ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Wielkość: px
Rozpocząć pokaz od strony:

Download "ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15"

Transkrypt

1 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15

2 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych 17 5 Maªe Twierdzenie Fermata 20 6 Twierdzenie Eulera 23 7 Twierdzenie Lagrange'a 27 8 Chi«skie Twierdzenie o Resztach 30 9 RSA i gra w orªa i reszk przez telefon Kongruencje wy»szych stopni Liczby pseudopierwsze Pierwiastki pierwotne Istnienie pierwiastków pierwotnych Logarytm dyskretny Pewne zastosowania pierwiastków pierwotnych 61 2

3 Wykªad 10 Kongruencje wy»szych stopni Jak ju» zauwa»yli±my, teza twierdzenia Lagrange'a (7.1) nie zachodzi w przypadku, gdy moduªem jest liczba zªo»ona. eby rozwa»a moduªy zªo»one, potrzebne jest jeszcze chi«skie twierdzenie o resztach (8.2). Zajmiemy si kongruencjami typu f(x) 0 (mod m), gdzie f(x) jest wielomianem o wspóªczynnikach caªkowitych. Stopie«tego wielomianu jest stopniem kongruencji. Rozwa»my nast puj cy przykªad Przykªad. Chcemy znale¹ wszystkie liczby n, których ostatnie trzy cyfry s takie same jak w n 2. Od razu zauwa»amy,»e takimi liczbami s 0 oraz 1. Po chwili zauwa»amy te»,»e 1000, 1001 i wszystkie liczby ko«cz ce si na 000 lub 001 maj wymagan wªasno±. Dochodzimy wi c do kongruencji n n 2 (mod 1000), (10.1) której rozwi zanie da nam wszystkie szukane liczby. Jest to kongruencja drugiego stopnia (f(n) = n n 2 ). Jej rozwi zaniami (modulo 1000) s 0, 1, 376, 625. Gdyby w przykªadzie 10.1 moduª m byª maªy, to kongruencj 10.1 rozwi - zaliby±my podstawiaj c za n wszystkie nieujemne liczby caªkowite mniejsze od m. Metoda ta nie pracuje, je±li m jest du» liczb. W rozdziale tym poka»emy,»e kongruencje o moduªach zªo»onych mo»na zredukowa do kongruencji o moduªach pierwszych. To pozwoli nam rozwi za niektóre kongruencje. Przypomnijmy,»e pierwiastkiem modulo m wielomianu f(x) o wspóªczynnikach caªkowitych nazywamy tak liczb r,»e f(r) 0 (mod m). Je±li 40

4 r jest pierwiastkiem wielomianu f(x) modulo m oraz r r (mod m), to z twierdzenia 1.7 wynika,»e f(r) f(r ) (mod m), czyli r te» jest pierwiastkiem wielomianu f(x) modulo m. Nasze rozwa»ania na temat pierwiastków b dziemy ogranicza do Z m i mówi c rozwi zanie, mamy na my±li rozwi zanie modulo m. Przykªady Wielomian x nie ma pierwiastków modulo 7. Sprawdzamy to podstawiaj c za x kolejne liczby 0, 1, 2, 3, 4, 5, Wielomian x 2 2 ma w Z 7 dokªadnie dwa pierwiastki: 3 i 4. Zauwa»my,»e wielomiany z powy»szych przykªadów s stopnia drugiego, wi c na mocy Twierdzenia Lagrange'a nie mog mie wi cej ni» 2 pierwiastki Wielomian x 2 1 ma w Z 12 cztery pierwiastki: 1, 5, 7 oraz 11. Rozwa»ymy teraz metod redukcji moduªu zªo»onego m na moduªy b d ce pot gami liczb pierwszych z rozkªadu m. Je±li m = p α 1 1 p α p α k k, to kongruencja f(x) 0 (mod m) implikuje k kongruencji f(x) 0 (mod p α i i ), gdzie 1 i k. Odwrotna implikacja tak»e zachodzi, poniewa» pot gi ró»nych liczb pierwszych s kopierwsze Przykªad. Rozwa»my kongruencj x 2 1 (mod 105). Poniewa» 105 = 3 5 7, wi c nasza kongruencja jest równowa»na ukªadowi trzech kongruencji x 2 1 (mod 3) x 2 1 (mod 5) x 2 1 (mod 7). Ka»d z powy»szych kongruencji rozwi zujemy podstawiaj c kolejne liczby i otrzymujemy w trzech przypadkach po dwa rozwi zania: 1 i 2 modulo 3, 1 i 4 modulo 5 oraz 1 i 6 modulo 7. Dowolna kombinacja tych rozwi za«daje rozwi zanie modulo 105. Oznaczmy przez r pierwiastek wielomianu x 2 1 modulo 105. Wówczas r jest jednym z rozwi za«o±miu poni»szych ukªadów kongruencji. r 1 (mod 3) r 2 (mod 3) r 1 (mod 3) r 1 (mod 5) r 1 (mod 5) r 4 (mod 5) r 1 (mod 7), r 1 (mod 7), r 1 (mod 7), 41

5 r 2 (mod 3) r 1 (mod 3) r 4 (mod 5) r 1 (mod 5) r 1 (mod 7), r 6 (mod 7), r 2 (mod 3) r 1 (mod 3) r 2 (mod 3) r 1 (mod 5) r 4 (mod 5) r 4 (mod 5) r 6 (mod 7), r 6 (mod 7), r 6 (mod 7). Rozwi zaniami (modulo 105) tych ukªadów kongruencji s, kolejno, 1, 71, 64, 29, 76, 41, 34 i 104. Wracaj c do przykªadu 10.1, kongruencja (10.1) jest równowa»na ukªadowi kongruencji n n 2 (mod 2 3 ) n n 2 (mod 5 3 (10.2) ). Pierwsz kongruencj z (10.2) mo»emy jeszcze rozwi za podstawiaj c kolejne liczby od 0 do 7. Przy drugiej kongruencji metoda ta zawodzi ze wzgl du na zbyt wiele (a» 125) liczb. Zastosujemy wi c inn metod. Poniewa» kongruencj n n 2 (mod 5) speªniaj dwie liczby (modulo 5) 0 oraz 1, wi c kongruencj n n 2 (mod 5 2 ) (10.3) speªniaj liczby postaci 0 + 5k 1 oraz 1 + 5l 1. Podstawiamy te liczby do (10.3) otrzymuj c 5k 1 0 (mod 5 2 ) oraz 5l 1 10l 1 (mod 5 2 ). St d kongruencje k 1 0 (mod 5) i l 1 2l 1 (mod 5), które daj k 1 = 0 oraz l 1 = 0. Mamy zatem 2 rozwi zania modulo 25: 0 oraz 1. Rozwi zaniami modulo 125 drugiej kongruencji z (10.3) s liczby postaci 5 2 k 2 oraz l 2. Wykonuj c podobne obliczenia jak powy»ej dostajemy dwa rozwi zania: 0 i 1. Aby rozwi za zadanie postawione w przykªadzie 10.1, wystarczy rozwi za cztery ukªady kongruencji r e 1 (mod 2) r e 2 (mod 5), gdzie za e 1 oraz e 2 podstawiamy 0 lub 1. Cztery szukane rozwi zania to 0, 1, 376 i

6 Nasze rozumowanie uogólnimy, podaj c je w formie twierdzenia. Zdeniujemy przedtem poj cie pochodna wielomianu. Przypu± my,»e dany jest wielomian f(x) = a n x n + a n 1 x n a 1 x + a 0. Pochodn wielomianu f(x) nazywamy wielomian Zauwa»my teraz,»e f (x) = na n x n + (n 1)a n 1 x n a 1. f(x + y) = f(x) + yf (x) + y 2 g(x, y), (10.4) gdzie g(x, y) jest pewn wielko±ci, któr nie jeste±my zainteresowani Twierdzenie. Niech f(x) b dzie wielomianem o wspóªczynnikach caªkowitych, a f (x) jego pochodn. Przypu± my,»e element x 0 speªnia kongruencj f(x 0 ) 0 (mod p k ) (dla k 1). Wówczas kongruencja wielomianowa f(x) 0 (mod p k+1 ) ma (a) dokªadnie jedno rozwi zanie x = x 0 + p k t, je»eli p f (x 0 ). Tutaj t jest rozwi zaniem kongruencji p k tf (x 0 ) f(x 0 ) (mod p k+1 ). (10.5) (b) p nieprzystaj cych do siebie modulo p k+1 rozwi za«x = x 0 + p k t, je±li p f (x 0 ) oraz p k+1 f(x 0 ). Tutaj t przyjmuje warto±ci 0, 1,..., p 1. (c) zero rozwi za«przystaj cych do x 0 modulo p k, je»eli p f (x 0 ) oraz p k+1 f(x 0 ). Dowód. Przypu± my,»e x jest rozwi zaniem kongruencji f(x) 0 (mod p k ), takim»e x x 0 (mod p k ). Mo»emy wi c zapisa x = x 0 + p k t dla pewnej liczby caªkowitej t. Korzystaj c z równania (10.4) otrzymujemy f(x) f(x 0 + p k t) Ale p k+1 ( p k t )2, wi c f(x 0 ) + p k tf (x 0 ) + ( p k t ) 2 g(x, p k t) (mod p k+1 ). f(x) f(x 0 ) + p k tf (x 0 ) (mod p k+1 ). 43

7 Pami taj c,»e f(x) 0 (mod p k+1 ), dostajemy (10.5). Przypu± my teraz,»e p f (x 0 ). Poniewa» p k f(x 0 ), wi c kongruencj (10.5) mo»na zredukowa do kongruencji liniowej (z niewiadom t) f (x 0 )t f(x 0) p k (mod p), która ma dokªadnie jedno rozwi zanie. St d jednoznaczno± rozwi zania x = x 0 + tp k. Aby pokaza (b), zaªó»my,»e p f (x 0 ) oraz p k+1 f(x 0 ). Wówczas kongruencja (10.5) jest speªniona dla dowolnego t {0, 1, 2,..., p 1}. St d p rozwi za«x = x 0 + tp k. Je±li p f (x 0 ) oraz p k+1 f(x 0 ), to kongruencja (10.5) przybiera sprzeczn z zaªo»eniem posta 0 f(x 0 ) (mod p k+1 ). Nie ma wi c rozwi za«postaci x = x 0 + tp k, co pokazuje (c) Przykªad. Rozwi»emy kongruencj x 2 + 4x (mod 49). (10.6) Mamy tutaj f(x) = x 2 +4x+2 oraz 49 = 7 2. Zaczynamy wi c od kongruencji x 2 + 4x (mod 7), dla której znajdujemy rozwi zanie podstawiaj c po kolei wszystkie liczby od 0 do 6. Znajdujemy dwa pierwiastki x 1 = 1 oraz x 2 = 2. Poniewa» f (x) = 2x + 4, wi c mamy 7 f (x i ) dla i = 1 oraz i = 2. Zastosujemy wi c cz ± (a) twierdzenia Dla x 1 otrzymujemy: 7tf (1) f(1) (mod 7 2 ) 7t 6 7 (mod 7 2 ) 6t 1 (mod 7) t 1 (mod 7). Zatem x = = 8 jest pierwiastkiem (10.6). Podobnie, 7tf (2) f(2) (mod 7 2 ) 7t 8 14 (mod 7 2 ) 8t 2 (mod 7) t 5 (mod 7), wi c x = = 37 jest pierwiastkiem kongruencji (10.6). 44

8 10.8 Przykªad. Rozwi»emy kongruencj x 2 + x (mod 9). (10.7) Mamy tutaj f (x) = 2x + 1, a rozwi zuj c x 2 + x (mod 3), otrzymujemy x 0 = 1. Tak si jednak skªada,»e 3 f (1) oraz 9 f(1), wi c stosujemy twierdzenie 10.6(b), z którego wynika,»e x 1 = = 1, x 2 = = 4 i x 3 = = 7 s pierwiastkami (10.7) Przykªad. Poszukamy pierwiastków z 1 modulo 16. Rozwa»ymy wi c wielomian f(x) = x 2 1. Modulo 8, ma on 4 pierwiastki: x 1 = 1, x 2 = 3, x 3 = 5 i x 4 = 7. Poniewa» f (x) = 2x, wi c 2 f (x i ) dla i {1, 2, 3, 4}, ale 16 dzieli tylko f(x 1 ) i f(x 4 ). Na podstawie punktu (c) twierdzenia 10.6 wnioskujemy wi c,»e tylko x 1 i x 4 daj pierwiastki modulo 16. A s to, zgodnie z punktem (b), 1, 9, 7 i 15. Ogólnie, je±li m = 2 k, gdzie k 3, to wielomian f(x) ma dokªadnie 4 pierwiastki modulo m: 1, 2 k 1 1, 2 k oraz 2 k 1, czyli Przykªad. Wró my do przykªadu Stosuj c twierdzenie 10.6, otrzymujemy rozwi zania 0 i 1 dla obu kongruencji n 2 n (mod 8) oraz n 2 n (mod 125). Zatem cztery rozwi zania kongruencji (10.1) otrzymamy po rozwi zaniu nast puj cych czterech ukªadów: n 1 0 (mod 8) n 2 0 (mod 8) n 1 0 (mod 125) n 2 1 (mod 125) n 3 1 (mod 8) n 4 1 (mod 8) n 3 0 (mod 125) n 4 1 (mod 125). S to: n 1 = 0, n 2 = 376, n 3 = 625 oraz n 4 = 1. Zako«czymy ten rozdziaª jeszcze jednym przykªadem, który ma du»e znaczenie przy znajdywaniu rozkªadu liczb na czynniki oraz uzasadnia prawidªowo± gry w orªa i reszk przez telefon Przykªad. Przypu± my,»e p i q s ró»nymi liczbami pierwszymi oraz n = pq. Wówczas kongruencja x 2 1 (mod n) ma dokªadnie 4 rozwi zania, poniewa» ka»da z kongruencji x 2 1 (mod p) oraz x 2 1 (mod q) ma dokªadnie dwa rozwi zania. Rozwi zania ±1 nazywamy trywialnymi. Je±li x jest nietrywialnym rozwi zaniem, to NWD(x 1, n) oraz NWD(x + 1, n) s liczbami p oraz q. Zatem je±li znamy nietrywialne rozwi zanie kongruencji x 2 1 (mod n), to znamy te» rozkªad liczby n. 45

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2015/16

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2015/16 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2015/16 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05 ELEMENTY TEORII LICZB Grzegorz Szkibiel Jesie«2004/05 Spis tre±ci 1 Liczby i wielomiany 5 1.1 Wielomiany............................ 5 1.2 Podzielno± liczb......................... 8 1.3 Podzielno± wielomianów.....................

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018 Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

Liniowe zadania najmniejszych kwadratów

Liniowe zadania najmniejszych kwadratów Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Wykªad 12. Transformata Laplace'a i metoda operatorowa

Wykªad 12. Transformata Laplace'a i metoda operatorowa Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Protokoªy o zerowej wiedzy i przekazy nierozró»nialne 3 1.1 Kolorowanie mapy........................ 3 1.2 Logarytm dyskretny.......................

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

dziaªaniem jest grup abelow : Okre±lmy funkcj charakterystyczn zbioru A: χ(a) = (1 A (x 1 ), 1 A (x 2 ),..., 1 A (x n )), gdzie 1 A (x) =

dziaªaniem jest grup abelow : Okre±lmy funkcj charakterystyczn zbioru A: χ(a) = (1 A (x 1 ), 1 A (x 2 ),..., 1 A (x n )), gdzie 1 A (x) = Zadanie 1 (2.1). Poka»,»e (P (X), ) jest grup abelow, dla X. Zauwa»my wpierw,»e dla wszystkich A, B X, A B A B X, zatem P (X) jest zamnki te na dziaªanie. Zauwa»my,»e (x A B) ((x A) (x B)), zatem wystarczy

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T

Bardziej szczegółowo

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e ,

Zadanie 1. Zadanie 2. Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e , Zadanie 1 Niech µ A i µ B oznaczaj stopy zwrotu odpowiednio z aktywa A i B, ªatwo obliczy,»e Eµ A 0, 02, Eµ 2 A 0, 0175, V arµ A 171 10 4, Eµ B 0, 135, Eµ 2 B 0, 02275, V arµ B 181 4 10 4, Eµ A µ B 0,

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B, Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Interpolacja Lagrange'a, bazy wielomianów

Interpolacja Lagrange'a, bazy wielomianów Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio: 5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0, XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1

Bardziej szczegółowo

Opis matematyczny ukªadów liniowych

Opis matematyczny ukªadów liniowych Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór

Bardziej szczegółowo

Elementarna statystyka

Elementarna statystyka Elementarna statystyka Alexander Bendikov 26 marca 2017 Klasyczny model: eksperyment o jednakowo prawdopodobnych wynikach Zaªo»enia: 1 Przestrze«próbek S ma sko«czenie wiele wyników ω 1, ω 2,..., ω n,

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Wykªad 3. Funkcje skrótu

Wykªad 3. Funkcje skrótu Wykªad 3 Funkcje skrótu Damian Niwi«ski Instytut Informatyki, Uniwersytet Warszawski Funkcje jednokierunkowe Podstawowa intuicja funkcji jednokierunkowej jest: ªatwo obliczalna, ale trudno odwracalna,

Bardziej szczegółowo