przy warunkach początkowych: 0 = 0, 0 = 0
|
|
- Barbara Urbaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych, przyjętych jako sygnały wyjściowe (), od wielkości fizycznych, będących sygnałami wejściowymi () danego członu lub układu. Równanie różniczkowo-całkowe i L R = przy warunkach początkowych: 0 = 0, 0 = 0 e vc i C Sygnałem wyjściowym układu jest prąd w obwodzie, a sygnałem wejściowym () jest wartość napięcia źródła napięciowego (). Różniczkując obie strony równania różniczkowo-całkowego otrzymujemy równanie różniczkowe drugiego rzędu = Ponieważ = oraz =, równanie powyższe można zapisać w postaci przy czym: = 1, =, = 1, = = są współczynnikami równania różniczkowego. 1
2 Analogi elektryczne układów mechanicznych Zmienne przepływu: siła () jest analogiczna do prądu () Zmienna spadku: prędkość () jest analogiczna do napięcia () Tłumik f (t) f ( t) = bv( t) Rezystor i(t) 1 i ( t) = u( t) R b f (t) Tlumik v(t) 1 R u(t) i(t) Rezystor x &( t) = v( t) u(t) 2
3 Sprężyna f (t) f ( t) = kx( t) = k v( t) dt Cewka indukcyjna i(t) 1 i ( t) = u( t) dt L k Sprezyna f (t) v(t) 1 L u(t) i(t) Cewka x ( t) = v( t) dt u ( t) dt Masa f (t) dv( t) f ( t) = m dt Kondensator i(t) du( t) i( t) = C dt m m f (t) Masa C u(t) Kondensator v(t) i(t) &&( x t) = dv( t) dt du ( t) dt 3
4 () + () + = () Resor m Masa Amortyzator przy czym: b stała tłumienia amortyzatora - tłumika tłokowego, k stała sprężystości sprężyny resora, m masa zawieszenia, - położenie chwilowe masy, () - siła oddziaływania na zawieszenie F Przyjmując, że =, = () oraz () = =, =, = 1, równanie dynamiki układu sprowadzamy do postaci () () + + = () t 4
5 Transmitancja operatorowa Załóżmy, że mamy proces (obiekt) gdzie zależność pomiędzy wielkością wyjściową jest y(t) i wejściową u(t) jest określona równaniem różniczkowym: + = gdzie współczynniki ai i bj są wielkościami stałymi przy czym m n Jeżeli wszystkie warunki początkowe są zerowe, wtedy, wykorzystując transformację Laplace'a, związek ten można zapisać w postaci równania operatorowego = lub w postaci transmitancji operatorowej = L() L() = = Transmitancja operatorowa układu (obiektu) liniowego, określa stosunek transformaty Laplace'a wielkości wyjściowej do transformaty Laplace'a wielkości wejściowej U(s), przy założeniu zerowych warunków początkowych. 5
6 Transmitancja operatorowa jest funkcją wymierną zmiennej zespolonej s i ma tę właściwość, że w rezultacie pomnożenia transformaty sygnału wejściowego () przez transmitancję otrzymuje się transformatę sygnału wyjściowego - odpowiedzi układu s = () Znając postać transmitancji operatorowej układu można obliczyć przebieg odpowiedzi układu na dowolne wymuszenie () przy wykorzystaniu odwrotnego przekształcenia Laplace a = L s = L () Postać równania dynamiki lub postać transmitancji operatorowej stanowią kryterium, według którego klasyfikuje się człony automatyki. () Umowne oznaczenie bloku (członu) automatyki Członem dynamicznym nazywany jest dowolny układ fizyczny, w którym wyodrębniona jest wielkość wejściowa (sygnał wejściowy) i wielkość wyjściowa (sygnał wyjściowy), a właściwości jego dynamiki syntetycznie określa transmitancja operatorowa. Rząd członu lub układu automatyki jest określony wysokością rzędu równania różniczkowego. Rząd członu lub układu określa więc także najwyższa wartość wykładnika potęgowego przy operatorze s mianownika transmitancji operatorowej. Współczynniki mianownika transmitancji determinują rozkład jego pierwiastków (biegunów) w płaszczyźnie zmiennej zespolonej, który decyduje o charakterze przebiegu przejściowego dynamiki układu. Graficzna prezentacja przebiegu przejściowego przy zerowych warunkach początkowych nazywana jest charakterystyką czasową. 6
7 Opis układów dynamicznych w przestrzeni stanów Stanem układu (procesu) nazywamy zbiór liniowo niezależnych wielkości,, określających w pełni skutki przeszłych oddziaływań (t < t0) na układ, który jest wystarczający do wyznaczenia przebiegów chwilowych dowolnych wielkości w tym układzie dla t > t0, gdy znane są wymuszenia i parametry tego obwodu. Wielkości,, nazywamy zmiennymi stanu, a wektor x =,, wektorem stanu tego układu. Można powiedzieć, że układ dynamiczny ma swoistą "pamięć", w której przechowuje informacje o wpływie poprzednich wielkości wejściowych. = + = () + równanie stanu równanie wyjść gdzie: wymiarowa macierz stanu wymiarowa macierz stanu wymiarowa macierz wyjść wymiarowa macierz przejścia D u B x& x C y A 7
8 e i L R vc C + + = lub = lub = 1 = 1 i Układ równań pierwszego rzędu zapisujemy w postaci pojedynczego równania macierzowo-wektorowego równania stanu = 1 gdzie: = = - zmienne stanu, = - wejście układu (sterowanie), lub 0 = - macierz stanu, = - macierz reprezentująca wejście (macierz sterowań) Sygnały wyjściowe zależne są od zmiennych stanu oraz sygnału wejściowego, co zapisuje się równaniem wyjść: = () +. W przykładzie wyjściem jest prąd. Stąd równanie wyjścia ma postać: = = 1 0. Można także wyznaczyć dodatkową wielkość jaką jest napięcie = = 0 = ()
9 L e 2 = + = () + C 1 R 1 R 3 C 2 U 3 () = (), () =, = () e 1 R = , = = 0 + +, = 0 + 9
10 Zmienne stanu a transmitancja operatorowa = + L () = () + = + L = () + Wyznaczanie wektora transformat operatorach zmiennych stanu: () = = = det Wyznacznik det macierzy charakterystycznej jest wielomianem stopnia n. Elementy macierzy dołączonej są wielomianami stopnia co najwyżej 1. Wyznaczanie wektora transformat operatorach wyjść odpowiedzi układu: = + () det Transmitancja operatorowa dla układu jednowymiarowego = () () = det + Jeżeli stopień wielomianu licznika jest niższy od stopnia wielomianu mianownika transmitancji operatorowej (), to macierz = 0. 10
11 Transmitancja operatorowa układu Reprezentacja transmitancji operatorowej przez zmienne stanu = = Mnożąc licznik i mianownik przez transmitancję można zapisać w postaci Przyjmując, że = = , + lub = + + +, to () =
12 Przyjmując za zmienne stanu,, wielkości wyjściowe integratorów można napisać układ równań = = = = + = U(s) u E(s) s -1 E(s) b n-1 bn-2 s -2 E(s) s 1-n E(s) s -n E(s) x n x n-1 x 2 x 1 b 0 Y(s) y -a n-1 -a n-2 -a 0 12
13 Postać kanoniczna (normalna) sterowalna = + = = =, = Postać kanoniczna (normalna) obserwowalna = + = = = , = Miedzy macierzami obu typów wariantów modeli opisanych w przestrzeni stanów zachodzą zależności =, =, = 13
14 Podstawowe typy sygnałów i ich transformaty Laplace a = = = L = = L = t t = = = L = = L = t t = = t = L = + t = L = = = L = t 14
15 = = = 1 + = 1 + t t = sin = cos t = + t = + = sin = cos t = + + t =
16 Wyznaczanie oryginału funkcji wymiernej zmiennej zespolonej Odwrotne przekształcenie Laplace a przyporządkowuje funkcji zmiennej zespolonej s funkcję () zmiennej rzeczywistej t. Funkcję wymierną = L = = można zawsze przedstawić w postaci sumy ułamków prostych o postaci, = przy czym: jest dowolnym pierwiastkiem wielomianu M(), l jego krotnością,, - liczbą rzeczywistą, zwaną współczynnikiem udziału, j - liczbą różnych co do wartości pierwiastków. 16
17 Każdemu z prostych ułamków składowych odpowiada znana funkcja zmiennej rzeczywistej - czasu. I tak: Gdy = 0, wówczas przekształcenie odwrotne Laplace a daje L = 1! Gdy = σ jest liczbą rzeczywistą, wówczas L = 1! Gdy = ± jest liczbą zespoloną lub urojoną, to pierwiastki zespolone występują zawsze jako parami sprzężone. Sumę takich ułamków prostych można przedstawić jako wyrażenie o wszystkich współczynnikach rzeczywistych L + + = cos + + sin 17
18 Przy obliczaniu współczynników udziału możliwe są dwa postępowania. Pierwsze z nich zwie się metodą współczynników nieoznaczonych. Polega ona na sprowadzeniu sumy ułamków prostych z nieokreślonymi jeszcze współczynnikami,,, do wspólnego mianownika, a następnie przyrównaniu wielomianu otrzymanego w liczniku tego ułamka do wielomianu licznika funkcji wymiernej (). Oba liczniki są sobie tożsamościowo równe, więc równe są również współczynniki przy wyrazach o takiej samej potędze zmiennej s. Prowadzi to do zbioru równań liniowych względem współczynników, który można rozwiązać znanymi sposobami. Drugie postępowanie oparte jest na twierdzeniu Heaviside a o rozkładzie. I tak w przypadku jednokrotnych pierwiastków wielomianu funkcji wymiernej () wartości współczynników udziału wyznacza się ze wzoru = () W przypadku pierwiastka l krotnego w () występuje między innymi suma ułamków prostych o postaci
19 Wartości l współczynników oblicza się korzystając ze wzorów, = (), = (), = 1 2! (), = 1! () Wyznaczanie wartości współczynników udziału w przypadku pierwiastków zespolonych można wyznaczyć na podstawie poniższej tożsamości + + = +, gdzie wartości współczynników i są składowymi: rzeczywistą i urojoną, liczby zespolonej, zdefiniowanej wzorem = + = + 19
20 Transformata odwrotna tego składnika ma postać L + = cos sin. Prawą stronę powyższej zależności można zapisać w postaci cos sin = sin +, przy czym = arc tg. 20
21 Zadanie 1 Wyznacz transformatę odwrotną funkcji operatorowej Rozwiązanie = ,5 Pierwiastkami - miejscami zerowymi - mianownika są: = 0, = 1, = 2,5. Pierwiastki są jak widać jednokrotne. Rozkład na ułamki proste będzie więc typu = ,5 Współczynniki udziału = 1,2,3 wyznaczamy zgodnie z zależnością = () = () = ,5 = 4, = + 1() = ,5 = 2, = + 2,5(), = , = 2 21
22 W rezultacie otrzymujemy rozkład na ułamki proste Zgodnie z L = 1! = ,5, L = 1! transformata odwrotna () funkcji jest sumą transformat odwrotnych rozkładu na ułamki proste = + + = 4 2 2, Przebiegi funkcji i jej składowych względem zmiennej rzeczywistej t pokazuje rys () = + + () = 4 = 2 = 2, t () () Rys. 1. Wykres funkcji () w zadaniu 1 22
23 Zadanie 2 Wyznacz współczynniki udziału z zadania 1.metodą współczynników nieoznaczonych. Rozwiązanie Prawą stronę poniższego równania sprowadzamy do wspólnego mianownika ,5 = , ,5 = , , ,5 Mamy tu różne postacie tego samego wyrażenia, ale liczniki obu ułamków są sobie równoważne = , , Rozkład na ułamki proste jest prawdziwy dla każdej wartości s. Zatem podstawiając takie wartości s, które wyzerują odpowiednie składniki licznika prawej strony powyższej tożsamości, uzyskamy wartości poszczególnych współczynników. 23
24 I tak, podstawiając = 0 otrzymujemy 10 = 2,5 stąd = 4, = 1 otrzymujemy 3 = 1,5 stąd = 2, = 2,5 otrzymujemy 7,5 = 3,75 stąd = 2. 24
25 Zadanie 3 Wyznacz transformatę odwrotną oryginał - funkcji operatorowej = Rozwiązanie Pierwiastki mianownika są równe = 3, = 5, przy czym pierwszy z nich jest jednokrotny, drugi dwukrotny. Rozkład na ułamki proste będzie więc typu = Współczynnik wyznaczamy zgodnie z zależnością = () Pozostałe dwa zgodnie z zależnością Gdzie współczynniki udziału wyznaczamy zgodnie z procedurą, = (), = (), =! (), =! (). przy czym tutaj = 2, = 2. 25
26 W tym przypadku = + 3() = = + 5 () = = 2, = 10, = + 5 () = = = 1. Stąd otrzymujemy rozkład na ułamki proste z ujawnionymi wartościami współczynników udziału = Oryginały poszczególnych ułamków uwidacznia związek () = + + = Przebiegi funkcji i jej składowych względem zmiennej rzeczywistej t pokazuje rys
27 = + + () () = 2 = 1 = t () () Rys. 2. Wykres funkcji () w zadaniu 3 Warto zauważyć, że wartość współczynnika można wyznaczyć bez różniczkowania. Ponieważ rozkład na ułamki proste jest prawdziwy dla każdego s, to jest także prawdziwy dla = 0. Podstawiając więc = 0 otrzymuje się = = Ponieważ = 2 i = 10, to stąd wynika, że = 1. 27
28 Wyznacz oryginał funkcji operatorowej = Zadanie Rozwiązanie Mianownik ma trzy pierwiastki, z których jeden jest liczbą rzeczywistą = 0 a pozostałe dwa są liczbami zespolonymi sprzężonymi, co zapiszemy w formie następującej, = 2 ± 3 W związku z rozkład na ułamki proste będzie typu L + + = cos + + sin = Z powodu operowania liczbami zespolonymi, dogodniejsze jest posłużenie się rozkładem wynikającym z tożsamości + + = +, gdzie wartości współczynników i są składowymi: rzeczywistą i urojoną, liczby zespolonej zdefiniowanej wzorem = + = + 28
29 Transformata odwrotna tego składnika ma postać L + = cos sin W związku z powyższym zapis rozkładu funkcji () przedstawiamy w postaci () = Współczynnik wyniesie = () = = 1. Pozostałe dwa współczynniki i wyznaczamy zgodnie z procedurą pokazaną powyżej = = = 1. Wartości tych współczynników wynoszą zatem: = 1, = 1. 29
30 Rozkład na ułamki proste zapisujemy w postaci Oryginały poszczególnych ułamków () = () = + cos sin t = 1 + cos 3 + sin = + 1 ()= Rys. 4 Wykres funkcji () = cos 3 + sin 3 t 30
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Bardziej szczegółowoCHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Bardziej szczegółowoPrzyjmuje się umowę, że:
MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy
Bardziej szczegółowoPodstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Bardziej szczegółowoPlan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Bardziej szczegółowoELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Bardziej szczegółowoAutomatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Bardziej szczegółowoRys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Bardziej szczegółowoTeoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Bardziej szczegółowoSystemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Bardziej szczegółowoPrzekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Bardziej szczegółowoPrzekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Bardziej szczegółowoKatedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Bardziej szczegółowo1. Transformata Laplace a przypomnienie
Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Bardziej szczegółowoOpis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Bardziej szczegółowoRównania różniczkowe liniowe II rzędu
Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko
Bardziej szczegółowoWektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Bardziej szczegółowoPodstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Bardziej szczegółowoPodstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Bardziej szczegółowoPrzeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Bardziej szczegółowoWektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Bardziej szczegółowoRównania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Bardziej szczegółowoFunkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Bardziej szczegółowoAnaliza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Bardziej szczegółowoTydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Bardziej szczegółowoProcedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Bardziej szczegółowoPODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Bardziej szczegółowoPODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoĆwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoCałka nieoznaczona, podstawowe wiadomości
Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Bardziej szczegółowoVII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoWykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Bardziej szczegółowo1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Bardziej szczegółowoĆwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Bardziej szczegółowoRównania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0
Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto
Bardziej szczegółowoMechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Bardziej szczegółowoTematyka egzaminu z Podstaw sterowania
Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................
Bardziej szczegółowoStabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Bardziej szczegółowoFunkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych. Definicja. Funkcją wymierną jednej zmiennej nazywamy
Bardziej szczegółowoMaciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
Bardziej szczegółowoRównania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1
Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Bardziej szczegółowoFUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Bardziej szczegółowoSposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Bardziej szczegółowoDyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Bardziej szczegółowoALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Bardziej szczegółowoSterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Bardziej szczegółowo= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Bardziej szczegółowoUkłady równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Bardziej szczegółowoRozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Bardziej szczegółowoVI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Bardziej szczegółowoCałki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,
Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,
Bardziej szczegółowoSterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Bardziej szczegółowoWYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU
WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowoDefinicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Bardziej szczegółowoRozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoDrgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
Bardziej szczegółowoUkład regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Bardziej szczegółowoLiczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Bardziej szczegółowoRozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoLista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Bardziej szczegółowo- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Bardziej szczegółowoLINIOWE UKŁADY DYSKRETNE
LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących
Bardziej szczegółowo1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
Bardziej szczegółowoCelem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.
1 DWICZENIE 2 PRZENOSZENIE IMPULSÓW PRZEZ CZWÓRNIKI LINIOWE 2.1. Cel dwiczenia Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoTransformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Bardziej szczegółowo5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Bardziej szczegółowoTeoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa
Bardziej szczegółowoWprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan
Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń
Bardziej szczegółowoInformatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Bardziej szczegółowoZadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego
Bardziej szczegółowoPrzekształcenie Z. Krzysztof Patan
Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Bardziej szczegółowoZadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Bardziej szczegółowoRównania różniczkowe. Notatki z wykładu.
Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Bardziej szczegółowoZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe
Bardziej szczegółowoCAŁKI NIEOZNACZONE C R}.
CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos
Bardziej szczegółowoWykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II
Wykład 7 Transformata aplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Prowadzący: dr inż. Tomasz Sikorski Instytut Podstaw lektrotechniki i lektrotechnologii
Bardziej szczegółowo