DZIAŁ 2. Figury geometryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "DZIAŁ 2. Figury geometryczne"

Transkrypt

1 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko pierwsz i drug godzin z temtu Pole powierzchni bryły. CELE OGÓLNE doskonlenie sprwności rchunkowej wykorzystywnie i tworzenie informcji modelownie mtemtyczne rozumownie i tworzenie strtegii CELE SZCZEGÓŁOWE Uczeń: oblicz pol figur płskich z wykorzystniem odpowiednich wzorów rozwij wyobrźnię przestrzenną dostrzeg zleżności między podnymi informcjmi odkryw sposoby obliczni pól powierzchni grnistosłupów i ostrosłupów oblicz pole powierzchni bryły n podstwie dnych wymirów wykonuje rysunek pomocniczy w celu obliczeni pol powierzchni i objętości bryły rozwiązuje zdni tekstowe z wykorzystniem wzorów n oblicznie pól powierzchni i objętości grnistosłupów i ostrosłupów stosuje wzory n oblicznie pól powierzchni i objętości brył w zdnich prktycznych METODY pogdnk dyskusj FORMY PRACY prc indywiduln prc w grupch prc z cłą klsą ŚRODK DYDAKTYCZNE modele brył prostokąty wycięte ze sztywnego ppieru krty prcy (złączniki 1 6) krty do losowni (złączniki 7 i 8) plikcj Klucz do geometrii UWAG N poprzedniej lekcji nleży poprosić uczniów o wycięcie ze sztywnego ppieru figur geometrycznych potrzebnych do gry le jest jednkowych ścin? opisnej n s. 13 w dodtku N dobry początek. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

2 2 kl. 6, Scenriusz lekcji Pole powierzchni bryły PRZEBEG ZAJĘĆ Lekcj 1 Fz wprowdzjąc (5 min) Temt lekcji: Pole powierzchni grnistosłup Czynności orgnizcyjno-porządkowe. Sprwdzenie prcy domowej. Podnie temtu lekcji i omówienie jej przebiegu: N tej lekcji nuczymy się obliczć pol powierzchni grnistosłupów. Będziemy stosowć zdobytą wiedzę do rozwiązywni zdń związnych z sytucjmi codziennymi. Fz relizcyjn 1. N dobry początek (7 min) Uczniowie czytją instrukcję gry le jest jednkowych ścin? ze s. 13 z dodtku N dobry początek i wykonują ćwiczenie w 3- lub 4-osobowych grupch. Z prostokątów wyciętych w domu uczniowie skłdją kolejno sitki trzech brył: prostopdłościnu o trzech różnych wymirch, prostopdłościnu o podstwie w ksztłcie kwdrtu, sześcinu. Po złożeniu kżdej sitki uczniowie zpisują w zeszytch odpowiedzi n pytni: le rodzjów ścin jest w tym prostopdłościnie? le jest ścin poszczególnych rodzjów? Nuczyciel sprwdz, czy grupy poprwnie złożyły i opisły kżdą z sitek. 2. Pole powierzchni grnistosłup (20 min) Przed lekcją nuczyciel przygotowuje tyle krtek z złącznik 7, ile grup będzie tworzonych podczs zjęć. Kżd grup otrzymuje modele grnistosłupów (mogą to być opkowni przyniesione przez uczniów): prostopdłościnu o trzech różnych wymirch, grnistosłup o podstwie trójkątnej i grnistosłup o podstwie sześciokątnej orz krty prcy (złączniki 1 3) dotyczące tych brył. Krty te zwierją poleceni, których wykonnie pomoże uczniom ustlić sposób obliczni pól powierzchni grnistosłupów. Po wykonniu zdń z krt prcy przedstwiciele grup losują jedną krtkę z rysunkiem bryły lub czystą (złącznik 7). Jeśli przedstwiciel zespołu wylosowł krtkę z rysunkiem, omwi n forum klsy rozwiąznie zdń z krty prcy dotyczącej wylosownej bryły. W trkcie prezentcji pozostli uczniowie weryfikują swoje rozwiązni. Uczniowie wspólnie formułują treść nottki: Pole powierzchni cłkowitej grnistosłup jest równe sumie pól wszystkich ścin. 3. Rozwiązywnie zdń (8 min) Zd. 6 i 7 s uczniowie rozwiązują zdni indywidulnie. Wybrni uczniowie zpisują n tblicy swoje rozwiąznie, pozostli uczniowie sprwdzją je i omwiją. Fz podsumowując (5 min) Uczniowie odpowidją n pytnie: W jkich innych sytucjch z życi codziennego niż przedstwione w zdnich 6 i 7 może być przydtn umiejętność obliczni pol powierzchni grnistosłup? Podjcie kilk przykłdów. Ocen prcy uczniów n lekcji. Zdnie prcy domowej. Zd. 1, 2 i 4 s z podręcznik. Zd. 2 s. 81 w zeszycie ćwiczeń (zd. 1 s. 88 w zeszycie Rdzę sobie corz lepiej). Dl chętnych: Dl dociekliwych s. 83 w zeszycie ćwiczeń. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

3 3 kl. 6, Scenriusz lekcji Pole powierzchni bryły Lekcj 2 Fz wprowdzjąc (5 min) Temt lekcji: Pole powierzchni ostrosłup Czynności orgnizcyjno-porządkowe. Sprwdzenie prcy domowej. Podnie temtu lekcji i omówienie jej przebiegu: N tej lekcji nuczymy się obliczć pol powierzchni ostrosłupów orz będziemy rozwiązywć zdni tekstowe dotyczące obliczni powierzchni tych brył. 1. Przypomnienie wzorów n pol wielokątów (5 min) Uczniowie odpowidją n pytni: Jkie figury mogą być podstwmi ostrosłupów? Jkie są wzory n oblicznie pól powierzchni tych figur? 2. Pole powierzchni ostrosłup (20 min) Przed lekcją nuczyciel przygotowuje tyle krtek z złącznik 8, ile grup będzie tworzonych podczs zjęć. Kżd grup otrzymuje krty prcy (złączniki 4 6). Zwierją one poleceni, których wykonnie pomoże uczniom ustlić sposób obliczni pól powierzchni ostrosłupów. Uczniowie mogą korzystć z modeli ostrosłupów złożonych z sitek z zestwu Kluczowe pomoce dydktyczne. Po wykonniu zdń z krt prcy przedstwiciele grup losują jedną krtkę z rysunkiem bryły lub czystą (złącznik 8). Jeśli przedstwiciel zespołu wylosowł krtkę z rysunkiem, omwi n forum klsy rozwiąznie zdń z krty prcy dotyczącej wylosownej bryły. Nuczyciel, korzystjąc z plikcji Klucz do geometrii, prezentuje odpowiednie ostrosłupy. Pozostli uczniowie weryfikują swoje rozwiązni. Uczniowie wspólnie formułują treść nottki: Pole powierzchni cłkowitej ostrosłup jest równe sumie pól wszystkich ścin. 3. Zdni tekstowe (10 min) Uczniowie smodzielnie rozwiązują zdnie, wykorzystując widomości zdobyte podczs lekcji. Nuczyciel mtemtyki, pn Bystry, plnuje okleić metlizowną folią smoprzylepną model ostrosłup, którego podstwą jest ośmiokąt foremny o boku 4 cm. Wysokość ściny bocznej tej bryły jest równ 15,4 cm. Pn Bystry obliczył, że n podstwę zużyje około 77,25 cm 2 folii smoprzylepnej. le co njmniej centymetrów kwdrtowych tej folii potrzebuje pn Bystry do oklejeni cłej bryły? Sprwdzenie poprwności rozwiązni zdni odbyw się n forum klsy. Uczniowie biorą udził w dyskusji. Zd. 13 s. 131 uczniowie rozwiązują zdnie indywidulnie. Wybrny uczeń zpisuje n tblicy rozwiąznie, pozostli uczniowie biorą udził w dyskusji. Fz podsumowując (5 min) Uczniowie odpowidją n pytnie: Czy wszym zdniem łtwiej jest policzyć pole powierzchni, mjąc nrysowną sitkę ostrosłup czy jego rzut? Ocen prcy uczniów n lekcji. Zdnie prcy domowej. Zd. 3 i 5 s. 130 z podręcznik. Dl chętnych: Dl dociekliwych s. 132 z podręcznik. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

4 4 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 1 KARTA PRACY Poniższe rysunki przedstwiją ten sm prostopdłościn w trzech różnych położenich. b c c Weźcie model prostopdłościnu o trzech różnych wymirch. Ustwcie go kolejno w tkich położenich jk n rysunkch. Uzupełnijcie zdni. Prostopdłościn m ścin, które są. Brył t m pry jednkowych i równoległych ścin. Prostopdłościn ten jest grnistosłupem o podstwie w ksztłcie. Zmierzcie i zpiszcie długości krwędzi nrysownego prostopdłościnu. = cm b = cm c = cm Obliczcie pol oznczonych ścin. P = P = P = Obliczcie pole powierzchni cłkowitej nrysownej bryły. b Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

5 5 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 2 KARTA PRACY Poniższe rysunki przedstwiją ten sm grnistosłup w dwóch różnych położenich. H h Weźcie model grnistosłup o podstwie w ksztłcie trójkąt równobocznego. Ustwcie go kolejno w tkich położenich jk n rysunkch. Uzupełnijcie zdni. Grnistosłup o podstwie w ksztłcie trójkąt równobocznego m jednkowe ściny, które są trójkątmi równobocznymi, i jednkowe ściny, które są. Pole cłkowitej tej bryły możn obliczyć ze wzoru: P c = 2 P + P. Zmierzcie i zpiszcie długości odpowiednich odcinków. = cm h = cm H = cm Obliczcie pol oznczonych ścin. P = P = Obliczcie pole powierzchni cłkowitej nrysownej bryły. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

6 6 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 3 KARTA PRACY Poniższe rysunki przedstwiją ten sm grnistosłup w dwóch różnych położenich. H Weźcie model grnistosłup, którego podstwą jest sześciokąt foremny. Ustwcie go kolejno w tkich położenich jk n rysunkch. Uzupełnijcie zdni. Grnistosłup o podstwie w ksztłcie sześciokąt foremnego m jednkowe ściny, które są sześciokątmi, i jednkowych ścin, które są. Pole powierzchni cłkowitej tej bryły możn obliczyć ze wzoru: P c = P + P. Zmierzcie i zpiszcie długości odpowiednich odcinków. = cm H = cm Obliczcie pole podstwy nrysownej bryły. Wskzówk. Sześciokąt foremny możemy podzielić n 6 jednkowych trójkątów równobocznych o boku równym długości boku sześciokąt. N rysunku grnistosłup podzielcie jego podstwę (ścin ) n tkie trójkąty. Nrysujcie wysokość jednego z nich i ją zmierzcie. h = cm P = Obliczcie pole ściny bocznej nrysownej bryły. P = Obliczcie pole powierzchni cłkowitej nrysownego grnistosłup. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

7 7 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 4 KARTA PRACY V Poniższe rysunki przedstwiją model ostrosłup o podstwie w ksztłcie kwdrtu orz jego dwie ściny nturlnej wielkości. h Uzupełnijcie zdni. Ściny ostrosłup o podstwie w ksztłcie kwdrtu to kwdrt i jednkowe trójkąty. Pole powierzchni cłkowitej tej bryły możn obliczyć ze wzoru: P c = P +. Zmierzcie i zpiszcie długości odpowiednich odcinków. = cm h = cm Obliczcie pol oznczonych ścin. P = P = Obliczcie pole powierzchni cłkowitej nrysownej bryły. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

8 8 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 5 KARTA PRACY V Poniższe rysunki przedstwiją model ostrosłup o podstwie w ksztłcie trójkąt równobocznego orz jego dwie ściny nturlnej wielkości. h h śb Uzupełnijcie zdni. Ściny ostrosłup o podstwie w ksztłcie trójkąt równobocznego to trójkąt równoboczny i jednkowe trójkąty. Pole powierzchni tej bryły możn obliczyć ze wzoru: P c = P + P. Zmierzcie i zpiszcie długości odpowiednich odcinków. = cm h = cm h śb = cm Obliczcie pol oznczonych ścin. P = P = Obliczcie pole powierzchni cłkowitej nrysownej bryły. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

9 9 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 6 KARTA PRACY V Poniższe rysunki przedstwiją model ostrosłup o podstwie w ksztłcie prostokąt orz jego trzy ściny nturlnej wielkości. b h h b b Nrysujcie n oddzielnej krtce sitkę tego ostrosłup. Uzupełnijcie zdni. Ściny ostrosłup o podstwie w ksztłcie prostokąt to jeden i pry jednkowych trójkątów. Pole powierzchni cłkowitej tej bryły możn obliczyć ze wzoru: P c = + + Zmierzcie i zpiszcie długości odpowiednich odcinków. = cm b = cm h = cm h b = cm Obliczcie pol oznczonych ścin. P = P = P = Obliczcie pole powierzchni cłkowitej nrysownej bryły. Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

10 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 7 b H H Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

11 kl. 6, Scenriusz lekcji Pole powierzchni bryły Złącznik 8 Autor: Młgorzt Pszyńsk Copyright by Now Er Sp. z o.o.

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne?

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne? KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI Temt: Do czego służą wyrżeni lgebriczne? Prowdzący: Agnieszk Smborowicz Liczb jednostek lekcyjnych: 1 2 (w zleżności od zespołu) Cele ogólne Utrwlenie widomości

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. VI.

Scenariusz lekcji matematyki w kl. VI. Alin Grodzk Scenriusz lekcji mtemtyki w kl. VI. Temt lekcji: Pol figur płskich - powtórzenie. Celem lekcji jest rozwijnie umiejętności rozpoznwni i klsyfikowni wielokątów, obliczni pól figur orz utrwlnie

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Określenie, wykres i własności funkcji homograficznej.

SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Określenie, wykres i własności funkcji homograficznej. Ktrzyn Gwinkowsk Hnn Młeck VI L.O im J. Korczk W ZSO nr w Sosnowcu. SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temt: Określenie, wykres i włsności unkcji homogricznej. Cele lekcji: poznwcze:

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej. Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy SCHEMAT UNKTOWANIA Wojewódzki Konkurs rzedmiotowy z Mtemtyki dl uczniów gimnzjów Rok szkolny 0/03 Etp rejonowy rzy punktowniu zdń otwrtych nleży stosowć nstępujące ogólne reguły: Ocenimy rozwiązni zdń

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych.

Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych. Senriusz lekji mtemtyki dl klsy III gimnzjum Temt: owtórzenie i utrwlenie widomośi dotyząy figur geometryzny Cel ogólny lekji: Uporządkownie i utrwlenie widomośi o figur płski i przestrzenny Cele operyjne:

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Zwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy.

Zwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy. Zwróć uwgę Poniżej znjdziesz kilk wskzówek, którą mogą ci ułtwić npisnie sprwdzinu szóstoklsisty. Njwżniejsz z nich to: Czytj uwżnie treści zdń i poleceni. W rzie potrzey przeczytj je kilk rzy. Zwrcj uwgę

Bardziej szczegółowo

ZAKRES WYMAGAŃ Z MATEMATYKI

ZAKRES WYMAGAŃ Z MATEMATYKI ZAKRES WYMAGAŃ Z MATEMATYKI W RAMACH PRZYGOTOWAŃ DO EGZAMINU GIMNAZJALNEGO PRZYKŁADOWE ZAGADNIENIA CZĘŚĆ I. Elementrne dziłni n liczbch wymiernych. Dziłni wykonywne w pmięci. II. Liczby wymierne. Włsności

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Wyróżnione zostły

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk 2 Szczegółowe wymgni edukcyjne z mtemtyki w klsie drugiej Zkres podstwowy Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące,

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

ANKIETA potrzeb doskonalenia zawodowego na rok szkolny 2013/2014

ANKIETA potrzeb doskonalenia zawodowego na rok szkolny 2013/2014 06-500 Młw, ul. Reymont 4 tel. (023) 654-32-47 ANKIETA potrzeb doskonleni zwodowego n rok szkolny 2013/2014 Zespół dordców metodycznych ośrodk przystąpił do uktulnieni oferty szkoleniowej n rok szkolny

Bardziej szczegółowo

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D.

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D. Sprwdzin Potęgi i pierwistki. Piąt potęg liczby jest równ: A. 0 B. C. D. 4. Iloczyn jest równy: A. B. C. D.. Odległość Ziemi od Słońc jest równ 0 000 000 km. Odległość tą możn zpisć w postci iloczynu:

Bardziej szczegółowo

PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zawsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012

PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zawsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012 PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zwsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012 ZAŁOŻENIA PROGRAMU: progrm m być spójny z progrmem wychowwczym szkoły,

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Rozkłd mteriłu nuczni Nr zj Temt z podręcznik Zpis w dzienniku Osiągnięci uczni 1., 2. 1. Witmy w klsie 2 Zsdy bezpiecznej prcy w prcowni komputerowej. Uruchminie i wyłącznie komputer wie, jk się zchowywć

Bardziej szczegółowo

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty sie c dzi uk, b łch n be rw n r ysk r cz cz yć p iec przód wiel któr ysik ś t m l by k c tmk w u r si f k glnty p m guziny bin u sz n kónd ek cz ć y s k nudle gwr i dilektów plskich Jk wykrzystć Mpę gwr

Bardziej szczegółowo

Plan wynikowy z matematyki

Plan wynikowy z matematyki ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni

Bardziej szczegółowo

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych Dz.U.2012.204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych (Dz. U. z dni 22 lutego 2012 r.) N podstwie rt. 22 ust. 2 pkt 1 ustwy

Bardziej szczegółowo

szkicuje wykresy funkcji: f ( x)

szkicuje wykresy funkcji: f ( x) Wymgni edukcyjne z mtemtyki ls tps Zkres podstwowy Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące oziom Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO w roku szkolnym... I. Dne osoowe uczni / słuchcz Nzwisko..... Imion...... Imię ojc i mtki...... PESEL uczni / słuchcz Dt i miejsce urodzeni... II. Adres zmieszkni

Bardziej szczegółowo

Opracowanie zbiorcze wyników ankiet przeprowadzonych wśród rodziców na temat koncepcji pracy szkoły szkoły.

Opracowanie zbiorcze wyników ankiet przeprowadzonych wśród rodziców na temat koncepcji pracy szkoły szkoły. Oprcownie ziorcze wyników nkiet przeprowdzonych wśród rodziców n temt koncepcji prcy szkoły szkoły. Termin i miejsce dń Zernie Rodziców dn. 22.09.2014r. Ankiet zostł oprcown w celu poznni opinii nuczycieli

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III ZAKRES PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA prowdzi proste rozumownie skłdjące się z niewielkiej liczby kroków prowdzi rozumownie z wykorzystniem wzorów

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2012/13

Zakres na egzaminy poprawkowe w r. szk. 2012/13 Zkres n egzminy poprwkowe w r. szk. 2012/13 /nuczyciel M.Ttr/ MATEMATYKA Kls II ZAKRES PODSTAWOWY Dził progrmu I. Plnimetri, cz. 1 Temt 1. Podstwowe pojęci geometryczne 2. Współliniowość punktów. Nierówność

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

POROZUMIENIE. z dnia 27 czerwca 2008 r. w sprawie budowania Lokalnego Systemu Przeciwdziałania Przemocy w Rodzinie w Suwałkach

POROZUMIENIE. z dnia 27 czerwca 2008 r. w sprawie budowania Lokalnego Systemu Przeciwdziałania Przemocy w Rodzinie w Suwałkach pomóżmy innym, by sobie pomogli POROZUMIENIE z dni 27 czerwc 2008 r. w sprwie budowni Loklnego Systemu Przeciwdziłni Przemocy w Rodzinie w Suwłkch zwrte pomiędzy: Mistem Suwłki z siedzibą w Suwłkch, ul

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Gabriela Mysłowska Państwowe Liceum sztuk Plastycznych W Olsztynie PLAN METODYCZNY

Gabriela Mysłowska Państwowe Liceum sztuk Plastycznych W Olsztynie PLAN METODYCZNY Celem poniższego opracowania jest chęć podzielenia się moją wiedzą i umiejętnościami z nauczycielami uczącymi matematyki w szkołach ponadgimnazjalnych. Scenariusz przedstawionej propozycji lekcji zawiera

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

DZIAŁ 1. Liczby naturalne część 1

DZIAŁ 1. Liczby naturalne część 1 1 kl. 4, Scenariusz lekcji Zadania tekstowe DZIAŁ 1. Liczby naturalne część 1 Temat w podręczniku: Zadania tekstowe 2 godz. lekcyjne CELE OGÓLNE doskonalenie sprawności rachunkowej wykorzystywanie i tworzenie

Bardziej szczegółowo

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu Wymgni edukcyjne n poszczególne oceny Kls II - poziom rozszerzony I okres Plnimetri uzupełnienie z klsy I klsyfikuje trójkąty ze względu n miry ich kątów, stosuje twierdzenie o sumie mir kątów wewnętrznych

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Program Cisco. Anna Czacharowska Koordynator Programu

Program Cisco. Anna Czacharowska Koordynator Programu Progrm Cisco Networking Acdemy Ann Czchrowsk Koordyntor Progrmu Globlny progrm edukcyjny, w rmch którego uczniowie i studenci zdobywją wiedzę i kompetencje w zkresie projektowni, budowni, zbezpieczni i

Bardziej szczegółowo

SZKOLNY PROGRAM PROFILAKTYKI NA ROK 2015/2016

SZKOLNY PROGRAM PROFILAKTYKI NA ROK 2015/2016 SZKOLNY PROGRAM PROFILAKTYKI NA ROK 205/206 7 ogrm ofilkti jest dostosowny do potrzeb rozwojowych dzieci w wieku 6-3 lt. Czs relizcji ogrmu: rok szkolny 205/206 I Obszry dziłń profilktycznych szkoły: bezpieczeństwo

Bardziej szczegółowo

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO Pln wynikowy dostosowny jest do progrmu nuczni mtemtyki w szkole pondgimnzjlnej z zkresu ksztłceni podstwowego PROSTO DO MATURY (progrm nuczni

Bardziej szczegółowo

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY

Bardziej szczegółowo

SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum

SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum HASŁO PROGRAMU: Ostrosłupy TEMAT LEKCJI: Rodzaje ostrosłupów. CZAS TRWANIA: 45 minut CELE LEKCJI: a) szczegółowe: przypomnienie i utrwalenie wiadomości

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2 Wymgni egzmincyjne z mtemtyki. ls C. MATeMATyk. Now Er. y są ze sobą ściśle powiązne ( + + R + D + W), stnowiąc ocenę szkolną, i tk: ocenę dopuszczjącą () otrzymuje uczeń, który spełnił wymgni konieczne;

Bardziej szczegółowo

Fundacja Widzialni strony internetowe bez barier. Audyt stron miast

Fundacja Widzialni strony internetowe bez barier. Audyt stron miast Wrszw, dni 30 mrc 2011 r. Fundcj Widzilni strony internetowe bez brier Audyt stron mist Od 1 mrc 2008r. do 21 kwietni 2008r. przeprowdziliśmy kolejny udyt serwisów dministrcji publicznej. Poddliśmy kontroli

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy

Wymagania edukacyjne zakres podstawowy Złącznik nr 3 do PSO z mtemtyki, ZSP Nr 1 w Krośnie. Wymgni edukcyjne zkres podstwowy Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących swego

Bardziej szczegółowo

Dział programowy: LICZBY RZECZYWISTE

Dział programowy: LICZBY RZECZYWISTE Ksztłcenie ogólne w zkresie podstwowym Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć edukcyjnych oprcowne n podstwie przedmiotowego

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

Kryteria oceniania wiadomości i umiejętności matematycznych uczniów III klasy liceum

Kryteria oceniania wiadomości i umiejętności matematycznych uczniów III klasy liceum Kryteri ocenini widomości i umiejętności mtemtycznych uczniów III klsy liceum A leksn d er D ud Nuczyciel mtemtyki Zespół Szkół Ogólnoksztłcących im. św. Wincentego Pulo w Pbinicch PLAN REALIZACJI MATERIAŁU

Bardziej szczegółowo

Temat: Pole równoległoboku.

Temat: Pole równoległoboku. Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -

Bardziej szczegółowo

Księga Identyfikacji Wizualnej. Polskie Sieci Elektroenergetyczne S.A.

Księga Identyfikacji Wizualnej. Polskie Sieci Elektroenergetyczne S.A. Księg Identyfikcji Wizulnej Polskie Sieci Elektroenergetyczne S.A. 1. Elementy bzowe 1.1. KONSTRUKCJA OPIS ZNAKU PSE 3 1.2. WERSJA PODSTAWOWA ZNAKU 4 1.3. WERSJE UZUPEŁNIAJĄCE 5 1.4. OPIS KOLORYSTYKI ZNAKU

Bardziej szczegółowo

Kolor zielony oznacza zajęcia dla dzieci w wieku 7-12 lat

Kolor zielony oznacza zajęcia dla dzieci w wieku 7-12 lat LATO W KONSERWATORIUM 7 sierpni wrześni 0 Bezpłtne zjęci muzyczne, lekcje, wykłdy wrsztty, prezentcje instrumentów. Projekt dofinnsowny ze środków Urzędu Mist Poznni Zjęci i wrsztty pod nzwą LATO W KONSERWATORIUM

Bardziej szczegółowo

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r.

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Wrszw, dni 22 lutego 2012 r. Pozycj 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych

Bardziej szczegółowo

Definiowanie procedur z parametrami w Logo Komeniuszu.

Definiowanie procedur z parametrami w Logo Komeniuszu. 1 Scenariusze trzech lekcji z informatyki w gimnazjum. Definiowanie procedur z parametrami w Logo Komeniuszu. Dział programu: Programowanie czynności powtarzalnych. Dotychczasowa wiedza ucznia: Uczeń potrafi

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych.

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych. . Stwki tryfowe n dwunstomiesięczny okres ubezpieczeni, dl kżdego z rodzjów ubezpieczeń, określone są w kolejnych częścich tryfy. 2. Stwki podne w poszczególnych tbelch są stwkmi minimlnymi, z zstrzeżeniem

Bardziej szczegółowo

Powtórzenie wiadomości o figurach na płaszczyźnie

Powtórzenie wiadomości o figurach na płaszczyźnie Literka.pl Powtórzenie wiadomości o figurach na płaszczyźnie Data dodania: 2009-06-13 16:49:26 Autor: Sylwia Tillack Konspekt opracowany na podstawie podręcznika i ćwiczeń Matematyka z Plusem wydawnictwa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo