Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1"

Transkrypt

1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem, je±li s speªnione nast puj ce wªasno±ci: (C1) (F, +) jest grup abelow (element neutralny dla dziaªania + oznaczamy przez 0, i nazywamy zerem, za± element odwrotny do a wzgl dem dziaªania + oznaczamy przez a, i nazywamy elementem przeciwnym do a); (C2) (F \ {0}, ) jest grup abelow (element neutralny dla dziaªania oznaczamy przez 1, i nazywamy jedynk, za± element odwrotny do a 0 wzgl dem dziaªania oznaczamy przez a 1, i nazywamy odwrotno±ci a); (C3) mno»enie jest rozdzielne wzgl dem dodawania, tzn. dla dowolnych a, b, c F zachodzi a (b + c) = (a b) + (a c). Zamiast a b piszemy zwykle ab. Zamiast ab 1 piszemy zwykle a/b lub a b. Dalej, mno»enie wi»e mocniej ni» dodawanie, tzn. ab + c oznacza (a b) + c. Dla n N i a F oznaczamy na := a a, }{{} ( n)a := ( a) ( a). }{{} n skªadników n skªadników Ponadto, 0 a := 0 dla dowolnego a F. Dla n N i a F oznaczamy a je±li ponadto a 0, to oznaczamy Zachodz nast puj ce równo±ci: a n := } a.{{.. a}, n czynników a n := } a 1.{{.. a 1 }. n czynników

2 2 Skompilowaª Janusz Mierczy«ski ( k)a = (ka), dla dowolnych k Z i a F (zatem zwykle piszemy ka); (k + l)a = ka + la, dla dowolnych k, l Z i a F ; k(a + b) = ka + kb, dla dowolnych k Z i a, b F ; k(a b) = (ka) b, dla dowolnych k Z i a, b F ; a k+l = a k a l, dla dowolnych k, l Z i a F, a 0. We wszystkich ciaªach zachodz te» standardowe wzory skróconego mno»enia i wzór na dwumian Newtona. Jednak»e, w konkretnych ciaªach mog one mie uproszczon posta (patrz przykªad w rozdziale o ciaªach Z p poni»ej). Denicja. Charakterystyk ciaªa (F, +, ) nazywamy najmniejsz liczb naturaln p tak,»e pa = 0 dla dowolnego a F \ {0}. Je±li nie ma takiej liczby, mówimy,»e ciaªo jest charakterystyki zero. Do± ªatwo wykaza,»e (niezerowa) charakterystyka ciaªa musi by liczb pierwsz. Przykªad 1. (Q, +, ), gdzie Q jest zbiorem wszystkich liczb wymiernych, + jest dziaªaniem dodawania i jest dziaªaniem mno»enia, jest ciaªem. Jest to ciaªo charakterystyki zero. Przykªad 2. (R, +, ), gdzie R jest zbiorem wszystkich liczb rzeczywistych, + jest dziaªaniem dodawania i jest dziaªaniem mno»enia, jest ciaªem. Jest to ciaªo charakterystyki zero. Przykªad 3. (C, +, ), gdzie C jest zbiorem wszystkich liczb zespolonych, + jest dziaªaniem dodawania i jest dziaªaniem mno»enia, jest ciaªem. Jest to ciaªo charakterystyki zero. Przykªad 4. (R(x), +, ), gdzie R(x) jest zbiorem wszystkich funkcji wymiernych jednej zmiennej rzeczywistej x, + jest dziaªaniem dodawania i jest dziaªaniem mno»enia, jest ciaªem. Jest to ciaªo charakterystyki zero. 2 Ciaªo Z 2 Niech Z 2 oznacza zbiór {0, 1}. Zdeniujmy dodawanie na Z 2 wzorem = 0, = 1, = 1, = 0, i zdeniujmy mno»enie na Z 2 wzorem 0 0 = 0, 0 1 = 0, 1 0 = 0, 1 1 = 1.

3 Ciaªa i wielomiany 3 Powy»ej zdeniowane operacje nazywamy, odpowiednio, dodawaniem (mno-»eniem) modulo 2. (Z 2, +, ) jest ciaªem (nazywanym ciaªem reszt modulo 2). Zwykle ciaªo reszt modulo 2 zapisujemy po prostu Z 2. Zauwa»my,»e Z 2 jest ciaªem charakterystyki dwa. Wynika st d w szczególno±ci,»e w Z 2 zachodzi 1 = 1. 3 Ciaªo Z p Niech Z p, gdzie p jest liczb pierwsz, oznacza zbiór {0, 1, 2,..., p 1}. Dla a, b Z p zdeniujmy sum a + b jako reszt z dzielenia zwykªej sumy liczb a i b przez p, i iloczyn a b jako reszt z dzielenia zwykªego iloczynu liczb a i b przez p. Operacje te nazywamy, odpowiednio, dodawaniem modulo p i mno»eniem modulo p. Okazuje si,»e zbiór Z p wraz z dziaªaniami dodawania i mno»enia modulo p jest ciaªem. To,»e zachodzi ª czno± i przemienno± dodawania i mno»enia modulo p, jak i rozdzielno±, jest (niemal) oczywiste. Elementem neutralnym dodawania jest 0, elementem neutralnym mno»enia jest 1. Troch mniej oczywiste jest istnienie elementu przeciwnego dla a Z p. Zauwa»my,»e p a Z p i»e zwykªa suma a i p a to p. Zatem dodanie modulo p elementów a i p a da nam zero. Rzecz zupeªnie nieoczywist jest istnienie, dla ka»dego niezerowego a Z p, jego odwrotno±ci. Zastanówmy si, co to znaczy. Otó» a 1 ma to by taka liczba b ze zbioru {1, 2,..., p 1},»e zwykªy iloczyn a i b ma, po podzieleniu przez p, dawa reszt 1. Innymi sªowy, trzeba znale¹ takie liczby b {1, 2,..., p 1} i n N,»e ab = np + 1 (tutaj wszystkie dziaªania s zwykªe). A»e co± takiego mo»na zrobi, wynika z pewnego twierdzenia z teorii liczb, które podaj bez dowodu: Twierdzenie 1. Dla liczb naturalnych a i b istniej takie liczby caªkowite m, n,»e ma + nb jest równe najwi kszemu wspólnemu dzielnikowi liczb a i b. (Z p, +, ) nazywamy ciaªem reszt modulo p. Zwykle ciaªo reszt modulo p zapisujemy po prostu Z p. Z p jest ciaªem charakterystyki p. Przykªad. Zastanówmy si, jak wygl da wzór skróconego mno»enia (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

4 4 Skompilowaª Janusz Mierczy«ski w ciele Z 3. Jako»e jest to ciaªo charakterystyki 3, drugi i trzeci skªadnik po prawej stronie powy»szego wzoru redukuj si do zera, czyli mamy: 4 Wielomiany (a + b) 3 = a 3 + b 3. Denicja. Wielomianem zmiennej x nad ciaªem F nazywamy wyra»enie P (x) = a 0 + a 1 x + a 2 x a n x n, gdzie a 0,..., a n F i n N {0}. Element a i nazywamy wspóªczynnikiem przy x i w P (x). Zamiast 1 x k piszemy po prostu x k. Gdy n jest najwi ksz liczb tak,»e a n 0, mówimy,»e wielomian P (x) ma stopie«n (i zapisujemy st P (x) = n). Gdy wszystkie wspóªczynniki w P (x) s zerami, wielomian P (x) nazywamy wielomianem zerowym. Umawiamy si,»e stopie«wielomianu zerowego to. Wielomian zerowy i wielomiany stopnia zero nazywamy wielomianami staªymi. Zbiór wszystkich wielomianów zmiennej x nad ciaªem F oznaczamy przez F [x]. Denicja. Wielomiany P (x) = a 0 + a 1 x + a 2 x a n x n i R(x) = b 0 +b 1 x+b 2 x 2 + +b n x n s równe wtedy i tylko wtedy, gdy a 0 = b 0, a 1 = b 1, a 2 = b 2,..., a n = b n. Bardzo wa»n jest rzecz, by nie uto»samia wielomianu z funkcj wielomianow : wielomianowi P (x) mo»emy przypisa funkcj wielomianow P : F F, przyporz dkowuj c ka»demu elementowi x ciaªa F element a 0 + a 1 x + a 2 x a n x n ciaªa F. Gdy F = Q, lub F = R, lub F = C, ró»nym wielomianom odpowiadaj ró»ne funkcje wielomianowe (dlatego na kursie z Analizy Matematycznej zwykle nie rozró»nia sie poj cia wielomianu i funkcji wielomianowej). Jednak»e sytuacja jest inna w przypadku ciaª sko«czonych. Istotnie, rozwa»my dwa wielomiany, P (x) = x 2 + x i wielomian zerowy, nad ciaªem Z 2. Šatwo wida,»e P (0) = = = 0 i P (0) = = = 0, czyli wielomianowi P (x) odpowiada ta sama funkcja wielomianowa, co wielomianowi zerowemu. Niech n P (x) = a i x i, m Q(x) = b i x i i=0 i=0

5 Ciaªa i wielomiany 5 b d wielomianami nad ciaªem F. Sum wielomianów P (x) i Q(x) deniujemy wzorem max(m,n) P (x) + Q(x) = (a i + b i )x i, a ich iloczyn wzorem i=0 P (x) Q(x) = m+n k=0 c k x k, gdzie c k = i+j=k a i b j. Dla dowolnych wielomianów z F [x] zachodz nast puj ce wªasno±ci: (P 1 (x) + P 2 (x)) + P 3 (x) = P 1 (x) + (P 2 (x) + P 3 (x)) (dodawanie wielomianów jest ª czne); P 1 (x) + P 2 (x) = P 2 (x) + P 1 (x) (dodawanie wielomianów jest przemienne); (P 1 (x) P 2 (x)) P 3 (x) = P 1 (x) (P 2 (x) P 3 (x)) (mno»enie wielomianów jest ª czne); P 1 (x) P 2 (x) = P 2 (x) P 1 (x) (mno»enie wielomianów jest przemienne); (P 1 (x) + P 2 (x)) P 3 (x) = (P 1 (x) P 3 (x)) + (P 2 (x) P 3 (x)) (mno»enie wielomianów jest rozdzielne wzgl dem dodawania); 0 + P (x) = P (x) + 0 = P (x) (wielomian zerowy jest elementem neutralnym dla dodawania); 1 P (x) = P (x) 1 = P (x) (wielomian staªy równy 1 jest elementem neutralnym dla mno»enia); iloczyn wielomianów niezerowych jest wielomianem niezerowym. Dalej, mamy st(p 1 (x) + P 2 (x)) max(st P 1 (x), st P 2 (x)), st(p 1 (x) P 2 (x)) = st P 1 (x) + st P 2 (x). Twierdzenie 2 (Dzielenie wielomianów z reszt ). Niech P (x), Q(x) F [x]. Je±li Q(x) nie jest wielomianem zerowym, to istniej jednoznacznie wyznaczone wielomiany M(x), R(x) F [x], st R(x) < st Q(x), takie,»e P (x) = M(x) Q(x) + R(x).

6 6 Skompilowaª Janusz Mierczy«ski W powy»szym twierdzeniu, P (x) nazywamy dzieln, Q(x) nazywamy dzielnikiem, M(x) nazywamy ilorazem wielomianu P (x) przez wielomian Q(x), za± R(x) nazywamy reszt z dzielenia wielomianu P (x) przez wielomian Q(x) Je±li dla wielomianów P (x), Q(x), reszta R(x) z dzielenia P (x) przez Q(x) jest wielomianem zerowym, to mówimy,»e wielomian Q(x) dzieli wielomian P (x) (lub wielomian Q(x) jest czynnikiem wielomianu P (x), lub»e wielomian P (x) jest podzielny przez Q(x)), i zapisujemy to Q(x) P (x). Denicja. Element a ciaªa F nazywamy pierwiastkiem wielomianu P (x) F [x], gdy P (a) = 0. Twierdzenie 3 (Twierdzenie o reszcie). Reszta z dzielenia wielomianu P (x) F [x] przez jednomian (x a), gdzie a F, jest równa P (a). Twierdzenie 4 (Twierdzenie Bézout). a F jest pierwiastkiem wielomianu P (x) F [x] wtedy i tylko wtedy, gdy (x a) P (x). Twierdzenie 5. Wielomian P (x) F [x] stopnia n ma co najwy»ej n pierwiastków. Dowolny wielomian stopnia 1 ma dokªadnie jeden pierwiastek. Istotnie, pierwiastkiem wielomianu P (x) = a 0 + a 1 x, gdzie a 1 0, jest a 0 /a 1. Z powy»szego twierdzenia wynika,»e jest to jedyny pierwiastek. Przykªad. Wielomian P (x) Z 2 [x], P (x) = x 2 + x + 1, nie ma pierwiastków. Denicja. Mówimy,»e wielomian P (x) F [x] stopnia dodatniego jest rozkªadalny, gdy istniej takie wielomiany stopnia dodatniego P 1 (x), P 2 (x) F [x],»e P (x) = P 1 (x) P 2 (x). Wielomian stopnia dodatniego, który nie jest rozkªadalny, nazywamy nierozkªadalnym. Fakt 6. Wielomian P (x) F [x] stopnia 2 lub 3 jest nierozkªadalny wtedy i tylko wtedy, gdy nie ma pierwiastków. Dowód. Je±li wielomian stopnia co najmniej 2 ma pierwiastek, to, na podstawie twierdzenia Bézout, jest rozkªadalny. Zaªó»my teraz,»e wielomian P (x) F [x] stopnia 2 lub 3 jest rozkªadalny. Zatem mo»na go zapisa w postaci P (x) = P 1 (x) P 2 (x), gdzie 1 st P 1 (x) < st P (x), 1 st P 2 (x) < st P (x). Poniewa» st P (x) = st P 1 (x) + st P 2 (x), co najmniej jeden z wielomianów P 1 (x), P 2 (x), musi by stopnia jeden. Znów z twierdzenia Bézout wnioskujemy,»e P (x) ma pierwiastek.

7 Ciaªa i wielomiany 7 Twierdzenie 7 (Jednoznaczno± rozkªadu na wielomiany nierozkªadalne). Ka»dy wielomian stopnia dodatniego P (x) F [x] jest iloczynem sko«czenie wielu wielomianów nierozkªadalnych. Wielomiany nierozkªadalne s wyznaczone jednoznacznie z dokªadno±ci do kolejno±ci czynników i mno»enia przez niezerowe elementy ciaªa F. Ostanie zdanie powy»szego twierdzenia mo»e by zilustrowane przez nast puj cy przykªad: w rozkªadzie wielomianu P (x) = x 2 + x R[x] jako P (x) = P 1 (x) P 2 (x), mo»na wzi P 1 (x) = x, P 2 (x) = x + 1, ale mo»na te» wzi P 1 (x) = 1 2 x 1 2, P 2(x) = 2x (formalnie s to ró»ne rozkªady). Przykªad. Zbadajmy rozkªadalno± wszystkich wielomianów stopnia 2 z Z 2 [x]. Wielomian x 2 jest, oczywi±cie, rozkªadalny. Wielomian x jest te» rozkªadalny, poniewa» x = (x + 1) 2. Wielomian x 2 + x + 1 jest nierozkªadalny, gdy» nie ma pierwiastków (patrz Fakt 6). Wielomian x 2 +x = x(x+1) jest rozkªadalny. Przykªad. Zbadajmy (nie)rozkªadalno± wielomianu x 4 + x Z 2 [x]. Poniewa» nie ma on pierwiastków, w jego (ewentualnym) rozkªadzie mog wyst pi tylko nierozkªadalne czynniki P 1 (x), P 2 (x) stopnia drugiego. Z poprzedniego przykªadu wynika,»e jedynym nierozkªadalnym wielomianem stopnia drugiego jest x 2 +x+1. Sprawdzamy teraz,»e x 4 +x 2 +1 = (x 2 +x+1) 2. Przykªad. Rozwa»my teraz wielomian x 4 +x+1 Z 2 [x]. Poniewa» nie ma on pierwiastków, powtarzaj c rozumowanie z powy»szego przykªadu dochodzimy do wniosku,»e jedyny mo»liwy jego rozkªad to x 4 +x+1 = (x 2 +x+1) 2, co jest faªszem. Jest to zatem wielomian nierozkªadalny.

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018 Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Jan Rodziewicz-Bielewicz, Wydziaª Informatyki ZUT May 8, 2019 8 Struktury algebraiczne ZASTOSOWANIE: Kryptograa. 1. Sprawdzi, czy jest dziaªaniem wewn trznym: (a) y y w zbiorze Q,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Algebra Boole'a i logika cyfrowa

Algebra Boole'a i logika cyfrowa Algebra Boole'a i logika cyfrowa 7.X. 2009 1 Aksjomatyczna denicja algebry Boole'a Do opisywanie ukªadów cyfrowych b dziemy u»ywali formalizmu nazywanego algebr Boole'a. Formalnie algebra Boole'a to struktura

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstracyjnej 1. Nawiasami [[]] oznacza b d omentarze. 2. Denicja 0.1 Grup z [[jaim± abstracyjnym]] dziaªaniem nazywamy zbiór G speªniaj cy waruni

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio: 5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona

Bardziej szczegółowo

Kompresja punktów na krzywych eliptycznych

Kompresja punktów na krzywych eliptycznych R. Dryªo (IMPAN) Kompresja na krzywych eliptycznych KBBS 2015 1 / 21 Kompresja punktów na krzywych eliptycznych Robert Dryªo IMPAN II Konferencja Naukowo Przemysªowa KBBS Zielona Góra, 17-18 marzec 2015

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Algebra abstrakcyjna

Algebra abstrakcyjna Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Informacje pomocnicze:

Informacje pomocnicze: dr Krzysztof yjewski Informatyka; S-I 0.in». 7 grudnia 06 Rachunek caªkowy funkcji jednej zmiennej. Caªka nieoznaczona. przydatne wzory: Informacje pomocnicze: Lp. Wzór Uwagi. dx = x c. adx = ax c 3. x

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Model obiektu w JavaScript

Model obiektu w JavaScript 16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego

Bardziej szczegółowo

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05 ELEMENTY TEORII LICZB Grzegorz Szkibiel Jesie«2004/05 Spis tre±ci 1 Liczby i wielomiany 5 1.1 Wielomiany............................ 5 1.2 Podzielno± liczb......................... 8 1.3 Podzielno± wielomianów.....................

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016 WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

Notatki do wykªadu Algebra

Notatki do wykªadu Algebra Notatki do wykªadu Algebra (semestr letni 10/11) Emanuel Kiero«ski 1 Grupy, pier±cienie i ciaªa 1.1 Struktury algebraiczne Denicja 1 A = (A, f 1, f 2,...) zbiór A wraz ze zdeniowanymi na nim dziaªaniami

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu) Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,

Bardziej szczegółowo