Teoretyczne Podstawy Informatyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Teoretyczne Podstawy Informatyki"

Transkrypt

1 Instytut Informatyki Stosowanej Teoretyczne Podstawy Informatyki Wykªad 2. J zyki i gramatyki formalne Zdzisªaw Spªawski Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 1

2 J zyki formalne denicje Alfabet A jest sko«czonym zbiorem symboli. Sªowem lub napisem (ªa«cuchem) nad alfabetem A nazywamy sko«czony ci g symboli z tego alfabetu. Sªowem jest równie» ci g pusty oznaczany przez ε. Dªugo±ci w sªowa w nazywamy liczb symboli w sªowie. Przez A oznaczamy zbiór wszystkich sªów nad alfabetem A, za± przez A + zbiór wszystkich niepustych sªów nad tym alfabetem. W zbiorze A deniujemy dwuargumentow relacj konkatenacji (zªo»enia) sªów: je±li x = a 1... a m oraz y = b 1... b n, gdzie a i, b j A to ich konkatenacj jest sªowo xy = a 1... a m b 1... b n. Operacja konkatenacji jest ª czna ((w 1 w 2 )w 3 = w 1 (w 2 w 3 ) i posiada element neutralny ε (wε = εw = w). J zykiem (formalnym) nad alfabetem A nazywamy dowolny zbiór sªów nad tym alfabetem, czyli dowolny podzbiór zbioru A. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 2

3 Denicja j zyka programowania (wymagania) Opisy j zyków programowania powinny z jednej strony uªatwia programi±cie pisanie programów (generowanie sªów nale» cych do j zyka), z drugiej za± umo»liwia automatyczne sprawdzanie (rozpoznawanie), czy program istotnie nale»y do j zyka Denicja j zyka programowania zawiera: (i) opis skªadni (syntaktyki), czyli denicj zbioru napisów, b d cych poprawnymi programami; (ii) opis semantyki, czyli znaczenia programów; (iii) ewentualnie system wnioskowania, sªu» cy do dowodzenia poprawno±ci programów, tj. ich zgodno±ci ze specykacj. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 3

4 Wyra»enia i zbiory regularne Niech A b dzie alfabetem i niech L, L 1, L 2 A. Konkatenacj j zyków L 1 i L 2 nazywamy zbiór L 1 L 2 = {xy A x L 1 y L 2 }. Niech L 0 = ε i L i = LL i 1 dla i 1. Domkni ciem Kleene'ego j zyka L nazywamy zbiór L wszystkich sªów otrzymanych w wyniku konkatenacji dowolnej liczby sªów z L. Wyra»enia regularne (w.r.) nad A i zbiory przez nie reprezentowane deniujemy nast pujaco: (i), ε i ka»dy symbol a A s w.r. reprezentuj cymi, odpowiednio, zbiory {}, {ε} i {a}; (ii) je±li r i s s w.r. reprezentuj cymi j zyki R i S, to (r s), (rs) i (r ) s w.r. reprezentuj cymi zbiory R S, RS i R. W celu zmniejszenia liczby nawiasów przyjmujemy nast puj ce priorytety operacji (malej co): *, konkatenacja,. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 4

5 Przykªady j zyków regularnych (0 1) opisuje zbiór wszystkich sªów zªo»onych z zer i jedynek; (0 1) 00(0 1) reprezentuje zbiór wszystkich sªów zªo»onych z zer i jedynek, zawieraj cych przynajmniej dwa kolejne zera; (1 10) opisuje zbiór wszystkich sªów zªo»onych z zer i jedynek, które rozpoczynaj si od jedynki i nie zawieraj dwóch kolejnych zer; (0 ε)(1 10) opisuje zbiór wszystkich sªów zªo»onych z zer i jedynek, nie zawieraj cych dwóch kolejnych zer; ((a b)a) reprezentuje zbiór {ε, aa, ba, aaaa, aaba, baaa, baba,...} sªów o parzystej dªugo±ci, w których na parzystych pozycjach wyst puje symbol a. J zyka {( n ) n n 1} nie mo»na opisa za pomoc wyra»e«regularnych! Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 5

6 Gramatyki bezkontekstowe motywacja i przykªad Fragment j zyka polskiego mo»na opisa za pomoc nast puj cych produkcji, w których kategorie syntaktyczne s uj te w nawiasy k towe. zdanie ::= grupa podmiotu grupa orzeczenia grupa podmiotu ::= rzeczownik przymiotnik rzeczownik grupa orzeczenia ::= czasownik rzeczownik ::= samolot chªopiec pies czasownik ::= fruwa biegnie przymiotnik ::= du»y maªy okr gªy kwadratowy Powy»sze produkcje pozwalaj generowa proste zdania: zdanie grupa podmiotu grupa orzeczenia przymiotnik rzeczownik grupa orzeczenia maªy rzeczownik grupa orzeczenia maªy chªopiec grupa orzeczenia maªy chªopiec czasownik maªy chªopiec biegnie Lecz analogicznie: zdanie... kwadratowy chªopiec fruwa. Gramatyka opisuje tylko skªadni j zyka, a nie jego semantyk! Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 6

7 Gramatyki formalne Gramatyk nazywamy czwórk G = (N, T, P, S), gdzie: N sko«czony zbiór symboli nieterminalnych (zmiennych syntaktycznych, kategorii syntaktycznych); T sko«czony zbiór symboli terminalnych (alfabet), rozª czny z N; P sko«czony zbiór produkcji postaci a b, gdzie a (N T ) +, b (N T ) ; S wyró»niony symbol nieterminalny, nazywany symbolem pocz tkowym. Nieformalnie: J zyk L(G), generowany przez gramatyk G jest zbiorem wszystkich sªów zbudowanych z symboli terminalnych, które da si otrzyma z symbolu pocz tkowego za pomoc przeksztaªce«, okre±lonych przez reguªy produkcji. Zasada stosowania produkcji a b : je±li a jest podsªowem ju» wygenerowanego sªowa, to a mo»na zast pi w tym sªowie przez b. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 7

8 J zyk generowany przez gramatyk Produkcje gramatyki G okre±laj relacj bezpo±redniego wyprowadzania na sªowach nad alfabetem N T. x y wtw, gdy istniej sªowa x 0 i x 1 oraz reguªa a b gramatyki G, takie»e x = x 0 ax 1 i y = x 0 bx 1. Wywodem (wyprowadzeniem) sªowa y ze sªowa x w gramatyce G nazywa si ka»dy taki ci g sªów x 0,..., x n (n > 0),»e x i x i+1 dla i = 0,..., n 1 oraz x 0 = x i x n = y. Relacja wyprowadzalno±ci jest zwrotnym i przechodnim domkni ciem relacji. J zyk L(G) generowany przez gramatyk G = (N, T, P, S) jest zbiorem tych wszystkich sªów nad alfabetem T, dla których istniej wywody rozpoczynaj ce si od symbolu pocz tkowego S. Czyli: L(G) = {w w T S w}. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 8

9 Hierarchia Chomsky'ego I Niech G = (N, T, P, S) i V = N T. Gramatyka G jest gramatyk typu 0 (bez ogranicze«), je±li ka»da produkcja jest postaci u w, u V +, w V ; typu 1 (kontekstow ), je±li ka»da produkcja jest postaci uaw uzw, u, w V, A N, z V + ; typu 2 (bezkontekstow GBK), je±li ka»da produkcja jest postaci A z, A N, z V + ; typu 3 (regularn ), je±li ka»da produkcja jest postaci A bb (gramatyka prawostronnie regularna), lub ka»da produkcja jest postaci A Bb (gramatyka lewostronnie regularna), A N, B N {ε}, b T +. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 9

10 Hierarchia Chomsky'ego II Gramatyki typu 1,2,3 s gramatykami nieskracaj cymi, z czego wynika ich rozstrzygalno±. Ka»da gramatyka typu i jest jednocze±nie gramatyk typu j, dla 0 j i, ale nie odwrotnie. Je±li gramatyka G generuj ca j zyk L(G) jest kontekstowa (bezkontekstowa, regularna) to j zyk L(G) te» jest nazywany kontekstowym (odpowiednio bezkontekstowym lub regularnym). Twierdzenie. J zyk L ma gramatyk regularn wtw kiedy L jest zbiorem regularnym. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 10

11 Przykªady gramatyk Przykªad 1. Gramatyka regularna (typu 3) Niech L 3 = {a k b l c m k, l, m 1}. G 3 = ({S, V, U}, {a, b, c}, P, S), gdzie P = {S as av, V bv bu, U cu c}. Przykªad 2. Gramatyka bezkontekstowa (typu 2) Niech L 2 = {a k b l c m k, l, m 1 k = m}. G 2 = ({S, V }, {a, b, c}, P, S), gdzie P = {S asc av c, V V b b}. Przykªad 3. Gramatyka kontekstowa (typu 1) Niech L 1 = {a k b l c m k, l, m 1 k = l = m}. G 1 = ({S, V }, {a, b, c}, P, S), gdzie P = {S abc asv c, cv V c, bv bb}. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 11

12 Drzewa wywodu (wyprowadzenia, rozbioru) denicja Niech G = (N, T, P, S) b dzie GBK. Drzewo jest drzewem wywodu dla G, je±li: Ka»dy w zeª drzewa ma etykiet, b d c symbolem z N T {ε}; Etykiet korzenia jest S; Je±li w zeª nie jest li±ciem i ma etykiet A, to A N; Je±li w zeª x ma etykiet A i w zªy x 1, x 2,..., x n s nast pnikami w zªa x, w kolejnosci od lewej do prawej, z etykietami A 1, A 2,..., A n to A A 1 A 2... A n musi by produkcj gramatyki G; Je±li w zeª x ma etykiet ε, to x jest li±ciem i jest jedynym nast pnikiem swego poprzednika. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 12

13 Drzewa wywodu dla GBK I Przykªad. G n = ({S}, {a, b, c, +,,, /, (, )}, P, S), gdzie P = {S a b c S + S S S S S S/S (S)} S S S a S a S+S a b+s a b + c wywód lewostronny S S S a S + S b c S S + S S S c a b S S + S S + c S S +c S b + c a b + c wywód prawostronny Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 13

14 Drzewa wywodu dla GBK II Ka»demu drzewu wywodu odpowiada dokªadnie jeden wywód lewostronny i dokªadnie jeden wywód prawostronny. Sposób generowania sªowa jest bez znaczenia z punktu widzenia j zyka jako zbioru sªów, ale jest istotny, je±li wpªywa na semantyk. Z wywodami zwi zane s zwykle okre±lone dziaªania semantyczne. Wskazane jest, aby symbole nieterminalne gramatyki odpowiadaªy konstrukcjom semantycznie znacz cym. Gramatyka bezkontekstowa dopuszczaj ca dwa lub wi cej drzew wywodu (czyli dwa lub wi cej wywodów lewostronnych) tego samego sªowa jest nazywana wieloznaczn. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 14

15 Drzewa wywodu dla GBK III J zyk bezkontekstowy, dla którego ka»da gramatyka jest wieloznaczna jest ±ci±le wieloznaczny. Niejednoznaczno± jest przeszkod przy ±cisªym formuªowaniu semantyki j zyka. J zyki etniczne s niejednoznaczne. Porównaj: Piotr wszedª do pokoju z pianinem. Piotr wszedª do pokoju z ide. Piotr wszedª do pokoju z lamp. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 15

16 Drzewa wywodu dla GBK IV Gramatyka G n dla j zyka wyra»e«z poprzedniego przykªadu jest wi c niejednoznaczna. Dla a = 3, b = 2, c = 1 warto± wyra»enia a b + c zinterpretowanego zgodnie z lewym drzewem rozbioru jest równa 3 (2 + 1) = 9, a dla prawego drzewa rozbioru jest równa (3 2) + 1 = 7. Dla tego j zyka istnieje gramatyka jednoznaczna G j pokazana w nast pnym przykªadzie, taka»e L(G n ) = L(G j ). Wyst puj w niej trzy semantycznie znacz ce symbole nieterminalne: W (wyra»enie), S (skªadnik) i C (czynnik). Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 16

17 Przykªad gramatyka jednoznaczna Przykªad. G j = ({W, S, C}, {a, b, c, +,,, /, (, )}, P, W ), gdzie P = {W S W + S W S, S C S C S/C, C a b c (W )} W W + S S + S S C + S C C +S a C + S a b + S a b + C a b + c wywód lewostronny W W + S S C S C c C a b W W + S W + C W + c S + c S C + c S b + c C b + c a b + c wywód prawostronny Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 17

18 Notacja Backusa-Naura (BNF) G = ({W, S, C}, {a, b, c, +,,, /, (, )}, P, W ), gdzie BNF P = { W S W + S W S, S C S C S/C, C a b c (W ) }. wyra»enie ::= skªadnik wyra»enie + skªadnik wyra»enie - skªadnik skªadnik ::= czynnik skªadnik * czynnik skªadnik / czynnik czynnik ::= a b c ( wyra»enie ) Istnieje wiele wariantów i rozszerze«notacji BNF. Jeden z wariantów jest u»yty do opisu skªadni j zyka C++ (patrz B.Stroustrup, J zyk C++, WNT, Warszawa 2000, Dodatek A.Gramatyka). Do opisu skªadni j zyków bezkontekstowych u»ywane s tak»e diagramy syntaktyczne (skªadniowe). Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 18

19 Zadania kontrolne I 1. Opisz j zyk, generowany przez gramatyk G = ({Q, X, Y, Z}, {n, o, s, w}, P, Z), gdzie P = {Z ny, Y osx, X wsq, Q osz, Q os}. Podaj najprostsz gramatyk regularn generuj c ten sam j zyk. 2. Zbuduj gramatyk bezkontekstow, generuj ca zbiór wszystkich palindromów nad alfabetem {a, n}. Palindrom jest niepustym sªowem, które czyta si jednakowo w obu kierunkach, np. anna, kajak. 3. Zbuduj gramatyki regularne dla nast puj cych j zyków: 3.1 zbiór sªów nad alfabetem {b, c}, w których wyst puj kolejno trzy litery c; 3.2 zbiór sªów nad alfabetem {b, c, d}, w których po ka»dej literze b pojawia si litera c; Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 19

20 Zadania kontrolne II 3.3 zbiór sªów nad alfabetem {b, c, d}, w których nie wyst puj podsªowa bc. 4. Podaj gramatyk bezkontekstow, generuj c nad alfabetem {a, b, c, d} j zyk {b n+k a n d k+m c m+1 k, m 0, n 1}. Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki formalne 20

Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy

Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy Wprowadzenie do programowania języki i gramatyki formalne dr hab. inż. Mikołaj Morzy plan wykładu wprowadzenie gramatyki podstawowe definicje produkcje i drzewa wywodu niejednoznaczność gramatyk hierarchia

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Języki i gramatyki formalne

Języki i gramatyki formalne Języki i gramatyki formalne Języki naturalne i formalne Cechy języka naturalnego - duża swoboda konstruowania zdań (brak ścisłych reguł gramatycznych), duża ilość wyjątków. Języki formalne - ścisły i jednoznaczny

Bardziej szczegółowo

GRAMATYKI BEZKONTEKSTOWE

GRAMATYKI BEZKONTEKSTOWE GRAMATYKI BEZKONTEKSTOWE PODSTAWOWE POJĘCIE GRAMATYK Przez gramatykę rozumie się pewien układ reguł zadający zbiór słów utworzonych z symboli języka. Słowa te mogą być i interpretowane jako obiekty językowe

Bardziej szczegółowo

Gramatyki regularne i automaty skoczone

Gramatyki regularne i automaty skoczone Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 1

Języki formalne i automaty Ćwiczenia 1 Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...

Bardziej szczegółowo

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )

Bardziej szczegółowo

Podstawy Informatyki Gramatyki formalne

Podstawy Informatyki Gramatyki formalne Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Języki i gramatyki Analiza syntaktyczna Semantyka 2 Podstawowe pojęcia Gramatyki wg Chomsky ego Notacja Backusa-Naura

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową

Bardziej szczegółowo

JAO - Wprowadzenie do Gramatyk bezkontekstowych

JAO - Wprowadzenie do Gramatyk bezkontekstowych JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa

Bardziej szczegółowo

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994]

Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994] Programowanie w Logice Gramatyki metamorficzne Przemysław Kobylański na podstawie [CM2003] i [SS1994] Gramatyki bezkontekstowe Gramatyką bezkontekstową jest uporządkowana czwórka G = Σ, N, S, P, gdzie

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura

Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty Dr inŝ. Janusz Majewski Katedra Informatyki Literatura Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Jaki język zrozumie automat?

Jaki język zrozumie automat? Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Rachunek zda«. Relacje. 2018/2019

Rachunek zda«. Relacje. 2018/2019 Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.

Bardziej szczegółowo

Wprowadzenie do analizy składniowej. Bartosz Bogacki.

Wprowadzenie do analizy składniowej. Bartosz Bogacki. Wprowadzenie do analizy składniowej Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy wprowadzenia do analizy składniowej. Zapraszam serdecznie

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Symbol, alfabet, łańcuch

Symbol, alfabet, łańcuch Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Rekurencyjne struktury danych

Rekurencyjne struktury danych Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Informatyka, matematyka i sztuczki magiczne

Informatyka, matematyka i sztuczki magiczne Informatyka, matematyka i sztuczki magiczne Daniel Nowak Piotr Fulma«ski instagram.com/vorkof piotr@fulmanski.pl 18 kwietnia 2018 Table of contents 1 O czym b dziemy mówi 2 Dawno, dawno temu... 3 System

Bardziej szczegółowo

JIP. Analiza składni, gramatyki

JIP. Analiza składni, gramatyki JIP Analiza składni, gramatyki Książka o różnych językach i paradygmatach 2 Polecam jako obowiązkową lekturę do przeczytania dla wszystkich prawdziwych programistów! Podsumowanie wykładu 2 3 Analiza leksykalna

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

1. Podstawy budowania wyra e regularnych (Regex)

1. Podstawy budowania wyra e regularnych (Regex) Dla wi kszo ci prostych gramatyk mo na w atwy sposób napisa wyra enie regularne które b dzie s u y o do sprawdzania poprawno ci zda z t gramatyk. Celem niniejszego laboratorium b dzie zapoznanie si z wyra

Bardziej szczegółowo

Efektywna analiza składniowa GBK

Efektywna analiza składniowa GBK TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2 Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile

Bardziej szczegółowo

Metoda tablic semantycznych. 1 Metoda tablic semantycznych

Metoda tablic semantycznych. 1 Metoda tablic semantycznych 1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera

Bardziej szczegółowo

3.4. Przekształcenia gramatyk bezkontekstowych

3.4. Przekształcenia gramatyk bezkontekstowych 3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Ÿ1 Oznaczenia, poj cia wst pne

Ÿ1 Oznaczenia, poj cia wst pne Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.

Bardziej szczegółowo

Gramatyki (1-2) Definiowanie języków programowania. Piotr Chrząstowski-Wachjtel

Gramatyki (1-2) Definiowanie języków programowania. Piotr Chrząstowski-Wachjtel Gramatyki (1-2) Definiowanie języków programowania Piotr Chrząstowski-Wachjtel Zagadnienia Jak zdefiniować język programowania? Gramatyki formalne Definiowanie składni Definiowanie semantyki l 2 Pożądane

Bardziej szczegółowo

JAO - lematy o pompowaniu dla jezykow bezkontekstowy

JAO - lematy o pompowaniu dla jezykow bezkontekstowy JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ) Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =

Bardziej szczegółowo

Podstawy modelowania w j zyku UML

Podstawy modelowania w j zyku UML Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 2 Zwi zki mi dzy klasami Asocjacja (ang. Associations) Uogólnienie, dziedziczenie (ang.

Bardziej szczegółowo

Gramatyki rekursywne

Gramatyki rekursywne Gramatyki bezkontekstowe, rozbiór gramatyczny eoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki rekursywne Niech będzie dana gramatyka bezkontekstowa G =

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań

Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań Katedra Informatyki Stosowanej Politechnika Łódzka Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań dr hab. inŝ. Lidia Jackowska-Strumiłło Historia rozwoju języków programowania 1955 1955

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.

Bardziej szczegółowo

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B: Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 2 Podstawowe zasady i prawa przeliczania

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Logika matematyczna (16) (JiNoI I)

Logika matematyczna (16) (JiNoI I) Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 8

Języki formalne i automaty Ćwiczenia 8 Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 2

Języki formalne i automaty Ćwiczenia 2 Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 9

Języki formalne i automaty Ćwiczenia 9 Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej

Bardziej szczegółowo

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska Kombinatoryka Magdalena Lema«ska Zasady zaliczenia przedmiotu Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to 100 punktów = 100 procent. Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie 2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 3

Języki formalne i automaty Ćwiczenia 3 Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Analiza semantyczna. Gramatyka atrybutywna

Analiza semantyczna. Gramatyka atrybutywna Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji

Bardziej szczegółowo

Definiowanie języka przez wyrażenie regularne(wr)

Definiowanie języka przez wyrażenie regularne(wr) Wykład3,str1 Definiowanie języka przez wyrażenie regularne(wr) DEFINICJA: (wyrażenia regularne) M(specjalneznakinienależącedoalfabetu:{,},, ) literyalfabetusąwr złożeniawrsąwr: jeśliw 1 iw 2 sąwr,to{w

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wst p do informatyki

Wst p do informatyki Wst p do informatyki Grupa 1 1. Warunek jednoznaczno±ci w kontek±cie algorytmów okre±la, i» (a) w ka»dym kroku mamy sko«czon ilo± alternatywnych ±cie»ek do wyboru; (b) nie ma w tpliwo±ci co do kolejnego

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 6

Języki formalne i automaty Ćwiczenia 6 Języki formalne i automaty Ćwiczenia 6 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Wyrażenia regularne... 2 Standardy IEEE POSIX Basic Regular Expressions (BRE) oraz Extended

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 4

Języki formalne i automaty Ćwiczenia 4 Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji

Bardziej szczegółowo

tylko poprawne odpowiedzi, ale nie wszystkie 2 pkt poprawne i niepoprawne odpowiedzi lub brak zaznaczenia 0 pkt

tylko poprawne odpowiedzi, ale nie wszystkie 2 pkt poprawne i niepoprawne odpowiedzi lub brak zaznaczenia 0 pkt Wydziaª Matematyki i Informatyki UJ 7 lipca 2017 TEST NA STUDIA DOKTORANCKIE Z INFORMATYKI Przed Pa«stwem test wielokrotnego wyboru. Po zapoznaniu si z pytaniami prosz zaznaczy w tabeli, na zaª czonej

Bardziej szczegółowo

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu) Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem

Bardziej szczegółowo

Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń

Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 21 marca 2019 1 Gramatyki! Gramatyka to taki przepis

Bardziej szczegółowo

Parsery LL(1) Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki

Parsery LL(1) Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki Parsery LL() Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy generacyjnej (zstępującej, top-down) symbol początkowy już terminale wyprowadzenie lewostronne pierwszy od lewej

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo