Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:
|
|
- Seweryn Chmiel
- 8 lat temu
- Przeglądów:
Transkrypt
1 Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1
2 Zadanie. Rozważmy funkcję f : Z Z Z, f(x, y) = xy. Znajdź obraz zbioru {1, 10, 100, 1000} {1, 10, 100, 1000} oraz przeciwobraz zbioru {1, 2, 3}. 2
3 Własności. Niech f : X Y będzie dowolną funkcją. Wówczas dla dowolnych zbiorów A, B X: a) f(a B) = f(a) f(b), b) f(a B) f(a) f(b), c) f(a) \ f(b) f(a \ B), oraz dla dowolnych zbiorów C, D Y : a) f 1 (C D) = f 1 (C) f 1 (D), b) f 1 (C D) = f 1 (C) f 1 (D), c) f 1 (C \ D) = f 1 (C) \ f 1 (D). 3
4 Relacje 4
5 Relacją n-argumentową nazywamy podzbiór ϱ X 1 X 2... X n. Jeśli ϱ X Y jest relacją dwuargumentową (binarną), to zamiast (x, y) ϱ piszemy xϱy. Relacją binarną określoną w zbiorze X nazywamy podzbiór ϱ X X. 5
6 Funkcje jako relacje. Funkcją nazywamy relację binarną ϱ X Y taką, że dla każdego elementu x X jest jeden i tylko jeden element y Y spełniający warunek (x, y) ϱ: x X! y Y (x, y) ϱ. 6
7 Rozważmy relację binarną ϱ określoną w zbiorze X: ϱ X X. Mówimy, że relacja ϱ jest: zwrotna, jeśli x X xϱx, przeciwzwrotna, jeśli x X xϱx, symetryczna, jeśli x,y X xϱy yϱx, asymetryczna (antysymetryczna), jeśli x,y X xϱy yϱx, słabo antysymetryczna, jeśli x,y X xϱy yϱx x = y, spójna, jeśli x,y X xϱy yϱx x = y, przechodnia, jeśli x,y,z X xϱy yϱz xϱz. 7
8 Rozważmy następujące relacje binarne w zbiorze R: x < y, x y, x = y oraz następujące relacje binarne w zbiorze N 1 : x i y są tej samej parzystości, y = x 2, x y. 8
9 relacja w R x < y x y x = y zwrotność + + przeciwzwrotność + symetria + asymetria + słaba antysymetria + + spójność + + przechodniość relacja w N 1 x i y stsp y = x 2 x y zwrotność + + przeciwzwrotność symetria + asymetria słaba antysymetria + + spójność przechodniość + + 9
10 Rozważmy relację binarną ϱ określoną w zbiorze skończonym X. Możemy narysować graf, którego wierzchołki są oznaczone elementami tego zbioru. Krawędź grafu o początku x i końcu y (strzałkę prowadzącą z x do y) rysujemy wtedy i tylko wtedy, gdy xϱy. 10
11 zwrotność Przy każdym wierzchołku jest pętla. przeciwzwrotność Przy żadnym wierzchołku nie ma pętli. symetria Na każdej krawędzi są strzałki w obie strony. asymetria Na każdej krawędzi jest strzałka tylko w jedną stronę. Nie ma pętli. słaba antysymetria Na każdej krawędzi jest strzałka tylko w jedną stronę. (Mogą być pętle.) spójność Każde dwa (różne) wierzchołki są połączone krawędzią. 11
12 Macierz relacji ϱ tworzymy w ten sposób, że wiersze i kolumny oznaczamy elementami zbioru X. Na przecięciu wiersza oznaczonego elementem x i kolumny oznaczonej elementem y stawiamy 1, jeśli xϱy, a 0 w przeciwnym wypadku. Przykłady. Niech X = {1, 2, 3, 4, 5}. 12
13 x < y x\y x y x\y y = x 2 x\y x i y stsp x\y
14 zwrotność Na głównej przekątnej są same jedynki. przeciwzwrotność Na głównej przekątnej są same zera. symetria Macierz jest symetryczna (względem głównej przekątnej). asymetria Na miejscach symetrycznych (względem głównej przekątnej) nie ma dwóch jedynek. Na głównej przekątnej są same zera. słaba antysymetria Na miejscach symetrycznych (względem głównej przekątnej) nie ma dwóch jedynek. spójność Na miejscach symetrycznych (względem głównej przekątnej) nie ma dwóch zer. 14
15 Relację binarną ϱ określoną w zbiorze X nazywamy relacją porządkującą (lub relacją częściowego porządku), jeśli jest zwrotna, słabo antysymetryczna i przechodnia. Zbiór X z określoną w nim relacją porządkującą nazywamy zbiorem częściowo uporządkowanym. Relację porządkującą oznaczamy zazwyczaj symbolem. Mówimy wówczas, że (X, ) jest zbiorem częściowo uporządkowanym. Mamy zatem warunki: x X x x, x,y X x y y x x = y, x,y,z X x y y z x z. 15
16 Jeśli jest relacją częściowego porządku, to możemy określić relację następująco: x y x y x y. Jeśli x y, to mówimy, że element x jest mniejszy od y, a y jest większy od x. Jeśli x y, to mówimy, że element x jest mniejszy lub równy y, a y jest większy lub równy x. 16
17 Niech (X, ) będzie zbiorem częściowo uporządkowanym. Element x X nazywamy: najmniejszym, jeśli jest mniejszy od pozostałych elementów: y X x y; największym, jeśli jest większy od pozostałych elementów: y X y x; minimalnym, jeśli nie ma elementów od niego mniejszych: y X y x y = x; maksymalnym, jeśli nie ma elementów od niego większych: y X x y y = x. 17
18 zbiór cz. up. el. minimalne el. maksymalne ({1, 2, 3, 4, 5}, ) 1 najmniejszy 5 największy ({1, 2, 3, 4, 5}, ) 1 najmniejszy 3, 4, 5 (N 1, ) 1 najmniejszy nie ma (N 2, ) liczby pierwsze nie ma (2 {a,b,c}, ) {a, b, c} (2 {a,b,c} \ {, {a, b, c}}, ) {a}, {b}, {c} {a, b}, {a, c}, {b, c} Zadanie. Narysuj kilka diagramów zbiorów częściowo uporządkowanych, wskaż elementy minimalne, maksymalne, najmniejsze, największe. 18
19 Uwaga. Element najmniejszy (jeśli istnieje) jest jedynym elementem minimalnym. Analogicznie, element największy jest jedynym maksymalnym. (Jedyny element minimalny nie musi być elementem najmniejszym.) 19
20 Porządek liniowy Relację porządkującą, która jest spójna, nazywamy relacją porządku liniowego. Oznacza to, że spełniony jest warunek x,y X x y y x. Przykłady: (R, ), ({1, 2, 4, 8}, ), ({{a}, {a, b}, {a, b, c}}, ). W zbiorze liniowo uporządkowanym istnieje co najwyżej jeden element minimalny. Jeśli taki element istnieje, to jest elementem najmniejszym. Analogiczna własność zachodzi oczywiście dla elementów maksymalnych. 20
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
Relacje. 1 Iloczyn kartezjański. 2 Własności relacji
Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):
Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)
Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Teoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest
Relacje. Relacje / strona 1 z 18
Relacje Relacje / strona 1 z 18 Relacje (para uporządkowana, iloczyn kartezjański) Definicja R.1. Parą uporządkowaną (x,y) nazywamy zbiór {{x},{x,y}}. Uwaga: (Ala, Ola) (Ola, Ala) Definicja R.2. (n-tka
O relacjach i algorytmach
2 O relacjach i algorytmach Relacja jest podstawowym pojęciem matematycznym, również użytecznym w informatyce: Operatory relacji =,, , w językach programowania. Relacyjne bazy danych. W eksploracji
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
O ALGORYTMACH BADANIA WŁASNOŚCI RELACJI
ZESZYTY NAUKOWE 23-37 Zenon GNIAZDOWSKI 1 O ALGORYTMACH BADANIA WŁASNOŚCI RELACJI Streszczenie W artykule omówione relacje dwuargumentowe, oraz algorytmy służące do badania ich własności, a także przedstawiono
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Wstęp do matematyki listy zadań
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki
- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc.
Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc. 3. Porządki liniowe. Porządki gęste, ciągłe i dobre. dradamkolany,mailto:ynalok64@wp.pl,http://kolany.pl,gg:1797933,tel.(+48)602804128...
Logika Matematyczna. Jerzy Pogonowski. Własności relacji. Zakład Logiki Stosowanej UAM
Logika Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Logika Matematyczna Własności relacji 1 / 46 Wprowadzenie
RELACJE I ODWZOROWANIA
RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.
Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y.
Zdania stwierdzające relację Pewne wyrazy i wyraŝenia wskazują na stosunki, czyli relacje, jakie zachodzą między róŝnymi przedmiotami. Do takich wyrazów naleŝą m. in. wyrazy: nad, pod, za, przy, braterstwo,
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA Lekcja 17 Relacje częściowego porządku. Diagramy Hassego. ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.
Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Logika I. Wykład 3. Relacje i funkcje
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},
Lista zadań - Relacje
MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,
1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
O relacjach i algorytmach. Zenon Gniazdowski Warszawska Wyższa Szkoła Informatyki zgniazdowski@wwsi.edu.pl
O relacjach i algorytmach Zenon Gniazdowski Warszawska Wyższa Szkoła Informatyki zgniazdowski@wwsi.edu.pl < 266 > Informatyka + Wszechnica Popołudniowa > O relacjach i algorytmach < 267 > Streszczenie
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
Wszechnica Popołudniowa: Algorytmika i programowanie O relacjach i algorytmach. Zenon Gniazdowski
Wszechnica Popołudniowa: Algorytmika i programowanie O relacjach i algorytmach Zenon Gniazdowski O relacjach i algorytmach Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: O relacjach i algorytmach Autor:
1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:
1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów
Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Relacje i relacje równoważności Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Zbiór i iloczyn kartezjański Pojęcie zbioru Zbiór jest
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'
DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.
RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 1/15 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Logika. Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie.
Logika Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie. i) Wprowadźmy oznaczenie F (p, q) ((p q) = ( p q)). Funkcja zdaniowa F nie
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 7/14 Relacje Relacja E = {(x, x): x S} jest relacją równości w zbiorze S. Piszemy xex lub x=x lub (x, x) E. Złożeniem relacji A w
Wykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje
Rachunek zda«. Relacje. 2018/2019
Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Rozdzia l 3. Relacje binarne
Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 1/15 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 1/10 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy teorii mnogości. II 1 Elementy teorii mnogości Część II Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości.
Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow
9: Digrafy (grafy skierowane) Spis zagadnień Digrafy Porządki częściowe Turnieje Przykłady: głosowanie większościowe, ścieżka krytyczna Digraf (graf skierowany) Digraf to równoważny termin z terminem graf
Strona główna. Strona tytułowa. Spis treści. Strona 1 z 403. Powrót. Full Screen. Zamknij. Koniec
Strona z 403 Przedmowa Do wydania pierwszego Podręcznik przeznaczony jest dla studentów pierwszego roku studiów w Szkole Głównej Handlowej. Składa się dziesięciu rozdziałów zawierających teorię (definicje,
W jakim celu to robimy? Tablica Karnaugh. Minimalizacja
W jakim celu to robimy? W projektowaniu układów cyfrowych istotne jest aby budować je jak najmniejszym kosztem. To znaczy wykorzystanie dwóch bramek jest tańsze niż konieczność wykorzystania trzech dla
Elementy teorii mnogości. Część I. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy teorii mnogości 1 Elementy teorii mnogości Część I Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości 2 1. Pojęcia
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
1 Rachunek zdań, podstawowe funk tory logiczne
1 Rachunek zdań, podstawowe funk tory logiczne 1.1 Zapisz symbolicznie następujące stwierdzenia i Jeśli z tego, że Paweł gra w palanta wynika to, że Robert jeździ na rowerze, to z tego, że Robert nie gra
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
MATEMATYKA DYSKRETNA
MATEMATYKA DYSKRETNA Wykład I Dr inż. Jolanta Błaszczuk Instytut Matematyki Politechnika Częstochowska Kontakt Dr inż. Jolanta Błaszczuk Instytut Matematyki Częstochowa, ul. Dąbrowskiego 73, pok. 184 tel.:
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 1/15 Literatura obowiązkowa K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 R.L.Graham, D.E.Knuth,
Podstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Imię i nazwisko... Grupa...
Algebra i teoria mnogości 2.09.2014 Za każde zadanie można otrzymać 0-3 pkt. W zadaniach 1-5 w puste pola należy wpisać TAK lub NIE. Każda odpowiedź oceniana jest osobno (1pkt za poprawną odpowiedź, 0.5pkt
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
FUNKCJE. 1. Podstawowe definicje
FUNKCJE. Podstawowe definicje DEFINICJA. Funkcja f odwzorowującą zbiór X w zbiór Y (inaczej f : X Y ) nazywamy takie przyporządkowanie, które każdemu elementowi x X przyporządkowuje dokładnie jeden element
Rozdzia l 1. Podstawowe elementy teorii krat
Rozdzia l 1. Podstawowe elementy teorii krat 1. Zbiory czȩściowo uporz adkowane Definicja. Relacjȩ binarn a określon a na zbiorze A nazywamy relacj a czȩściowo porz adkuj ac a, gdy jest zwrotna, antysymetryczna
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
WYKŁAD 2: RACHUNEK RELACJI
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI WYKŁAD 2: RACHUNEK RELACJI KOGNITYWISTYKA UAM, 2016 2017 JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM pogon@amu.edu.pl Przedmiotem badań matematycznych są zbiory
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego
1 Ćwiczenia: Funkcje całkowitoliczbowe
1 Ćwiczenia: Funkcje całkowitoliczbowe 1.1 Funkcje podłoga i sufit (Floor and ceiling functions) podłoga (część całkowita) x = największa liczba całkowita mniejsza lub równa x sufit x = najmniejsza liczba
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje
Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.put.poznan.pl/ maciej.grzesiak Konsultacje: poniedziałek, 8.45-9.30, środa 8.45-9.30, piątek 9.45-10.30, pokój 724E Treść
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 8a: Relacyjny model danych http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Relacyjny model danych Jednym z najważniejszych
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:
Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
1 Rachunek zdań, podstawowe funktory logiczne
1 Rachunek zdań, podstawowe funktory logiczne 1.1 Pokaż, że dla dowolnych zmiennych zdaniowych p, q, r poniższe formuły są tautologiami a p p p b q q q c p p p p d p q r p q p r e p q r p q p r f p q p
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Analiza matematyczna 1
Analiza matematyczna 1 Marcin Styborski Katedra Analizy Nieliniowej pok. 610E (gmach B) marcins@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/marcins () 28 września 2010 1 / 10 Literatura podstawowa R. Rudnicki,
10. Kolorowanie wierzchołków grafu
p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Zbiory wypukłe i stożki
Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Teoria popytu. Popyt indywidualny konsumenta
Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument