Nurzania pionowego cylindra kołowego Eksperymentalne wyznaczanie charakterystyki amplitudowej nurzań

Podobne dokumenty
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

3 Podstawy teorii drgań układów o skupionych masach

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Drgania wymuszone - wahadło Pohla

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

Drgania układu o wielu stopniach swobody

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Fizyka 12. Janusz Andrzejewski

Ć W I C Z E N I E N R M-2

Definicje i przykłady

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

INSTRUKCJA DO ĆWICZENIA NR 5

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Podstawy fizyki sezon 1 VII. Ruch drgający

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

1 Płaska fala elektromagnetyczna

DRGANIA ELEMENTÓW KONSTRUKCJI

lim Np. lim jest wyrażeniem typu /, a

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

2.6.3 Interferencja fal.

Laboratorium Mechaniki Technicznej

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

I. PROMIENIOWANIE CIEPLNE

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

Sposoby modelowania układów dynamicznych. Pytania

Teoria sterowania - studia niestacjonarne AiR 2 stopień

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

MECHANIKA II. Drgania wymuszone

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

Fizyka 11. Janusz Andrzejewski

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Wykład 6 Drgania. Siła harmoniczna

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

Dwa w jednym teście. Badane parametry

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

Laboratorium Dynamiki Maszyn

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Fale mechaniczne i akustyka

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

WYDZIAŁ LABORATORIUM FIZYCZNE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

WYKŁAD 3. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 2 Drgania z wymuszeniem harmonicznym

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Siły wewnętrzne - związki różniczkowe

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Badania doświadczalne drgań własnych nietłumionych i tłumionych

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Wykład z równań różnicowych

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

Krótkoterminowe prognozy ruchów i oporu statku poruszającego się na czołowych falowaniach nieregularnych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Zagadnienia brzegowe dla równań eliptycznych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

DRGANIA OSCYLATOR HARMONICZNY

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

przy warunkach początkowych: 0 = 0, 0 = 0

Rodzaj/forma zadania. Max liczba pkt. zamknięte 1 1 p. poprawna odpowiedź. zamknięte 1 1 p. poprawne odpowiedzi. zamknięte 1 1 p. poprawne odpowiedzi

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

Definicja i własności wartości bezwzględnej.

TEORIA DRGAŃ Program wykładu 2016

PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

α k = σ max /σ nom (1)

6. FUNKCJE. f: X Y, y = f(x).

KOOF Szczecin:

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

VII. Drgania układów nieliniowych

Transkrypt:

POLITECHNIK GDŃSK ĆWICZENIE LBORTORYJNE NR 5 Nurzania pionowego cylindra kołowego Eksperymentalne wyznaczanie charakterystyki amplitudowej nurzań Janusz Stasiak Wydział Oceanotechniki i Okrętownictwa Katedra Teorii i Projektowania Okrętu Gdańsk 5

1. Przedmiot i cel ćwiczenia 1.1 Przedmiotem ćwiczenia będzie badanie (pomiar i analiza pomierzonych wartości) ruchu pionowego cylindra pływającego w pozycji pionowej na wodzie sfalowanej. W szczególności zagadnienie będzie się sprowadzać do badania: nurzań pionowych ruchów (oscylacji) cylindra, wymuszanych (powodowanych) falami regularnymi sinusoidalnymi. Rys. 1b. Rys. 1a. Rys. 1c. 1. Celem ćwiczenia będzie wyznaczenie charakterystyki amplitudowej nurzań pionowego cylindra, definiowanej jako: H z (1) ς ( ) f ( ) z, ς gdzie: z jest amplitudą nurzań, ς jest amplitudą fali regularnej, π jest częstotliwością tak nurzań jak i fali regularnej (T jest okresem T nurzań i fali regularnej). 1

. Ogólna charakterystyka tematu ćwiczenia i jego umiejscowienie w ogólnej problematyce badań i projektowania okrętowego.1 Nurzania tu badanego cylindra i ich charakterystyka amplitudowa (1) mogą być: samym w sobie problemem badawczym lub też badaniami modelowymi, które są częścią szerszego problemu badawczego, którego celem jest wyznaczenie (prognozowanie) nurzań elementu nośnego jakiegoś rzeczywistego obiektu oceanotechnicznego, np. pływającej platformy wiertniczej. by tu przeprowadzone badania mogły być badaniami modelowymi obiektu rzeczywistego, muszą być spełnione następujące warunki i zależności: badany cylinder musi być geometrycznie podobnym modelem odpowiedniego obiektu rzeczywistego co oznacza, że wszystkie jego wymiary geometryczne, np. średnica D M i zanurzenie h M, muszą pozostawać w tym samym stosunku (skali geometrycznej) λ const. z odpowiednimi wymiarami D R i h R obiektu rzeczywistego: λ D D R M h h R M... const. charakterystyka amplitudowa H z, ς ( M ) modelu, musi być przeliczona na charakterystykę amplitudową H ( ),właściwa dla geometrycznie podobnego z, ς R obiektu rzeczywistego z zachowaniem odpowiednich praw podobieństwa kinematycznego (podobieństwa prędkości) i dynamicznego (podobieństwa sił). Ponieważ z założenia nasze ćwiczenie ogranicza się tylko do wyznaczenia charakterystyki H z,ς ( ) właściwej dla bezpośrednio badanego cylindra, nie potrzeba tutaj bardziej precyzować problematyki modelowania hydromechanicznego. Ważne jest, aby wiedzieć, że takie, jak tu przeprowadzone badanie może być, i najczęściej jest, badaniem modelowym służącym dla prognozowania określonej rzeczywistości kołysań statków i innych obiektów oceanotechnicznych funkcjonujących w rzeczywistych warunkach morskich.. Zagadnienie będące przedmiotem i celem tego ćwiczenia należy do problematyki teorii okrętu (teorii obiektów pływających), a w szczególności, do tego zakresu teorii okrętu, który nazywany jest właściwościami morskimi, których zadaniem jest badanie i przewidywanie zjawisk związanych z zachowaniem się statku (a ogólnie, obiektu pływającego) w rzeczywistych warunkach morskich w warunkach wiatru i falowania morskiego. Zjawiskami tymi są ruchy kołysania statku na fali i wszystkie zjawiska tym ruchom towarzyszące: przyspieszenia wywołujące dynamiczne obciążenia konstrukcji statku, zalewanie pokładu statku, spadek szybkości postępowej, pogorszenie stateczności i zdolności manewrowych i wreszcie, pogorszenie się warunków pracy załogi statku lub/i komfortu pasażerów statku. Wszystkie te zjawiska zawsze niekorzystnie wpływają na funkcjonowanie statku, a przede wszystkim są zagrożeniem (mniejszym lub większym) dla jego bezpieczeństwa. To określa bardzo ważne znaczenie problematyki właściwości morskich i prowadzonych w tych ramach badań..3 Jak to już stwierdzono, pionowy cylinder, którego nurzania będą w tym ćwiczeniu badane może być geometrycznie podobnym modelem np. elementu nośnego pływających

platform wiertniczych. Przewidywanie i minimalizowanie ruchów na fali tych platform jest niezbędną częścią ich projektowania. Zawsze bowiem chodzi o to, aby te obiekty oceanotechniczne możliwie najmniej kołysały (nurzały) się na morzu. Chodzi również o to, aby tak zaprojektować urządzenia tych platform (przede wszystkim ich urządzenia wiertnicze), aby mogły one pracować funkcjonować nie tylko w warunkach wody spokojnej (niesfalowanej), która jest raczej zjawiskiem rzadkim, ale także przy wyższych stanach morza. Projektowe minimalizowanie kołysań na fali platform ma tym większe znaczenie dla ich bezpieczeństwa, że platformy są, w odróżnieniu od np. statków towarowych, pasażerskich lub okrętów wojennych, stacjonarnymi obiektami morskimi. Nie mają własnego napędu i nie mogą uciec przed sztormem lub kursowo dopasować się do niego. Są zdane na każde możliwe warunki morskie i powinny je przetrwać w stanie nieuszkodzonym i bez zagrożenia dla zdrowia lub życia ich załogi. 3. Teoria problemu badawczego 3.1 Model matematyczny układu pionowy cylinder fala regularna (Równanie ruchu nurzań cylindra na fali regularnej) Nurzania cylindra wywołane (wymuszone) falą regularną są (mogą być traktowane) ruchem periodycznym, który odbywa się zgodnie z powszechnie znanym, drugim prawem dynamiki Newtona, według którego: d z Fi M & z M () i gdzie: d z & z jest przyspieszeniem ciała o masie M wywołanym działaniem na to ciało sumy sił F i o wypadkowej F i i W naszym przypadku w przypadku cylindra o masie M pływającego na sfalowanej powierzchni wody, której profil jest falą regularną (sinusoidalną), siłami F i są następujące siły: siła wymuszenia falowego: F W F sin(t) α ς sin( t), gdzie α jest współczynnikiem zależności miedzy siłą F W, a falowaniem ς, siła przywracająca (sprężystości), przeciwna do siły F W i proporcjonalna do przemieszczenia (nurzania) z : F P c z, gdzie c jest współczynnikiem sztywności cylindra, siła oporu (tłumienia) ruchu z, przeciwna do F W i proporcjonalna do szybkości dz v z& ruchu : F T b z&, siła bezwładności masy wody towarzyszącej : FB m & zz z, która jest przeciwna do siły F W i równoważna sile, jaka jest potrzebna do zmiany pędu (nadania przyspieszenia) masie m zz wody w otoczeniu cylindra. Podstawiając wszystkie te siły do równania () otrzymamy równanie ruchu cylindra : d z M F W + FP + FT + FB (3) dz d z FW c z b m zz 3

które po przegrupowaniu wyrazów ma postać: d z dz ( M + m zz ) + b + c z α ς sin( t) (4) F sin( t) Równania (3) i (4) są, z matematycznego punktu widzenia, zwyczajnymi, liniowymi równaniami różniczkowymi rzędu drugiego. Dzieląc równanie (4) obustronnie przez wielkość (M + m zz ) i wprowadzając oznaczenia: ν M c + b m zz ( M + m zz ), która to wielkość jest częstotliwością własną nietłumionych nurzań cylindra,, która to wielkość jest bezwymiarowym współczynnikiem (5) tłumienia nurzań cylindra, κ α M + m zz, która to wielkość jest współczynnikiem proporcjonalności między amplitudą siły wymuszającej nurzania, a amplitudą fali: F κ ς otrzymamy taką oto postać równania nurzań cylindra: d z dz + ν + z κ ς sin ( t) (6) Równanie (6) jest oczywiście również zwyczajnym, liniowym równaniem różniczkowym, którego rozwiązanie jest identyczne, jak rozwiązania równań (3) lub (4). 3. Rozwiązanie równania nurzań W stanie ustalonym w stanie równowagi nurzania cylindra (poszukiwane rozwiązanie równania (6)) muszą mieć dokładnie taką samą częstotliwość, jak siła je wymuszająca, która z kolei ma częstotliwość fali. Równanie (6) będzie więc tylko spełnione dla częstotliwości. Skutkiem powyższego, rozwiązania równania (6), a tym samym równań (3) i (4) poszukujemy w postaci: z t z sin t + ε (7) () ( ) w której faktycznie szukanymi wielkościami są: amplituda nurzań z, (która szczególnie nas tu interesuje), kąt ε przesunięcia fazowego między falą, a nurzaniami (mówiąc precyzyjniej, jest to kąt, o jaki maksimum nurzań wyprzedza maksimum fali kąt między najbliższymi wartościami amplitudowymi fali i nurzań). Nie ma potrzeby, aby przedstawiać tu całą procedurę dochodzenia do rozwiązania. Wystarczy zaznaczyć, że procedura ta zaczyna się od wyznaczenia pochodnych wyrażenia (7) opisującego przewidywaną postać rozwiązania: dz pierwszej pochodnej, która wynosi: z cos( t + ε ), 4

d z i drugiej pochodnej: z sin( t + ε ), Pochodne te podstawiamy następnie do równania (6), które w ten sposób staje się równaniem trygonometrycznym dającym następujące rozwiązanie finalne: ν tgε (8) κ ς z 1 / + ν [( ) ( ) ] nalizą tego rozwiązania, a przede wszystkim analizą wyrażenia określającego amplitudę z nurzań, zajmiemy się w następnym rozdziale. 3.3 Jakościowa analiza rozwiązania równania nurzań Zanim przystąpimy do interpretacji rozwiązania określonego wyrażeniami (8), poczynimy następujące przekształcenia: wprowadzamy wielkość Λ oznaczającą zestrojenie częstotliwości wymuszeń falowych (również częstotliwości nurzań) z własną częstotliwością nietłumionych nurzań (porównaj wyrażenie ze zbioru (5)), przekształcimy rozwiązanie określające z do postaci, interesującej nas tu przede wszystkim, charakterystyki amplitudowej H z,ς (porów. wyrażenie (1)). Wtedy rozwiązania (8) będą miały postać: Λ ν z κ tg ε ; H ( ) z, ς Λ, Λ 1 ς 1 Λ + Λ ν (9) Rozpatrzmy teraz następujące przypadki: 1. Zestrojenie Λ < 1, co oznacza, że <. W tych przypadkach tg ε, ε, a κ H z, ς ( ) ( ) α, co oznacza, że: c nurzania są zgodne w fazie z falą, ich amplitudy z i wartości charakterystyki H z,ς są raczej niewielkie, a decyduje o nich współczynnik sztywności c (a nie tłumienie lub masa).. Zestrojenie Λ 1, co oznacza, że i mamy do czynienia z rezonansem. π κ α W tym przypadku tg ε, ε, a H z, ς, co oznacza, że: ν b nurzania są przesunięte w fazie względem fali o kąt π/, amplitudy z i wartości charakterystyki H z,ς są względnie duże i tym większe, im mniejsze jest tłumienie nurzań (im mniejszy jest współczynnik tłumienia b). 5

Należy zauważyć, że maksymalne amplitudy z i najwyższe wartości H z,ς występują dla ν b częstotliwości 1 1. W przypadku jednak, ( M + m ) zz gdy tłumienie nurzań jest małe, maksimum H z,ς występuje dla, a więc dla Λ 1. 3. Zestrojenie Λ > 1, co oznacza, że >. W tych przypadkach ε π, a H z, ς κ α ( M + m ) zz, co oznacza, że wraz ze wzrostem częstotliwości wartości charakterystyk amplitudowych znacząco maleją, a ich wartości przede wszystkim zależą od masy cylindra M i masy wody towarzyszącej m zz. Na rys. pokazano przykładowe funkcje ( ) H,ς,ν z Λ charakterystyk amplitudowych nurzań. Odzwierciedlają one dwie zasadnicze prawidłowości, że charakterystyki te zawsze: przyjmują wartości największe dla zestrojenia Λ 1, mają wartości tym większe, im mniejsze jest tłumienie nurzań. Rys.. 6

4. Doświadczalne wyznaczanie charakterystyki amplitudowej nurzań pionowego cylindra W tym ćwiczeniu będziemy wyznaczać (identyfikować) zależną od zestrojenia Λ charakterystykę amplitudową H z,ς ( Λ) nurzań pionowego cylindra, którego podstawowe wymiary są następujące: przekrój poprzeczny cylindra jest kołem o średnicy D,16 m, zanurzenie cylindra w warunkach pływania na wodzie spokojnej (niesfalowanej) wynosi d,3 m, odpowiednia temu zanurzeniu masa cylindra wynosi M 6, kg. Cylinder będzie pływał w wodzie o gęstości ρ 1 kg/m 3. Jego nurzania będą wymuszane falami regularnymi (sinusoidalnymi), których okresy T będą miały wartości z przedziału: T,75s ;,s. Podstawowym zadaniem będzie pomierzenie, zarejestrowanie elektroniczne, odczytanie i zapisanie w tabeli, wartości następujących wielkości, właściwych dla każdej pojedynczej próbie (pojedynczą próbą są nurzania na jednej fali regularnej): amplitudy ς (lub wysokości h ς, czyli podwójnej amplitudy) oraz okresu T fali regularnej, d z amplitudy & z z przyspieszenia nurzania cylindra oraz okresu π T z tego nurzania. (amplitudy przyspieszeń, a nie wprost amplitudy nurzań, mierzymy tylko ze względów technicznych; tak naprawdę interesują nas amplitudy nurzań, które obliczamy zgodnie z powyższym wzorem). Dodatkowo, ze względu na to, że chcemy wyznaczyć charakterystykę H ( Λ) z,ς w funkcji zestrojenia Λ, musimy wyznaczyć częstotliwość nietłumionych nurzań własnych badanego cylindra. Sposób wyznaczania częstotliwości jest, między innymi, omówiony w Załączniku 1. Tabela, w której pomierzone wartości będą zapisywane i odpowiednio przeliczane, jest zamieszczona w Załączniku. Tak otrzymane, dyskretne (wyznaczone dla kilku wartości Λ i zestrojenia) wartości H z, ς ( Λ i ), poszukiwanej charakterystyki amplitudowej nurzań, należy jeszcze uogólnić wykonując odpowiedni wykres ciągłej funkcji H z,ς ( Λ), której kształt powinien być podobny do jednej z krzywych pokazanych na rys.. Wykonanie tego wykresu kończy dzieło jest finalnym rozwiązaniem, postawionego na początku, zadania badawczego. 7

Załącznik 1 Współczynniki sił hydromechanicznych określających nurzanie cylindra Jak to wynika z zależności pokazanych w rozdz.3, nurzania zależą od parametrów fali wymuszającej te nurzania, ale także od: częstotliwości własnych, nietłumionych nurzań cylindra, współczynników sił hydromechanicznych: współczynnika c sztywności cylindra i współczynnika b tłumienia nurzań, masy m zz wody towarzyszącej nurzaniom cylindra. Wartości wszystkich w/w wielkości, właściwych dla badanego cylindra mogą być, w ramach tego ćwiczenia, stosunkowo łatwo wyznaczone. Współczynnik c określający siłę przywracającą F P - c z, można dla badanego cylindra wyznaczyć obliczeniowo zauważając, że siła F P jest dodatkowym wyporem ΔP cylindra dodatkowo zanurzonego (ponad jego normalne wynikające z jego masy M zanurzenie d) o wartość z. Ten dodatkowy wypór (siła wyporu) dla cylindra kołowego o średnicy D jego π D poprzecznego przekroju wynosi, co oczywiste: ΔP - z ρ g F P - c z. 4 π D Stąd współczynnik c ρ g 4 Właściwe dla badanego cylindra, wartości wielkości, m zz oraz b mogą być wyznaczone jako wynik specjalnej próby swobodnych nurzań tego cylindra na wodzie spokojnej. Próbę tę realizuje się poprzez impulsowe wyprowadzenie swobodnie pływającego cylindra z jego stanu równowagi pływalnościowej. Można to zrobić albo wciskając albo wyciągając cylinder dodatkową siłą, którą następnie zwalniamy w sposób nagły. Cylinder zacznie się wówczas swobodnie (bez działania zewnętrznej siły wymuszającej) nurzać tak, jak to pokazano na rys.3. Rys. 3. 8

Te swobodne nurzania przebiegają w czasie t zgodnie z zależnością: β t z() t z e sin t (1.1) i charakteryzują się: π stałym okresem T z, który jest okresem swobodnych nurzań tłumionych, sukcesywnie malejącą (zanikającą) amplitudą z (t) z Równanie ruchu tych swobodnych nurzań jest szczególnym przypadkiem równania (6) (porów. rozdz.3) przypadkiem, w którym siła wymuszająca (prawa strona równania) jest równa zero. Ma więc ono następującą postać: d z dz + ν + z (1.) Jeżeli wyrażenie (1.1) ma być rozwiązaniem równania (1.), to można wykazać, że: b 1 β ν ( M + m zz ) (1.3) b ν z 1 ( ) 1 M + m zz Mając zapis (zapis z próby) kołysań swobodnych można, wyznaczyć współczynnik β który, w oparciu o wyrażenie (1.1), wynosi: 1 z ( t) β ln (1.4) Tz z ( t + T z ) Ponieważ odpowiednia wartość współczynnika ν jest wartością małą (jest ułamkiem mniejszym od 1), to z dobrym przybliżeniem przyjmuje się (porów. wyrażenie (1.3)), że: z i stąd T z T Znając wartość częstotliwości oraz wartość współczynnika c można, posługując się odpowiednią zależnością ze zbioru (5), wyznaczyć wartość masy wody towarzyszącej m zz, która wynosi: m zz c M Znając wartość m zz oraz wartość β wyznaczoną z próby w oparciu o (1.4), można na mocy (1.3) wyznaczyć wartości współczynników b lub/i ν. 9

Załącznik Tabela do zapisywania i przeliczania wyników badań Nr próby wysokość ζ [cm] FL okres T [s] częstotliwość [s -1 ] okres T z [s] częstotliwość z [s -1 ] NURZNI amplituda & z& [m/s ] amplituda z [cm] częstotliwość śr,5( + z ) [s -1 ] CHRKTERYSTYK MPLTUDOW dla... zestrojenie Λ śr / [-] charakterystyka z /ζ [-] 1 3 4 5 6 7 8 9 1 11 1 1