Badanie regularności w słowach

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie regularności w słowach"

Transkrypt

1 Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik

2 Edsger Wybe Dijkstr ( ) Computer science is no more bout computers thn stronomy is bout telescopes, biology is bout microscopes or chemistry is bout bekers nd test tubes. Science is not bout tools, it is bout how we use them nd wht we find out when we do. N 2 / 41

3 Wstęp lfbety i słow lfbet Σ skończony zbiór symboli słowo skończony ciąg symboli ze zbioru Σ Przykłdy Σ = {1, 2, 3, 4, 5, 6, 7, 8, 9} 15432, 48, , Σ = {, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t, u, w, z} kot, pies, dom, drzewo Σ = {,,,,, },,, 3 / 41

4 Wstęp Monoid słów Σ zbiór wszystkich skończonych słów nd lfbetem Σ Konktencj: m b 1 b 2... b n = m b 1 b 2... b n Łączność: (x y) z = x (y z) Element neutrlny ε (słowo puste): x ε = ε x = x 4 / 41

5 Wstęp Fktor Słowo w jest fktorem słow u jeśli u = x w y Przykłd: fktor: prefiks: sufiks: b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 5 / 41

6 Wstęp Morfizm φ : M 1 M 2 x, y M φ(x y) = φ(x) φ(y) Przykłd M 1 = (Σ, ), M 2 = (Z, +) φ : M 1 M 2 φ(x) = x 6 / 41

7 Mksymlne powtórzeni Mksymlne powtórzeni b b b b b b b b b b b b b b 7 / 41

8 Mksymlne powtórzeni Mksymlne powtórzeni b b b b b b b b b b b b b b 7 / 41

9 Mksymlne powtórzeni Mksymlne powtórzeni b b b b b b b b b b b b b b 7 / 41

10 Mksymlne powtórzeni Mksymlne powtórzeni b b b b b b b b b b b b b b Oznczeni ρ(w) liczb mksymlnych powtórzeń w słowie w { } ρ(n) = mx ρ(w) : w = n 7 / 41

11 Mksymlne powtórzeni b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 8 / 41

12 Mksymlne powtórzeni Wrtości ρ(n) dl 10 n 20 n ρ(n) ρ(n)/n Słowo bbbb bbbbb bbbb bbbb , bbbbbb bbbbbb bbbbbb bbbbbbbb bbbbbbbb bbbbbbb bbbbbbbb 9 / 41

13 Mksymlne powtórzeni Wrtości ρ(n) dl 21 n 31 n ρ(n) ρ(n)/n Słowo bbbbbbbb bbbbbbbbbb bbbbbbbbb bbbbbbbbbbbb bbbbbbbbbb bbbbbbbbbbbb bbbbbbbbbbbb bbbbbbbbbbbb bbbbbbbbbbbbbb bbbbbbbbbbbbbbb bbbbbbbbbbbbbb 10 / 41

14 Mksymlne powtórzeni oszcownie. Kolpkov, G. Kucherov (1999) n>0 ρ(n) c n lgorytm znjdowni wszystkich mksymlnych powtórzeń w słowie długości n dziłjący w czsie O(n) Hipotez n>0 ρ(n) n 11 / 41

15 Mksymlne powtórzeni oszcownie n 12 / 41

16 Mksymlne powtórzeni oszcownie 5n ytter (2006) n 12 / 41

17 Mksymlne powtórzeni oszcownie 5n ytter (2006) 3.44n ytter (2007) n 12 / 41

18 Mksymlne powtórzeni oszcownie 5n ytter (2006) 3.48n Puglisi et l. (2008) 3.44n ytter (2007) n 12 / 41

19 Mksymlne powtórzeni oszcownie 5n ytter (2006) 3.48n Puglisi et l. (2008) 3.44n ytter (2007) 1.6n Crochemore, Ilie (2008) n 12 / 41

20 Mksymlne powtórzeni oszcownie 5n ytter (2006) 3.48n Puglisi et l. (2008) 3.44n ytter (2007) 1.6n Crochemore, Ilie (2008) 1.048n Crochemore et l. (2008) n 12 / 41

21 Mksymlne powtórzeni oszcownie 5n ytter (2006) 3.48n Puglisi et l. (2008) 3.44n ytter (2007) 1.6n Crochemore, Ilie (2008) 1.048n Crochemore et l. (2008) n n Frnek et l. (2003) 12 / 41

22 Mksymlne powtórzeni oszcownie 5n ytter (2006) 3.48n Puglisi et l. (2008) 3.44n ytter (2007) 1.6n Crochemore, Ilie (2008) 1.048n Crochemore et l. (2008) n n Kusno et l. (2008) n Frnek et l. (2003) 12 / 41

23 Mksymlne powtórzeni oszcownie 5n ytter (2006) 3.48n Puglisi et l. (2008) 3.44n ytter (2007) 1.6n Crochemore, Ilie (2008) 1.048n Crochemore et l. (2008) n Kusno et l. (2008) n Frnek et l. (2003) 12 / 41

24 Miry regulrności słów Liczb mksymlnych powtórzeń 0.944n ρ(n) 1.048n 13 / 41

25 Miry regulrności słów Liczb mksymlnych powtórzeń 0.944n ρ(n) 1.048n Liczb mksymlnych powtórzeń kubicznych 0.41n ρ (3) (n) 0.5n (Crochemore et l., 2010) 13 / 41

26 Miry regulrności słów Liczb mksymlnych powtórzeń 0.944n ρ(n) 1.048n Liczb mksymlnych powtórzeń kubicznych 0.41n ρ (3) (n) 0.5n (Crochemore et l., 2010) Sum wykłdników mksymlnych powtórzeń 2.035n se(n) 4.1n (Crochemore et l., 2011) 13 / 41

27 Miry regulrności słów Liczb mksymlnych powtórzeń 0.944n ρ(n) 1.048n Liczb mksymlnych powtórzeń kubicznych 0.41n ρ (3) (n) 0.5n (Crochemore et l., 2010) Sum wykłdników mksymlnych powtórzeń 2.035n se(n) 4.1n (Crochemore et l., 2011) Cłkowit długość mksymlnych powtórzeń n 2 8 TL(n) 47n2 72 (Glenn et l., 2013) 13 / 41

28 Definicj Słow Fiboncciego F 1 = b F 0 = F n = F n 1 F n 2 Przykłd F 1 = b f 1 = 2 F 2 = b f 2 = 3 F 3 = bb f 3 = 5 F 4 = bbb f 4 = 8 F 5 = bbbbb f 5 = 13 F 6 = bbbbbbbb f 6 = 21 F 7 = bbbbbbbbbbbbb f 7 = / 41

29 Słow Fiboncciego. Kolpkov, G. Kucherov (1999) n4 ρ(f n ) = 2 F n 2 3 symptotyk lim n ρ(f n ) F n = / 41

30 Słow stndrdowe Słow Fiboncciego F 1 = b F 0 = F k = F k 1 F k 2 Słow stndrdowe Sw(γ 0, γ 1,..., γ n ) x 1 = b x 0 = x k = x k 1 x k 1... x k 1 } {{ } γ k 1 x k 2 16 / 41

31 Słow stndrdowe γ = (1, 2, 1, 3, 1) x 1 = b x 0 = x 1 = (x 0 ) 1 x 1 = b x 2 = (x 1 ) 2 x 0 = b b x 3 = (x 2 ) 1 x 1 = bb b x 4 = (x 3 ) 3 x 2 = bbb bbb bbb bb x 5 = (x 4 ) 1 x 3 = bbbbbbbbbbb bbb Sw(1, 2, 1, 3, 1) = bbbbbbbbbbbbbb 17 / 41

32 Definicj Słow stndrdowe Dl ciągu kierunkowego γ = (γ 0, γ 1,..., γ n ) określmy h γi : { γ i b b dl 0 i n. 18 / 41

33 Definicj Słow stndrdowe Dl ciągu kierunkowego γ = (γ 0, γ 1,..., γ n ) określmy h γi : { γ i b b dl 0 i n. Sw(1) = h 1 () = b ( ) Sw(3, 1) = h 3 Sw(1) = b ( ) Sw(1, 3, 1) = h 1 Sw(3, 1) = bbbb ( ) Sw(2, 1, 3, 1) = h 2 Sw(1, 3, 1) = bbbbb ( ) Sw(1, 2, 1, 3, 1) = h 1 Sw(2, 1, 3, 1) = bbbbbbbbbbbbbb 18 / 41

34 w = 33 w = 19 w b = 14 b b b b b b b b b b b b b b b b b b b b b b b b b b b b Słowo Christoffel (dolne): bbbbbbbbbbbbbb Słowo Christoffel (górne): bbbbbbbbbbbbbb Słow stndrdowe: bbbbbbbbbbbbbb bbbbbbbbbbbbbb 19 / 41

35 w = 33 w = 19 w b = 14 b b 20 / 41

36 w = 33 w = 19 w b = 14 b b 20 / 41

37 w = 33 w = 19 w b = 14 b b b b 20 / 41

38 w = 33 w = 19 w b = 14 b b b b 20 / 41

39 w = 33 w = 19 w b = 14 b b b b b b 20 / 41

40 w = 33 w = 19 w b = 14 b b b b b b 20 / 41

41 w = 33 w = 19 w b = 14 b b b b b b 20 / 41

42 w = 33 w = 19 w b = 14 b 14 0 b b b 10 b b b b b b 3 b b b b b b b b b b b b b b b b b b 20 / 41

43 Ułmki łńcuchowe Definicj Ułmkiem łńcuchowym nzywmy wyrżenie postci: 1 0 +, n zpisywne w uproszczeniu jko [ 0 ; 1, 2, 3,..., n ]. 21 / 41

44 Ułmki łńcuchowe Przykłd / 41

45 Ułmki łńcuchowe Przykłd = / 41

46 Ułmki łńcuchowe Przykłd = = / 41

47 Ułmki łńcuchowe Przykłd = = = [1; 2, 1, 4] 22 / 41

48 Ułmki łńcuchowe Przykłd = = = = [1; 2, 1, 4] [1; 2, 1, 3, 1] 22 / 41

49 Słow stndrdowe Fkt Dl p q = [γ 0; γ 1,..., γ n ], gdzie p, q są względnie pierwsze, istnieje jednozncznie wyznczone słowo w {, b} tkie, że: 1 w = p 1 2 w b = q 1 3 Słowo b w jest dolnym słowem Christoffel. 4 Słowo w b jest górnym słowem Christoffel. 5 Jedno ze słów w b lub w b jest słowem stndrdowym zdnym przez ciąg kierunkowy γ = (γ 0,..., γ n ) 23 / 41

50 Słow Sturm Definicj Słow Sturm to nieskończone słow binrne, które zwierją dokłdnie n + 1 różnych podsłów długości n 0. b b b b b b b b b b b b b b... 1 b b b b b b b b b b b b b b... 2 b b b b b b b b b b b b b b... 3 b b b b b b b b b b b b b b... 4 b b b b b b b b b b b b b b / 41

51 Słow stndrdowe mksymlne powtórzeni P. turo, M. Piątkowski, W. ytter 2008 Okres kżdego mksymlnego powtórzeni w słowie stndrdowym Sw(γ 0, γ 1,..., γ n ) jest postci u = (x i ) j x i 1, gdzie 0 i n orz 0 j < γ i. Oznczeni: Mksymlne powtórzeni z okresem nie dłuższym niż x 1 nzywmy krótkimi Mksymlne powtórzeni z okresem dłuższym niż x 2 nzywmy długimi Pozostłe mksymlne powtórzeni nzywmy średnimi 25 / 41

52 Słow stndrdowe mksymlne powtórzeni b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 26 / 41

53 Słow stndrdowe mksymlne powtórzeni Zlicznie mksymlnych powtórzeń Wzór n liczbę krótkich mksymlnych powtórzeń wyznczony w sposób bezpośredni. Wzór n liczbę średnich mksymlnych powtórzeń wyznczony w sposób bezpośredni. ekurencyjn zleżność dl długich mksymlnych powtórzeń. 27 / 41

54 i-prtition Słow stndrdowe mksymlne powtórzeni Kżde słowo stndrdowe Sw(γ 0,..., γ n ) może być reprezentowne w jednej z dwóch postci: x α1 i x i 1 x α2 i x i 1... x αs i x i 1 x i lub x β1 i x i 1 x β2 i x i 1... x βs i x i 1, gdzie α k, β k {γ i, γ i + 1}. x 1 x 1 x 0 x 1 x 1 x 1 x 0 x 1 x 1 x 1 x 0 x 1 x 1 x 1 x 0 x 1 x 1 x 0 x 1 b b b b b b b b b b b b b b x 2 x 1 x 2 x 1 x 2 x 1 x 2 x 2 x 1 x 3 x 3 x 3 x 2 x 3 b b b b b b b b b b b b b b x 4 x 3 28 / 41

55 Słow stndrdowe mksymlne powtórzeni Fkt Struktur wystąpień bloków x i (równowżnie x i 1 ) w reprezentcji i-prtition słow stndrdowego Sw(γ 0,..., γ n ) odpowid strukturze wystąpień liter (równowżnie liter b) w słowie Sw(γ m,..., γ n ). i i-prtition Sw(γ m,..., γ n ) 1 b b b b b b b b b b b b b b bbbbb 2 bb b bb b bb b bb bb b bbbb 3 bbb bbb bbb bb bbb b 4 bbbbbbbbbbb bbb b 29 / 41

56 Słow stndrdowe mksymlne powtórzeni P. turo, M. Piątkowski, W. ytter 2008 Okresy długich mksymlnych powtórzeń w słowch stndrdowych synchronizują się z morfizmmi h i b b b b b b h 0 b b b b b b b b b b b b b b b b b b b b 30 / 41

57 Słow stndrdowe mksymlne powtórzeni P. turo, M. Piątkowski, W. ytter (γ) 1 γ 0 = γ 1 = 1 (γ 1 + 2) + + (γ) odd(n) γ 0 = 1; γ 1 > 1 ρ(w) = (γ) even(n) γ 0 > 1; γ 1 = 1 (2γ 1 + 1) (γ) γ 0 > 1; γ 1 > 1 = Sw(γ 2, γ 3,..., γ n ) = Sw(γ 3, γ 4,..., γ n ) (γ) = n 1 (γ γ n ) unry(γ n ) 31 / 41

58 Słow stndrdowe mksymlne powtórzeni Wyznczenie wrtości Sw(γ 0,..., γ n ) x 1 0 x 0 1 x 1 γ 0 x 0 + x 1 x 2 γ 1 x 1 + x 0. x n+1 γ n x n + x n 1 32 / 41

59 Słow stndrdowe mksymlne powtórzeni Wyznczenie wrtości Sw(γ 0,..., γ n ) x 1 0 x 0 1 x 1 γ 0 x 0 + x 1 x 2 γ 1 x 1 + x 0. x n+1 γ n x n + x n 1 (n + 1) rzy 32 / 41

60 Słow stndrdowe mksymlne powtórzeni Słow z dużą liczbą mksymlnych powtórzeń v k = Sw(1, 2, k, k) v k = ( (bb) k b) kbb v k = 5k 2 + 2k + 5 ρ(v k ) = 4k 2 k + 3 ρ(v k ) v k / 41

61 Słow stndrdowe mksymlne powtórzeni P. turo, M. Piątkowski, W. ytter 2008 n>0 ρ(n) 0.8 n ρ(n) lim n n = / 41

62 Słow stndrdowe mksymlne powtórzeni P. turo, M. Piątkowski, W. ytter 2008 n>0 ρ(n) 0.8 n ρ(n) lim n n = 0.8 M. Piątkowski, W. ytter 2011 Zwrty wzór n liczbę mksymlnych powtórzeń kubicznych w słowch stndrdowych ρ (3) (n) lim n n = / 41

63 urrows-wheeler Trnsform WT Podstwy teoretyczne Dvid Wheeler, 1983 Zstosownie prktyczne Michel urrows, 1994 Podstw lgorytmu kompresji bzip2 35 / 41

64 urrows-wheeler Trnsform lgorytm K D Wyzncz mcierz M zwierjącą wszystkie cykliczne przesunięci słow wejściowego Posortuj wiersze M leksykogrficznie Zwróć zwrtość osttniej kolumny M orz numer wiersz zwierjącego słowo wejściowe 36 / 41

65 urrows-wheeler Trnsform lgorytm Wyzncz mcierz M zwierjącą wszystkie cykliczne przesunięci słow wejściowego Posortuj wiersze M leksykogrficznie Zwróć zwrtość osttniej kolumny M orz numer wiersz zwierjącego słowo wejściowe K D K D K D K D K D D K D K K D K D K D K D 36 / 41

66 urrows-wheeler Trnsform lgorytm Wyzncz mcierz M zwierjącą wszystkie cykliczne przesunięci słow wejściowego Posortuj wiersze M leksykogrficznie Zwróć zwrtość osttniej kolumny M orz numer wiersz zwierjącego słowo wejściowe K D K D K D D K K D K D K D D K K D K D K D 36 / 41

67 urrows-wheeler Trnsform lgorytm Wynik Wyzncz mcierz M zwierjącą wszystkie cykliczne przesunięci słow wejściowego Posortuj wiersze M leksykogrficznie Zwróć zwrtość osttniej kolumny M orz numer wiersz zwierjącego słowo wejściowe ( D K, 3) K D K D K D D K K D K D K D D K K D K D K D 36 / 41

68 urrows-wheeler Trnsform Włsności WT Możn pozbyć się numeru wiersz w wyniku dodjąc n końcu kodownego słow znk specjlny. Użycie smej trnformty nie powoduje kompresji. Zmieni strukturę przetwrznych dnych powodując grupownie identycznych znków w bloki. Pozwl zwiększyć stopień kompresji przy użyciu innych lgorytmów. 37 / 41

69 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe 38 / 41

70 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K 38 / 41

71 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

72 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

73 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

74 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

75 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

76 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

77 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

78 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

79 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K 38 / 41

80 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D D K 38 / 41

81 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D D K 38 / 41

82 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D D K D K 38 / 41

83 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D D K D K 38 / 41

84 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K D K 38 / 41

85 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K D K 38 / 41

86 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D - - K D K D K 38 / 41

87 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D - - K D K D K 38 / 41

88 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D - K D K D K 38 / 41

89 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D - K D K D K 38 / 41

90 urrows-wheeler Trnsform odwrcnie Wejście ( D K, 3) lgorytm Umieść słowo wejściowe w osttniej kolumnie mcierzy M Odzyskj pierwszą kolumnę przez sortownie zwrtości osttniej Wykorzystując dwie znne kolumny odzyskj kolejne elementy wiersz zwierjącego słowo wejściowe D K D K D K 38 / 41

91 urrows-wheeler Trnsform słow stndrdowe b b b b b 39 / 41

92 urrows-wheeler Trnsform słow stndrdowe b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 39 / 41

93 urrows-wheeler Trnsform słow stndrdowe b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 39 / 41

94 urrows-wheeler Trnsform słow stndrdowe b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 39 / 41

95 urrows-wheeler Trnsform słow stndrdowe Fkt Dl dowolnego słow stndrdowego w: WT (w) = b n k 40 / 41

96 Dziękuję z uwgę

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk 2 Szczegółowe wymgni edukcyjne z mtemtyki w klsie drugiej Zkres podstwowy Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące,

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego

Bardziej szczegółowo

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i

Bardziej szczegółowo

szkicuje wykresy funkcji: f ( x)

szkicuje wykresy funkcji: f ( x) Wymgni edukcyjne z mtemtyki ls tps Zkres podstwowy Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące oziom Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości. Zmienne Po nieco intuicyjnych początkch, zjmiemy się obiektmi, n których opier się progrmownie są to zmienne. Zmienne Progrmy operują n zmiennych. Ndwnie im wrtości odbyw się poprzez instrukcję podstwieni.

Bardziej szczegółowo

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik

Bardziej szczegółowo

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba Wybrne zgdnieni z geometrii płszczyzny Dnut Zremb Wstęp Publikcj t powstł z myślą o studentch, którzy chcą zdobyć uprwnieni do nuczni mtemtyki w szkole. Zwier on nieco podstwowych widomości z geometrii

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo

Algebra WYKŁAD 6 ALGEBRA 1

Algebra WYKŁAD 6 ALGEBRA 1 Algebr WYKŁAD 6 ALGEBRA Ogóln postć ukłdu równń liniowych Rozwżmy ukłd m równń liniowych z n niewidomymi m m n n mn n n n b b b m o współczynnikch ik orz b i. Mcierz ukłdu równń wymiru m n m postć A m

Bardziej szczegółowo

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl Rok złożeni 1994 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, RADPOR 81-854-2860 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, 81-854-2860 www.rdpor.pl Ceny spirl introligtorskic DOUBLE-LOOP

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Algorytmika i kombinatoryka tekstów

Algorytmika i kombinatoryka tekstów lgorytmika i kombinatoryka tekstów 1/21 Algorytmika i kombinatoryka tekstów Jakub Radoszewski Wręczenie Nagrody im. W. Lipskiego, 9 października 2014 r. Instytut Informatyki, Uniwersytet Warszawski Algorytmika

Bardziej szczegółowo

ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007 ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE KOMPUTEROWEJ

ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007 ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE KOMPUTEROWEJ ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seri: Technologie Informcyjne 007 Tomsz Dobrowolski Ktedr Algorytmów i Modelowni Systemów Politechnik Gdńsk ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

Plan wynikowy z matematyki

Plan wynikowy z matematyki ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne?

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne? KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI Temt: Do czego służą wyrżeni lgebriczne? Prowdzący: Agnieszk Smborowicz Liczb jednostek lekcyjnych: 1 2 (w zleżności od zespołu) Cele ogólne Utrwlenie widomości

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język

Bardziej szczegółowo

RAPORT / LATO 2014 NIEZBĘDNIK TURYSTY OD NAMIOTÓW PO ROWERY 08/2014

RAPORT / LATO 2014 NIEZBĘDNIK TURYSTY OD NAMIOTÓW PO ROWERY 08/2014 NIEZBĘDNIK TURYSTY OD NAMIOTÓW PO ROWERY 08/2014 WPROWADZENIE Jedni wolą odpoczywać nad morzem, inni w górach, jedni leniuchują, drudzy stawiają na aktywny wypoczynek. Z myślą o tych ostatnich specjaliści

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym Przeguy precyzyjne KTR z łożyskowniem ślizgowym lu igiełkowym Przeguy KTR, to pod względem technicznym, wysokojkościowe elementy do łączeni dwóch włów, o dopuszczlnej wielkości kąt prcy dl pojedynczego

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo