Relacje 1
Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Funkcje jako relacje. Funkcj nazywamy relacj binarn ϱ X Y tak,»e dla ka»dego elementu x X jest jeden i tylko jeden element y Y speªniaj cy warunek (x, y) ϱ: x X! y Y (x, y) ϱ. 2
Rozwa»my relacj binarn ϱ okre±lon w zbiorze X: ϱ X X. Mówimy,»e relacja ϱ jest: zwrotna, je±li x X xϱx, przeciwzwrotna, je±li x X xϱx, symetryczna, je±li x,y X xϱy yϱx, asymetryczna (antysymetryczna), je±li x,y X xϱy yϱx, sªabo antysymetryczna, je±li x,y X xϱy yϱx x = y, spójna, je±li x,y X xϱy yϱx x = y, przechodnia, je±li x,y,z X xϱy yϱz xϱz. 3
Rozwa»my nast puj ce relacje binarne w zbiorze R: x < y, x y, x = y oraz nast puj ce relacje binarne w zbiorze N 1 : x i y s tej samej parzysto±ci, y = x 2, x y. 4
relacja w R x < y x y x = y zwrotno± + + przeciwzwrotno± + symetria + asymetria + sªaba antysymetria + + spójno± + + przechodnio± + + + relacja w N 1 x i y stsp y = x 2 x y zwrotno± + + przeciwzwrotno± symetria + asymetria sªaba antysymetria + + spójno± przechodnio± + + 5
Rozwa»my relacj binarn ϱ okre±lon w zbiorze sko«czonym X. Mo»emy narysowa graf, którego wierzchoªki s oznaczone elementami tego zbioru. Kraw d¹ grafu o pocz tku x i ko«cu y (strzaªk prowadz c z x do y) rysujemy wtedy i tylko wtedy, gdy xϱy. 6
zwrotno± Przy ka»dym wierzchoªku jest p tla. przeciwzwrotno± Przy»adnym wierzchoªku nie ma p tli. symetria Na ka»dej kraw dzi s strzaªki w obie strony. asymetria Na ka»dej kraw dzi jest strzaªka tylko w jedn stron. Nie ma p tli. sªaba antysymetria Na ka»dej kraw dzi jest strzaªka tylko w jedn stron. (Mog by p tle.) spójno± Ka»de dwa (ró»ne) wierzchoªki s poª czone kraw dzi. 7
Macierz relacji ϱ tworzymy w ten sposób,»e wiersze i kolumny oznaczamy elementami zbioru X. Na przeci ciu wiersza oznaczonego elementem x i kolumny oznaczonej elementem y stawiamy 1, je±li xϱy, a 0 w przeciwnym wypadku. Przykªady. Niech X = {1, 2, 3, 4, 5}. 8
x < y x\y 1 2 3 4 5 1 0 1 1 1 1 2 0 0 1 1 1 3 0 0 0 1 1 4 0 0 0 0 1 5 0 0 0 0 0 y = x 2 x\y 1 2 3 4 5 1 1 0 0 0 0 2 0 0 0 1 0 3 0 0 0 0 0 4 0 0 0 0 0 5 0 0 0 0 0 x y x\y 1 2 3 4 5 1 1 1 1 1 1 2 0 1 0 1 0 3 0 0 1 0 0 4 0 0 0 1 0 5 0 0 0 0 1 x i y stsp x\y 1 2 3 4 5 1 1 0 1 0 1 2 0 1 0 1 0 3 1 0 1 0 1 4 0 1 0 1 0 5 1 0 1 0 1 9
zwrotno± Na gªównej przek tnej s same jedynki. przeciwzwrotno± Na gªównej przek tnej s same zera. symetria Macierz jest symetryczna (wzgl dem gªównej przek tnej). asymetria Na miejscach symetrycznych (wzgl dem gªównej przek tnej) nie ma dwóch jedynek. Na gªównej przek tnej s same zera. sªaba antysymetria Na miejscach symetrycznych (wzgl dem gªównej przek tnej) nie ma dwóch jedynek. spójno± Na miejscach symetrycznych (wzgl dem gªównej przek tnej) nie ma dwóch zer. 10
Relacje porz dkuj ce 11
Relacj binarn ϱ okre±lon w zbiorze X nazywamy relacj porz dkuj c (lub relacj cz ±ciowego porz dku), je±li jest zwrotna, sªabo antysymetryczna i przechodnia. Zbiór X z okre±lon w nim relacj porz dkuj c nazywamy zbiorem cz ±ciowo uporz dkowanym. Relacj porz dkuj c oznaczamy zazwyczaj symbolem. Mówimy wówczas,»e (X, ) jest zbiorem cz ±ciowo uporz dkowanym. Mamy zatem warunki: x X x x, x,y X x y y x x = y, x,y,z X x y y z x z. 12
Je±li jest relacj cz ±ciowego porz dku, to mo»emy okre±li relacj nast puj co: x y x y x y. Je±li x y, to mówimy,»e element x jest mniejszy od y, a y jest wi kszy od x. Je±li x y, to mówimy,»e element x jest mniejszy lub równy y, a y jest wi kszy lub równy x. 13
Niech (X, ) b dzie zbiorem cz ±ciowo uporz dkowanym. Element x X nazywamy: najmniejszym, je±li jest mniejszy od pozostaªych elementów: y X x y; najwi kszym, je±li jest wi kszy od pozostaªych elementów: y X y x; minimalnym, je±li nie ma elementów od niego mniejszych: y X y x y = x; maksymalnym, je±li nie ma elementów od niego wi kszych: y X x y y = x. 14
zbiór cz. up. el. minimalne el. maksymalne ({1, 2, 3, 4, 5}, ) 1 najmniejszy 5 najwi kszy ({1, 2, 3, 4, 5}, ) 1 najmniejszy 3, 4, 5 (N 1, ) 1 najmniejszy nie ma (N 2, ) liczby pierwsze nie ma (2 {a,b,c}, ) {a, b, c} (2 {a,b,c} \ {, {a, b, c}}, ) {a}, {b}, {c} {a, b}, {a, c}, {b, c} Zadanie. Narysuj kilka diagramów zbiorów cz ±ciowo uporz dkowanych, wska» elementy minimalne, maksymalne, najmniejsze, najwi ksze. 15
Uwaga. Element najmniejszy (je±li istnieje) jest jedynym elementem minimalnym. Analogicznie, element najwi kszy jest jedynym maksymalnym. (Jedyny element minimalny nie musi by elementem najmniejszym.) 16
Porz dek liniowy Denicja. Relacj porz dkuj c, która jest spójna, nazywamy relacj porz dku liniowego. Oznacza to,»e speªniony jest warunek x,y X x y y x. Przykªady: (R, ), ({1, 2, 4, 8}, ), ({{a}, {a, b}, {a, b, c}}, ). W zbiorze liniowo uporz dkowanym istnieje co najwy»ej jeden element minimalny. Je±li taki element istnieje, to jest elementem najmniejszym. Analogiczna wªasno± zachodzi oczywi±cie dla elementów maksymalnych. 17
Porz dek leksykograczny Niech (A, ) b dzie zbiorem liniowo uporz dkowanym. W zbiorze sªów nad alfabetem A okre±lamy relacj porz dku leksykogracznego lex w sposób nast puj cy: a 1 a 2... a m lex b 1 b 2... b n a 1 b 1 a 1 = b 1,..., a k 1 = b k 1, a k b k a 1 = b 1,..., a m = b m, m n. Relacja lex jest porz dkiem liniowym w zbiorze A. 18
Porz dek g sty Denicja. Porz dek liniowy w zbiorze X nazywamy g stym, je±li dla dowolnych dwóch elementów a, b X speªniaj cych warunek a b istnieje element c X taki,»e a c i c b. Przykªady zbiorów uporz dkowanych g sto: Q, R ze zwykª relacj x y. Przykªad zbioru z porz dkiem liniowym, który nie jest g sty: (Z, ). Twierdzenie. Je±li (X, ) jest zbiorem uporz dkowanym g sto, to dla dowolnych dwóch elementów a, b X speªniaj cych warunek a b istnieje niesko«czenie wiele elementów c X takich,»e a c i c b. 19
Porz dek ci gªy Denicja. Porz dek g sty w zbiorze X nazywamy ci gªym, je±li dla dowolnych dwóch niepustych podzbiorów A, B X speªniaj cych warunek istnieje element c X taki,»e a A b B a b ( a A a c) ( b B c b). Przykªad zbioru z porz dkiem ci gªym: (R, ). Przykªady zbiorów z porz dkiem liniowym, który nie jest ci gªy: Z, Q z relacj. 20
Porz dek dobry Denicja. Porz dek liniowy w zbiorze X nazywamy dobrym, je±li w ka»dym niepustym podzbiorze A X istnieje element najmniejszy. Przykªady zbiorów z porz dkowanych w sposób dobry: N z relacj, dowolny zbiór sko«czony liniowo uporz dkowany. Przykªady zbiorów z porz dkiem liniowym, który nie jest dobry: Z, Q, R, R +, [0, + ) z relacj. Twierdzenie Zermelo (bez dowodu). Ka»dy zbiór mo»na dobrze uporz dkowa. 21
Relacje równowa»no±ci 22
Denicja. Relacj binarn ϱ okre±lon w zbiorze X nazywamy relacj typu równowa»no±ci, je±li jest zwrotna, symetryczna i przechodnia: x X xϱx, x,y X xϱy yϱx, x,y,z X xϱy yϱz xϱz. Niech m b dzie liczb naturaln, m > 1. W zbiorze Z okre±lmy relacj x y (mod m) m x y. Zapis x y (mod m) czytamy x przystaje do y modulo m. Przystawanie modulo m jest relacj równowa»no±ci w zbiorze Z. Ponadto x y (mod m) dokªadnie wtedy, gdy x i y daj t sam reszt przy dzieleniu przez m. 23
Przykªad. Tabela liczb caªkowitych daj cych odpowiednie reszty przy dzieleniu przez 5. reszta liczby 0..., 10, 5, 0, 5, 10,... 1..., 9, 4, 1, 6, 11,... 2..., 8, 3, 2, 7, 12,... 3..., 7, 2, 3, 8, 13,... 4..., 6, 1, 4, 9, 14,... Zatem: 10 5 (mod 5), 4 11 (mod 5), 2013 3 (mod 5), 3 13 (mod 5), 9 7 (mod 5), 2 2 (mod 5). 24
Denicja. Niech ϱ b dzie relacj binarn w zbiorze X. Dla ka»- dego elementu x X okre±lamy zbiór [x] ϱ = {y X : xϱy} X. Je±li ϱ jest relacj równowa»no±ci, to zbiór [x] ϱ nazywamy klas abstrakcji lub klas równowa»no±ci elementu x. 25
Dla relacji przystawania modulo 5 mamy np.: [0] ϱ = {..., 5, 0, 5, 10,...}, [7] ϱ = [2] ϱ = {..., 3, 2, 7, 12,...}, [2013] ϱ = [3] ϱ = {..., 2, 3, 8, 13,...}. Zauwa»my,»e zbiory [0] ϱ, [1] ϱ, [2] ϱ, [3] ϱ, [4] ϱ s parami rozª czne oraz [0] ϱ [1] ϱ [2] ϱ [3] ϱ [4] ϱ = Z. 26
Twierdzenie. Je±li ϱ jest relacj typu równowa»no±ci w zbiorze X, to: a) x X x [x] ϱ, b) x,y X [x] ϱ = [y] ϱ [x] ϱ [y] ϱ =, c) x,y X xϱy [x] ϱ = [y] ϱ. 27
Twierdzenie. Je±li zbiór X jest sum rodziny swoich podzbiorów X t, t T : speªniaj cych warunek X = t T X t, t,t T (X t = X t X t X t = ), to relacja w zbiorze X, okre±lona nast puj co: jest relacj równowa»no±ci. x y t T x, y X t, 28
Przykªady: podziaª X = {A, B, C, D} {E, F } {G, H} {I} okre±la relacj tak,»e np. A A, A B, A C, A D, A E, A F, A G, A H, A I, podziaª {1, 2, 3, 4, 5} = {1, 3, 5} {2, 4} okre±la relacj tak,»e x y x i y s tej samej parzysto±ci. Denicja. Je±li ϱ jest relacj typu równowa»no±ci w zbiorze X, to zbiór jej klas abstrakcji nazywamy zbiorem ilorazowym i oznaczamy symbolem X/ϱ. Przykªad. Dla przystawania modulo 5 mamy Z/ϱ = {[0] ϱ, [1] ϱ, [2] ϱ, [3] ϱ, [4] ϱ }. 29