KOOF Szczecin:
|
|
- Wojciech Marcinkowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 3OF_III_D KOOF Szczecin: XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar Gorzkowski, Andrzej Kotlicki: Fizyka w szkole nr 5, Wyznaczanie częstotliwości poprzecznych drgań własnych pręta. Mechanika, akustyka analiza wymiarowa, moduł Younga, gęstość, częstotliwość, generator drgań sinusoidalnych, papier logarytmiczny, milimetrowy, elektromagnes, cewka, magnes, pręt. Zadanie doświadczalne D, zawody III stopnia, XXXII OF. Masz do dyspozycji: a) 3 pręty stalowe o znanych średnicach d 1, d, d 3 ; b) generator drgań sinusoidalnych, o częstotliwości 10 Hz 0 khz; c) elektromagnes, którego cewka nawinięta została na magnesie trwałym; d) uchwyt do mocowania prętów; e) statyw do elektromagnesu; f) papier logarytmiczny oraz papier milimetrowy. Posługując się analizą wymiarową i wynikami pomiarów wyznacz, łącznie ze współczynnikami liczbowymi, jak częstotliwości trzech najniższych poprzecznych drgań własnych pręta zależą od modułu Younga E, gęstości, średnicy d, długości pręta l (mierzonej od punktu zamocowania); E = (00 5) 10 9 N/m, = (7,87 0,01) 10 3 kg/m 3, d 1 = (,30 0,0) mm, d = (1,61 0,0) mm, d 3 = (0,96 0,0) mm. Rozwiązanie Część teoretyczna Zgodnie z warunkami zadania należy zastanowić się, jakie wnioski można wyciągnąć z analizy wymiarowej problemu. Częstość drgań poprzecznych pręta f, zależy od następujących wielkości: N kg kg E modułu Younga o wymiarze, gęstości o wymiarze, l długości 3 m m s m pręta o wymiarze (m), d jego średnica o wymiarze (m). Można założyć, że wzór na częstość drgań poprzecznych pręta ma postać: F n = A n E l d, gdzie A n współczynnik liczbowy różny dla każdej z częstości. Ponieważ f ma wymiar s 1, można napisać α β 1 kg kg γ m m. α α 3β s m s m Stąd otrzymamy następujące związki + = 0 = = +. Oprac. PDFiA, IF US, 008, red. T. M. Molenda - 1/6 -
2 3OF_III_D Rozwiązując układ równań mamy 1 ; 1 ; 1. Widać, że korzystając jedynie z analizy wymiarowej, nie można znaleźć zależności częstości f od wielkości l oraz d. Można jedynie uzyskać informację, że ostateczny wzór ma postać: f n A n E y ( l, d) a postać funkcji y (l, d) o wymiarze m -1 można uzyskać na podstawie danych doświadczalnych, badając zależność częstości f pręta od średnicy pręta i jego długości. Do tego momentu zadanie wykonało ponad 70% zawodników. Jednakże, niektórzy uważali, że mogą z analizy wymiarowej otrzymać ostateczną postać wzoru. Prowadziło to do błędnych wzorów. Rys. 1 Przy prawidłowym rozwiązaniu należało po otrzymaniu zależności (1) przejść do wykonania doświadczenia, tzn. przeprowadzenia pomiarów i wyznaczenia częstości własnych pręta w zależności od jego grubości i długości. Należało do tego wykorzystać zjawisko rezonansu. Oprac. PDFiA, IF US, 008, red. T.M.Molenda - /6 -
3 3OF_III_D Wiadomo, że jeżeli częstość siły wymuszającej drgania będzie równa częstości drgań własnych pręta, to można zaobserwować dużą amplitudę drgań. Siłą wymuszającą będzie w tym przypadku siła przyciągania ferromagnetycznego (pręt jest żelazny) przez elektromagnes. Warto podkreślić, że ferromagnetyk jest zawsze przyciągany przez elektromagnes niezależnie od zwrotu pola magnetycznego (a nie jak twierdzili niektórzy zawodnicy raz przyciągany a raz odpychany). Gdyby rdzeń elektromagnesu nie był magnesem trwałym sinusoidalny prąd zmienny wywołałby w nim pole magnetyczne jak na Rys. 1 a), a to z kolei oddziaływałoby na pręt siłą jak na Rys. 1 b). Widać więc, że siła nie miałaby przebiegu sinusoidalnego, a jej częstość wynosiłaby, jeżeli częstość prądu z generatora wynosi. Natomiast ponieważ do pola elektromagnesu dodawało się pole H 0 pochodzące od magnesu (Rys. 1 c) przebieg siły pozostawał sinusoidalny (Rys. 1 d). Tylko kilku uczniów opisało prawidłowo siłę wymuszającą, mimo, że ten temat poruszany był już kilka lat temu w zadaniu finałowym ze struną. Część doświadczalna Zestaw doświadczalny był prosty. Do zamocowanego w uchwycie pręta należało zbliżyć elektromagnes podłączony do generatora (Rys. ). Odległość rdzeń elektromagnesu pręt powinna być jak najmniejsza, ale jednocześnie dostatecznie duża, aby rdzeń elektromagnesu nie przyciągał pręta na stałe. Cewkę elektromagnesu (otwarta słuchawka telefoniczna starego typu) należało dołączyć do generatora sygnału sinusoidalnego. Następnie zmieniając częstotliwość należało doprowadzić do rezonansu. Rys. Rezonans dla I częstości był dobrze widoczny obserwowało się silne wychylenie pręta. Warto zaznaczyć, że dla najcieńszego pręta można było w dużym przedziale częstości (kilku kilkunastu Hz) obserwować drgania wymuszone, które jednak można było łatwo odróżnić od występujących dla określonej częstości drgań rezonansowych o wyraźnie większej amplitudzie. Drgania rezonansowe II i III częstości podstawowej łatwo było wykryć dotykiem przykładając palec do miejsca zamocowania pręta, lub też słuchem ze względu na wyraźny dźwięk Oprac. PDFiA, IF US, 008, red. T.M.Molenda - 3/6 -
4 3OF_III_D występujący w częstości rezonansowej. Dla częstości powyższej 1,5 khz można było otrzymać dźwięk pochodzący od drgań wymuszonych występujący dla szerokich przedziałów częstości ale znów łatwo go było odróżnić od częstości rezonansowych. Należało wykonać pomiary trzech najniższych częstości rezonansowych dla wszystkich trzech prętów i różnych ich długości liczonej od punktu zamocowania. Przykładowe wyniki uzyskane przez jednego z uczniów podane są w tabeli 1. Widać, że dla drgań poprzecznych pręta nie występują częstości harmoniczne; to znaczy II częstość i III częstość nie jest równa lub 3, jeżeli I częstość wynosi. Wielu uczniów korzystając z analogii z drganiami słupa powietrza lub struny, twierdziło, że częstości harmoniczne występują i niektórzy nawet próbowali naciągnąć wyniki pomiarów, aby udokumentować swoją teorię. Tabela 1 Długość pręta l, m d 1 =,30 mm d = 1,61 mm d 3 = 0,96 mm Częstość Częstość Częstość f 1 f f 3 f 1 f f 3 f 1 f f 3 0, , , , , , , , , , , , , Aby otrzymać zależności f od l i d najłatwiej było wykreślić te zależności na papierze logarytmicznym. Przy założeniu, że f ~ l oraz f ~ d z wykresów oraz log f = log l + B (3) log f = log d + C (4) Łatwo odczytać i oraz określić błąd tych wykładników. Okazało się, że: = - oraz = 1. Oczywiście można było tylko wyznaczyć jedynie lub i skorzystać ze związku + = -1. Następnym krokiem było wyliczenie A 1, A, A 3. Ponieważ postać wzoru: d A l f była już znana, rachunek był prosty i otrzymano: E A 1 0,195 0,015, A 0,84 0,0, A 3,37 0,06. Oprac. PDFiA, IF US, 008, red. T.M.Molenda - 4/6 -
5 3OF_III_D Rys. 3 Łatwo odczytać i oraz określić błąd tych wykładników. Okazało się, że: = - oraz = 1. Oczywiście można było tylko wyznaczyć jedynie lub i skorzystać ze związku + = -1. Następnym krokiem było wyliczenie A 1, A, A 3. Ponieważ postać wzoru: d A l f była już znana, rachunek był prosty i otrzymano: E A 1 0,195 0,015, A 0,84 0,0, A 3,37 0,06. Niepewność pomiarową można było obliczyć graficznie lub metodą różniczki zupełnej, zakładając, że dokładność pomiaru częstości f odpowiada jednej działce skali generatora (rozrzut pomiarów przy badanej częstości rezonansowej nie przekraczał jednej działki), a dokładność pomiaru l wynosi 1 mm. Można też było wyznaczyć niepewność pomiarową z rozrzutu wielkości A obliczonych dla różnych l oraz d. Oprac. PDFiA, IF US, 008, red. T.M.Molenda - 5/6 -
6 3OF_III_D Rys. 4. Jak widać stosunek A /A 1 6,4 i A 3 /A 1 17,6 a więc nie ma mowy o częstościach harmonicznych. Wynika to z faktu, że równanie falowe drgań poprzecznych pręta nie jest równaniem różniczkowym II rzędu ( tak jak np. dla drgającej struny) tylko równaniem IV rzędu. (zainteresowanych odsyłamy do podręcznika S. Szczeniowskiego Fizyka doświadczalna t. I, str. 60). Oczywiście rozwiązanie takiego równania, a nawet jego zapisanie przekracza znacznie możliwości uczniów i nie było wymagane. Natomiast przybliżone rozwiązania uczniowskie prowadzące do równań II rzędu były nieprawidłowe. Ogólnie rozwiązanie wypadło dość słabo. Jedynie 6 uczniów uzyskało oceny powyżej 16 punktów (na 0 możliwych), a 31 powyżej 10 pkt. Aż 0 uczniów stwierdziło, że występują częstości harmoniczne. Oprac. PDFiA, IF US, 008, red. T.M.Molenda - 6/6 -
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.
XLVIII OLIMPIADA FIZYCZNA (1998/1999). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, 2000. Autor: Nazwa zadania: Działy: Słowa kluczowe:
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
KOOF Szczecin: www.of.szc.pl
Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1
KOOF Szczecin: www.of.szc.pl XIXOLIMPIADA FIZYCZNA (1969/197). Stopień W, zadanie doświadczalne D. Źródło: Olimpiady fizyczne XIX i XX Autor: Waldemar Gorzkowski Nazwa zadania: Drgania gumy. Działy: Drgania
( L ) I. Zagadnienia. II. Zadania
( L ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY
4.2 Analiza fourierowska(f1)
Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Wyznaczenie napięcia. Mając do dyspozycji: trójnóżkowy element półprzewodnikowy, dwie baterie 4,5 V z opornikami zabezpieczającymi
KO OF Szczecin:
45OF_II_D XLV OLIMIADA FIZYZNA (995/996) Stopień II zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej Andrzej Wysmołek sekretarz naukowy do zad dośw IFD UW; Włodzimierz Ungier Andrzej
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC
BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 18 stycznia 018 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 85% 51pkt. Uwaga! 1. Za poprawne rozwiązanie
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Bierne układy różniczkujące i całkujące typu RC
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D
KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:
E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu
E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu Obowiązujące zagadnienia teoretyczne: INSTRUKACJA WYKONANIA ZADANIA 1. Pojemność elektryczna, indukcyjność 2. Kondensator, cewka 3. Wielkości opisujące
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC
BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Badanie widma fali akustycznej
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
( F ) I. Zagadnienia. II. Zadania
( F ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
ĆWICZENIE 3 REZONANS AKUSTYCZNY
ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla
Dmuchając nad otworem butelki można sprawić, że z butelki zacznie wydobywać się dźwięk.
Zadanie D Gwiżdżąca butelka Masz do dyspozycji: plastikową butelkę o pojemności 1,5- l z szyjką o walcowym kształcie i długości ok. 3 cm, naczynie o znanej pojemności, znacznie mniejszej niż pojemność
Wyznaczanie prędkości dźwięku w powietrzu
Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
E107. Bezpromieniste sprzężenie obwodów RLC
E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie
Pomiar podstawowych wielkości elektrycznych
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne
CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Przetwarzanie AC i CA
1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest
Dźwięk. Cechy dźwięku, natura światła
Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000
A6: Wzmacniacze operacyjne w układach nieliniowych (diody)
A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO
PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat
Własności i charakterystyki czwórników
Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Rozwiązanie: Część teoretyczna
Zgodnie z prawem Hooke a idealnie sprężysty pręt o długości L i polu przekroju poprzecznego S pod wpływem przyłożonej wzdłuż jego osi siły F zmienia swoją długość o L = L F/(S E), gdzie współczynnik E
Tranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia 1. Ćwiczenie wprowadzające: Wielkości fizyczne i błędy pomiarowe. Pomiar wielkości fizjologicznych 2. Prąd elektryczny: Pomiar oporu
XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne
XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Zakładając, że zależność mocy P pobieranej przez żarówkę od temperatury bezwzględnej jej włókna T ma postać: 4 P = A + BT + CT wyznacz wartości
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
Ć W I C Z E N I E N R J-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO
KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI
KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie
Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?
1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Przetwarzanie A/C i C/A
Przetwarzanie A/C i C/A Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 Rev. 204.2018 (KS) 1 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwornikami: analogowo-cyfrowym
KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań
Maksymalna liczba punktów 60 KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 00 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Uwaga!. Za poprawne rozwiązanie zadania
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
przybliżeniema Definicja
Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl
2. OPIS ZAGADNIENIA Na podstawie literatury podręczniki akademickie, poz. [2] zapoznać się z zagadnieniem i wyprowadzeniami wzorów.
Zad. M 04 Temat: PRACOWA FZYCZA nstytut Fizyki US Wyznaczanie momentu bezwładności brył metodą wahadła fizycznego. Doświadczalne potwierdzenie twierdzenia Steinera. Cel: zapoznanie się z ruchem drgającym
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Badanie efektu Dopplera metodą fali ultradźwiękowej
Badanie efektu Dopplera metodą fali ultradźwiękowej Cele eksperymentu 1. Pomiar zmiany częstotliwości postrzeganej przez obserwatora w spoczynku w funkcji prędkości v źródła fali ultradźwiękowej. 2. Potwierdzenie
XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Współczynnik załamania cieczy wyznaczany domową metodą Masz do dyspozycji: - cienkościenne, przezroczyste naczynie szklane
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych
Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego
PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA
BADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Zwój nad przewodzącą płytą
Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D
LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Charakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
2. Pomiar drgań maszyny
2. Pomiar drgań maszyny Stanowisko laboratoryjne tworzą: zestaw akcelerometrów, przedwzmacniaczy i wzmacniaczy pomiarowych z oprzyrządowaniem (komputery osobiste wyposażone w karty pomiarowe), dwa wzorcowe
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek
Badanie widma fali akustycznej
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101
BADANIA GRUNTU W APARACIE RC/TS.
Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy
Badanie drgań struny
Badanie drgań struny Marcin Polkowski 14 kwietnia 008 treszczenie Celem ćwiczenia było badanie efektu drgań struny oraz zbadanie zależności częstotliwości tych drgań od długości i naciągu struny. pis treści
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych