kącie środkowym i kącie wpisnym, oprtych n tym smym łuku orz wnioski z tego twierdzeni do rozwiązywni zdń o większym stopniu trudności stosuje różne wzory n pole trójkąt i przeksztłc je wykorzystuje umiejętność wyznczni pól trójkątów do obliczni pól innych wielokątów rozwiązuje zdni związne z okręgiem wpisnym w dowolny trójkąt i opisnym n dowolnym trójkącie stosuje włsności środk okręgu opisnego n trójkącie w zdnich z geometrii nlitycznej wykorzystuje funkcje trygonometryczne do wyznczni pól czworokątów stosuje wzór n odległość między punktmi orz środek odcink do rozwiązywni trudniejszych zdń stosuje włsności symetrii osiowej i środkowej do rozwiązywni trudniejszych zdń Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: dowodzi twierdzeni dotyczące kątów w okręgu dowodzi wzoru n pole trójkąt rozwiązuje zdni z plnimetrii o zncznym stopniu trudności stosuje przesunięcie figury o wektor do rozwiązywni zdń podje środek obrotu i kąt obrotu w prostych sytucjch opisuje równniem okrąg o dnym środku i przechodzący przez dny punkt wyzncz środek i promień okręgu, mjąc jego równnie

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2 Wymgni egzmincyjne z mtemtyki. ls C. MATeMATyk. Now Er. y są ze sobą ściśle powiązne ( + + R + D + W), stnowiąc ocenę szkolną, i tk: ocenę dopuszczjącą () otrzymuje uczeń, który spełnił wymgni konieczne;

Bardziej szczegółowo

Plan wynikowy z matematyki

Plan wynikowy z matematyki ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie

Bardziej szczegółowo

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO Pln wynikowy dostosowny jest do progrmu nuczni mtemtyki w szkole pondgimnzjlnej z zkresu ksztłceni podstwowego PROSTO DO MATURY (progrm nuczni

Bardziej szczegółowo

szkicuje wykresy funkcji: f ( x)

szkicuje wykresy funkcji: f ( x) Wymgni edukcyjne z mtemtyki ls tps Zkres podstwowy Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące oziom Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu Wymgni edukcyjne n poszczególne oceny Kls II - poziom rozszerzony I okres Plnimetri uzupełnienie z klsy I klsyfikuje trójkąty ze względu n miry ich kątów, stosuje twierdzenie o sumie mir kątów wewnętrznych

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

Plan wynikowy klasa 2

Plan wynikowy klasa 2 Plan wynikowy klasa 2 Przedmiot: matematyka Klasa 2 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 36 tyg. 3 h = 108 h (94 h + 14 h do dyspozycji

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Liceum Ogólnokształcące zakres podstawowy

Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Liceum Ogólnokształcące zakres podstawowy Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Liceum Ogólnokształcące zakres podstawowy Formy i metody sprawdzania i oceniania osiągnięć ucznia: Osiągnięcia

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają w przybliżeniu

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZÓŁ OGÓLNOSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 amienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania został skonstruowany w oparciu o następujące

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

MATEMATYKA Katalog wymagań programowych

MATEMATYKA Katalog wymagań programowych MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny (MATEMATYKA) 2015/16. MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny

Wymagania programowe na poszczególne oceny (MATEMATYKA) 2015/16. MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

Wymagania z matematyki, poziom podstawowy. nowa podstawa programowa

Wymagania z matematyki, poziom podstawowy. nowa podstawa programowa z matematyki, poziom podstawowy nowa podstawa programowa Nauczyciel matematyki: mgr Joanna Nowaczyk Zbiór liczb rzeczywistych i jego podzbiory ponad potrafi odróżnić zdanie logiczne od innej wypowiedzi;

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I i II technikum

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I i II technikum Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I i II technikum Temat (rozumiany jako konieczne podstawowe lekcja) rozszerzające dopełniające 1. Lekcja

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 2 58-400 Kamienna Góra tel.: (+48) 75-645-01-82 fax: (+48) 75-645-01-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM PODRĘCZNIK: MATEMATYKA WOKÓŁ NAS KLASA 2 NAUCZYCIEL: BARBARA MIKA Ocena dopuszczająca:

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

ZASADNICZA SZKOŁA ZAWODOWA

ZASADNICZA SZKOŁA ZAWODOWA M ATE M ATY K A ZASADNICZA SZKOŁA ZAWODOWA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Dział programowy : LICZBY I WYRAŻENIA Ocenę niedostateczną uczeń uzyska, jeśli nie spełnia wymagań koniecznych: - nie

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo