Podstawy matematyki dla informatyków

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy matematyki dla informatyków"

Transkrypt

1 Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011

2 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru N oznaczamy symbolem ℵ 0 (alef zero). Mówimy,»e zbiór jest przeliczalny, gdy jest sko«czony lub jest zbiorem mocy ℵ 0. W przeciwnym razie zbiór jest nieprzeliczalny.

3 W poprzednim odcinku... Zbiór A jest niesko«czony wtedy i tylko wtedy, gdy ma podzbiór mocy ℵ 0. Zbiór A jest niesko«czony wtedy i tylko wtedy, gdy jest równoliczny z pewnym swoim podzbiorem wªa±ciwym.

4 Zbiory przeliczalne Fakt Ka»dy podzbiór zbioru przeliczalnego jest przeliczalny.

5 Zbiory przeliczalne Fakt Ka»dy podzbiór zbioru przeliczalnego jest przeliczalny. Dowód: Wystarczy udowodni,»e ka»dy niesko«czony podzbiór zbioru N jest przeliczalny.

6 Zbiory przeliczalne Fakt Ka»dy podzbiór zbioru przeliczalnego jest przeliczalny. Dowód: Wystarczy udowodni,»e ka»dy niesko«czony podzbiór zbioru N jest przeliczalny. Niech A N b dzie niesko«czony. Deniujemy f : N A: f (n) = min(a f (n)) (*) Wtedy f jest ró»nowarto±ciowa. Poka»emy,»e f jest na A.

7 Zbiory przeliczalne Fakt Ka»dy podzbiór zbioru przeliczalnego jest przeliczalny. Dowód: Wystarczy udowodni,»e ka»dy niesko«czony podzbiór zbioru N jest przeliczalny. Niech A N b dzie niesko«czony. Deniujemy f : N A: f (n) = min(a f (n)) (*) Wtedy f jest ró»nowarto±ciowa. Poka»emy,»e f jest na A. Przypu± my,»e k A Rg(f ). Wtedy dla dowolnego n mamy jednocze±nie k A f (n) i k f (n), a wi c k > f (n). St d Rg(f ) k czyli Rg(f ) jest sko«czony. To niemo»liwe, bo f jest ró»nowarto±ciowa.

8 Przeliczanie przeliczalnego Fakt Niepusty zbiór A jest przeliczalny wtedy i tylko wtedy, gdy istnieje surjekcja f : N na A.

9 Przeliczanie przeliczalnego Fakt Niepusty zbiór A jest przeliczalny wtedy i tylko wtedy, gdy istnieje surjekcja f : N na A. Dowód: ( ) Je±li A = ℵ 0 to z denicji istnieje bijekcja.

10 Przeliczanie przeliczalnego Fakt Niepusty zbiór A jest przeliczalny wtedy i tylko wtedy, gdy istnieje surjekcja f : N na A. Dowód: ( ) Je±li A = ℵ 0 to z denicji istnieje bijekcja. Je±li A = n 0 to jest g : n 1 1 na { h(m) = A, i wtedy h : N na A: g(m), je±li m < n; g(0), w przeciwnym przypadku.

11 Przeliczanie przeliczalnego Fakt Niepusty zbiór A jest przeliczalny wtedy i tylko wtedy, gdy istnieje surjekcja f : N na A. Dowód: ( ) Je±li A = ℵ 0 to z denicji istnieje bijekcja. Je±li A = n 0 to jest g : n 1 1 na { h(m) = A, i wtedy h : N na A: g(m), je±li m < n; g(0), w przeciwnym przypadku. ( ) Niech g = λa A. min{i N f (i) = a}. Wtedy g : A 1 1 N, zatem A Rg(g) N.

12 Fakt Niepusty zbiór A jest przeliczalny wtedy i tylko wtedy, Wniosek Je±li A jest przeliczalny i f : A gdy istnieje surjekcja f : N na A. na B, to B jest przeliczalny.

13 Fakt Je±li zbiory A i B s przeliczalne, to A B jest przeliczalne.

14 Fakt Je±li zbiory A i B s przeliczalne, to A B jest przeliczalne. Dowód: Zaªó»my,»e A i B s niepuste (inaczej oczywiste). S f : N na A i g : N na B. Wtedy ϕ : N na A B: { f (k), je±li n = 2k, dla pewnego k; ϕ(n) = g(k), je±li n = 2k + 1, dla pewnego k

15 Fakt Je±li zbiory A i B s przeliczalne, to A B jest przeliczalne.

16 Fakt Je±li zbiory A i B s przeliczalne, to A B jest przeliczalne. Dowód: Zaªó»my,»e A i B s niepuste (inaczej oczywiste). S f : N na A i g : N na B. Wtedy ψ : N na A B: { f (0), g(0), je±li n = 0; ψ(n) = f (i), g(j), je±li n = 2 i 3 j q oraz 2 q i 3 q. Funkcja ψ jest na, bo dla dowolnych a A, b B istniej takie i, j,»e f (i) = a i f (j) = b. A wi c a, b = ψ(2 i 3 j ).

17 Funkcje pary z N N do N t(m, n) = 2 m 3 n (ró»nowarto±ciowa)

18 Funkcje pary z N N do N t(m, n) = 2 m 3 n u(m, n) = 2 m (2n + 1) (ró»nowarto±ciowa) (ró»nowarto±ciowa)

19 Funkcje pary z N N do N t(m, n) = 2 m 3 n u(m, n) = 2 m (2n + 1) u(m, n) = 2 m (2n + 1) 1 (ró»nowarto±ciowa) (ró»nowarto±ciowa) (bijekcja)

20 Funkcje pary z N N do N t(m, n) = 2 m 3 n u(m, n) = 2 m (2n + 1) u(m, n) = 2 m (2n + 1) 1 (ró»nowarto±ciowa) (ró»nowarto±ciowa) (bijekcja) v(m, n) = (m + n)(m + n + 1) 2 + m (bijekcja)

21 Przykªady zbiorów przeliczalnych Zbiór N N jest przeliczalny. Bo to produkt zbiorów przeliczalnych.

22 Przykªady zbiorów przeliczalnych Zbiór N N jest przeliczalny. Zbiór Z wszystkich liczb caªkowitych jest przeliczalny. Bo f : N N na Z, gdzie f m, n = m n.

23 Przykªady zbiorów przeliczalnych Zbiór N N jest przeliczalny. Zbiór Z wszystkich liczb caªkowitych jest przeliczalny. Zbiór Q wszystkich liczb wymiernych jest przeliczalny. Bo f : Z (Z {0}) na Q, gdzie f m, n = m n.

24 Przykªady zbiorów przeliczalnych Zbiór N N jest przeliczalny. Zbiór Z wszystkich liczb caªkowitych jest przeliczalny. Zbiór Q wszystkich liczb wymiernych jest przeliczalny. Zbiór wszystkich punktów pªaszczyzny o wspóªrz dnych wymiernych jest przeliczalny. Bo to po prostu Q Q.

25 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna.

26 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Dowód: Niech A b dzie przeliczaln rodzin zbiorów przeliczalnych. Zaªó»my,»e A oraz A. Wtedy:

27 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Dowód: Niech A b dzie przeliczaln rodzin zbiorów przeliczalnych. Zaªó»my,»e A oraz A. Wtedy: Istnieje funkcja F : N na A.

28 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Dowód: Niech A b dzie przeliczaln rodzin zbiorów przeliczalnych. Zaªó»my,»e A oraz A. Wtedy: Istnieje funkcja F : N na A. Istniej funkcje f m : N na F (m).

29 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Dowód: Niech A b dzie przeliczaln rodzin zbiorów przeliczalnych. Zaªó»my,»e A oraz A. Wtedy: Istnieje funkcja F : N na A. Istniej funkcje f m : N na F (m). Ka»de a A nale»y do pewnego F (m).

30 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Dowód: Niech A b dzie przeliczaln rodzin zbiorów przeliczalnych. Zaªó»my,»e A oraz A. Wtedy: Istnieje funkcja F : N na A. Istniej funkcje f m : N na F (m). Ka»de a A nale»y do pewnego F (m). Zatem ka»de a jest postaci f m (n).

31 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Dowód: Niech A b dzie przeliczaln rodzin zbiorów przeliczalnych. Zaªó»my,»e A oraz A. Wtedy: Istnieje funkcja F : N na A. Istniej funkcje f m : N na F (m). Ka»de a A nale»y do pewnego F (m). Zatem ka»de a jest postaci f m (n). Niech G(m, n) = f m (n), dla m, n N. Funkcja G : N N na A, jest na A.

32 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Dowód: Niech A b dzie przeliczaln rodzin zbiorów przeliczalnych. Zaªó»my,»e A oraz A. Wtedy: Istnieje funkcja F : N na A. Istniej funkcje f m : N na F (m). Ka»de a A nale»y do pewnego F (m). Zatem ka»de a jest postaci f m (n). Niech G(m, n) = f m (n), dla m, n N. Funkcja G : N N na A, jest na A. Zatem A jest zbiorem przeliczalnym.

33 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna.

34 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Wniosek Je±li alfabet A jest przeliczalny, to zbiór wszystkich sªów A te» jest przeliczalny.

35 Twierdzenie Suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna. Wniosek Je±li alfabet A jest przeliczalny, to zbiór wszystkich sªów A te» jest przeliczalny. Dowód: Zbiór A jest sum zbiorów A n, dla n N.

36 Denicja Liczby algebraiczne to pierwiastki rzeczywiste wielomianów o wspóªczynnikach wymiernych.

37 Denicja Liczby algebraiczne to pierwiastki rzeczywiste wielomianów o wspóªczynnikach wymiernych. Fakt Zbiór wszystkich liczb algebraicznych jest przeliczalny.

38 Denicja Liczby algebraiczne to pierwiastki rzeczywiste wielomianów o wspóªczynnikach wymiernych. Fakt Zbiór wszystkich liczb algebraicznych jest przeliczalny. Dowód: Wielomian jest wyznaczony przez sko«czony ci g swoich wspóªczynników. Zbiór wielomianów Q[x] jest wi c równoliczny z Q i te» przeliczalny.

39 Denicja Liczby algebraiczne to pierwiastki rzeczywiste wielomianów o wspóªczynnikach wymiernych. Fakt Zbiór wszystkich liczb algebraicznych jest przeliczalny. Dowód: Wielomian jest wyznaczony przez sko«czony ci g swoich wspóªczynników. Zbiór wielomianów Q[x] jest wi c równoliczny z Q i te» przeliczalny. Wielomian ma sko«czenie wiele pierwiastków, wi c zbiór liczb algebraicznych to przeliczalna suma zbiorów sko«czonych.

40 Nierówno±ci Mówimy,»e moc zbioru A jest mniejsza lub równa mocy zbioru B (i piszemy A B), wtedy i tylko wtedy, gdy istnieje injekcja f : A 1 1 B.

41 Nierówno±ci Mówimy,»e moc zbioru A jest mniejsza lub równa mocy zbioru B (i piszemy A B), wtedy i tylko wtedy, gdy istnieje injekcja f : A 1 1 B. Je»eli A B ale zbiory A i B nie s równoliczne, to piszemy A < B i mówimy,»e zbiór A jest mocy mniejszej ni» zbiór B.

42 Nierówno±ci Mówimy,»e moc zbioru A jest mniejsza lub równa mocy zbioru B (i piszemy A B), wtedy i tylko wtedy, gdy istnieje injekcja f : A 1 1 B. Je»eli A B ale zbiory A i B nie s równoliczne, to piszemy A < B i mówimy,»e zbiór A jest mocy mniejszej ni» zbiór B. Je±li m, n s liczbami kardynalnymi to m n oznacza,»e A B, dla A = m, B = n. Analogicznie rozumiemy m < n.

43 Poprawno± denicji Lemat Je»eli A B i C D oraz istnieje injekcja f : A 1 1 istnieje te» injekcja g : B 1 1 D. C, to

44 Poprawno± denicji Lemat Je»eli A B i C D oraz istnieje injekcja f : A 1 1 istnieje te» injekcja g : B 1 1 D. Dowód: Istniej bijekcje ϕ : B 1 1 na Zatem ψ f ϕ : B 1 1 D. C, to A oraz ψ : C 1 1 D. na A f C ϕ ψ B D

45 Nierówno±ci Je±li A B, to A B.

46 Nierówno±ci Je±li A B, to A B. Dla dowolnej liczby naturalnej n zachodzi n < ℵ 0.

47 Nierówno±ci Je±li A B, to A B. Dla dowolnej liczby naturalnej n zachodzi n < ℵ 0. Dla dowolnego zbioru A zachodzi A P(A). Istotnie, λa. {a} : A 1 1 P(A).

48 Nierówno±ci Je±li A B, to A B. Dla dowolnej liczby naturalnej n zachodzi n < ℵ 0. Dla dowolnego zbioru A zachodzi A P(A). Istotnie, λa. {a} : A 1 1 P(A). Zbiór A jest niesko«czony wtw, gdy ℵ 0 A.

49 Nierówno±ci Fakt Dla dowolnych niepustych zbiorów A, B nast puj ce warunki s równowa»ne: 1) A B; 2) Istnieje g : B na A; 3) Zbiór A jest równoliczny z pewnym podzbiorem zbioru B.

50 Nierówno±ci Fakt Dla dowolnych zbiorów A, B, C : A A;

51 Nierówno±ci Fakt Dla dowolnych zbiorów A, B, C : A A; Je±li A B i B C to A C.

52 Nierówno±ci Fakt Dla dowolnych zbiorów A, B, C : A A; Je±li A B i B C to A C. Czy je±li A B i B A to A = B?

53 Twierdzenie (Cantora-Bernsteina) Je±li A B i B A to A = B. Inaczej: Je±li f : A 1 1 B oraz g : B 1 1 na to istnieje h : A 1 1 B. A,

54 Przykªad Zawierania K A L implikuj równoliczno±. K L A

55 Przykªad Przedziaªy (0, 1) i [0, 1] s równoliczne, bo (0, 1) [0, 1]; [0, 1] ( 1, 2) (0, 1).

56 Dowód twierdzenia Cantora-Bernsteina A f g B

57 Dowód twierdzenia Cantora-Bernsteina

58 Dowód twierdzenia Cantora-Bernsteina

59 Dowód twierdzenia Cantora-Bernsteina

60 Inny dowód twierdzenia Cantora-Bernsteina Lemat: Je±li ϕ : A 1 1 C A to C A. A C

61 Moc continuum Denicja Moc zbioru wszystkich liczb rzeczywistych nazywamy continuum i oznaczamy przez C.

62 Moc continuum Denicja Moc zbioru wszystkich liczb rzeczywistych nazywamy continuum i oznaczamy przez C. Twierdzenie C = P(N) = {0, 1} N = N {0, 1}.

63 Moc continuum Denicja Moc zbioru wszystkich liczb rzeczywistych nazywamy continuum i oznaczamy przez C. Twierdzenie C = P(N) = {0, 1} N = N {0, 1}. Dowód: Cz ± ªatwa: Bijekcja F : P(N) 1 1 (N {0, 1}) na mo»e by okre±lona tak: F (A) = λn:n. if n A then 1 else 0.

64 Moc continuum Denicja Moc zbioru wszystkich liczb rzeczywistych nazywamy continuum i oznaczamy przez C. Twierdzenie C = P(N) = {0, 1} N = N {0, 1}. Dowód: Cz ± ªatwa: Bijekcja F : P(N) 1 1 (N {0, 1}) na mo»e by okre±lona tak: F (A) = λn:n. if n A then 1 else 0. Uwaga: Funkcja F (A) to funkcja charakterystyczna zbioru A. Bywa oznaczana symbolem χ A.

65 N {0, 1} R Dowód: Okre±lamy funkcj H : (N {0, 1}) 1 1 [0, 1): H(f ) = f (i) 10 i+1 i=0 Na przykªad H( ) = 0, Dwa ró»ne ci gi f i g daj dwie ró»ne liczby H(f ) i H(g). Ale nie ka»da liczba w (0, 1) jest postaci H(f ).

66 R P(Q) Dowód: Deniujemy G : R 1 1 P(Q): G(r) = Q (, r) Je±li r 1 < r 2 to r 1 < q < r 2 dla pewnego q Q. Wtedy q G(r 2 ) G(r 1 ).

67 Moraª: P(N) R

68 Moraª: P(N) R Dowód: Po pierwsze, P(N) = N {0, 1} R = C.

69 Moraª: P(N) R Dowód: Po pierwsze, P(N) = N {0, 1} R = C. Po drugie, C = R P(Q) = P(N).

70 Moraª: P(N) R Dowód: Po pierwsze, P(N) = N {0, 1} R = C. Po drugie, C = R P(Q) = P(N). Z twierdzenia Cantora-Bernsteina zbiory P(N) i R s równoliczne.

71 Nieprzeliczalno± Twierdzenie Zbiór R jest nieprzeliczalny (inaczej, ℵ 0 < C).

72 Nieprzeliczalno± Twierdzenie Zbiór R jest nieprzeliczalny (inaczej, ℵ 0 < C). Dowód: Przypu± my,»e liczby z przedziaªu (0, 1) mo»na ustawi w ci g niesko«czony,

73 Nieprzeliczalno± Twierdzenie Zbiór R jest nieprzeliczalny (inaczej, ℵ 0 < C). Dowód: Przypu± my,»e liczby z przedziaªu (0, 1) mo»na ustawi w ci g niesko«czony, np. tak: r 1 = 0, r 2 = 0, r 3 = 0, r 4 = 0,

74 Nieprzeliczalno± Twierdzenie Zbiór R jest nieprzeliczalny (inaczej, ℵ 0 < C). Dowód: Przypu± my,»e liczby z przedziaªu (0, 1) mo»na ustawi w ci g niesko«czony, np. tak: r 1 = 0, r 2 = 0, r 3 = 0, r 4 = 0,

75 Nieprzeliczalno± Twierdzenie Zbiór R jest nieprzeliczalny (inaczej, ℵ 0 < C). Dowód: Przypu± my,»e liczby z przedziaªu (0, 1) mo»na ustawi w ci g niesko«czony, np. tak: r 1 = 0, r 2 = 0, r 3 = 0, r 4 = 0, Wtedy liczba 0, na pewno w tym ci gu nie wystepuje!

76 Nieprzeliczalno± Twierdzenie Zbiór P(N) jest nieprzeliczalny. Dowód: Przypu± my,»e P(N) = {A n n N}. Niech B = {n n A n }.

77 Nieprzeliczalno± Twierdzenie Zbiór P(N) jest nieprzeliczalny. Dowód: Przypu± my,»e P(N) = {A n n N}. Niech B = {n n A n }. Wtedy B = A k, dla pewnego k.

78 Nieprzeliczalno± Twierdzenie Zbiór P(N) jest nieprzeliczalny. Dowód: Przypu± my,»e P(N) = {A n n N}. Niech B = {n n A n }. Wtedy B = A k, dla pewnego k. Je±li k B, to k A k, wi c k B, sprzeczno±.

79 Nieprzeliczalno± Twierdzenie Zbiór P(N) jest nieprzeliczalny. Dowód: Przypu± my,»e P(N) = {A n n N}. Niech B = {n n A n }. Wtedy B = A k, dla pewnego k. Je±li k B, to k A k, wi c k B, sprzeczno±. Je±li k B, to (k A k ), czyli k A k = B, sprzeczno±.

80 Uogólnienie: Twierdzenie (Cantora) Dla dowolnego zbioru A zachodzi A < P(A). Dowód: Przypu± my,»e F : A 1 1 P(A). Niech na B = {x A x F (x)}.

81 Uogólnienie: Twierdzenie (Cantora) Dla dowolnego zbioru A zachodzi A < P(A). Dowód: Przypu± my,»e F : A 1 1 P(A). Niech na B = {x A x F (x)}. Istnieje takie b A,»e F (b) = B.

82 Uogólnienie: Twierdzenie (Cantora) Dla dowolnego zbioru A zachodzi A < P(A). Dowód: Przypu± my,»e F : A 1 1 P(A). Niech na B = {x A x F (x)}. Istnieje takie b A,»e F (b) = B. Je±li b B, to b F (b) = B, sprzeczno±.

83 Uogólnienie: Twierdzenie (Cantora) Dla dowolnego zbioru A zachodzi A < P(A). Dowód: Przypu± my,»e F : A 1 1 P(A). Niech na B = {x A x F (x)}. Istnieje takie b A,»e F (b) = B. Je±li b B, to b F (b) = B, sprzeczno±. Je±li b B, to b F (b), sprzeczno±.

84 Paradoks fryzjera F : A P(A) F (x) = {y x goli y} Nie mo»e istnie takie b,»e: x(b goli x x nie goli x) x(x F (b) x F (x))

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018 Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Wstęp do Matematyki (4)

Wstęp do Matematyki (4) Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

O liczbach niewymiernych

O liczbach niewymiernych O liczbach niewymiernych Agnieszka Bier Spotkania z matematyką jakiej nie znacie ;) 8 stycznia 0 Liczby wymierne i niewymierne Definicja Liczbę a nazywamy wymierną, jeżeli istnieją takie liczby całkowite

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Matematyczne Podstawy Kognitywistyki

Matematyczne Podstawy Kognitywistyki Matematyczne Podstawy Kognitywistyki Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl Funkcje Jerzy Pogonowski (MEG) Matematyczne Podstawy Kognitywistyki Funkcje 1 / 41 Wst p Ilo±ciowe

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Preliminaria logiczne

Preliminaria logiczne Preliminaria logiczne Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl MDTiAR Jerzy Pogonowski (MEG) Preliminaria

Bardziej szczegółowo

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Matematyka II - Organizacja zajęć. Egzamin w sesji letniej

Matematyka II - Organizacja zajęć. Egzamin w sesji letniej Matematyka II - Organizacja zajęć Wykład (45 godz.): 30 godzin - prof. zw. dr hab. inż. Jan Węglarz poniedziałek godz.11.45 15 godzin - środa godz. 13.30 (tygodnie nieparzyste) s. A Egzamin w sesji letniej

Bardziej szczegółowo

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«.

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Alicja Czy» WFTiMS April 14, 2010 Spis tre±ci 1 Wprowadzenie Denicja prawdopodobie«stwa warunkowego Twierdzenie Bayesa Niezale»no±

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Dekompozycje prostej rzeczywistej

Dekompozycje prostej rzeczywistej Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy teorii mnogości. II 1 Elementy teorii mnogości Część II Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości.

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 2 Podstawowe zasady i prawa przeliczania

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Krzysztof Kapulkin IX Warsztaty Logiczne 5 12 lipca 2008 1 Wst p W referacie tym przedstawiamy wyniki uzyskane przez Andrzeja Ehrenfeuchta i Andrzeja

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.

Bardziej szczegółowo

RACHUNEK ZBIORÓW 2 A B = B A

RACHUNEK ZBIORÓW 2 A B = B A RCHUNEK ZIORÓW 2 DZIŁNI N ZIORCH Sum (uni ) zbiorów i nazywamy zbiór, którego elementami s wszystkie elementy nale ce do zbioru lub do zbioru. = {x : x x } ZDNIE = = = Wyznacz sumy:,, C, D, E, D E dla

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Twierdzenie Choqueta o mierzalno±ci rzutów

Twierdzenie Choqueta o mierzalno±ci rzutów Twierdzenie Choqueta o mierzalno±ci rzutów (Na podstawie wykªadu prof. Michaªa Morayne) Mateusz Kwa±nicki 12. grudnia 2004. 1 Wst p Ten tekst jest skróconym zapisem wykªadów dr M. Morayne, po±wi conych

Bardziej szczegółowo

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska Kombinatoryka Magdalena Lema«ska Zasady zaliczenia przedmiotu Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to 100 punktów = 100 procent. Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Logika matematyczna (16) (JiNoI I)

Logika matematyczna (16) (JiNoI I) Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16

Bardziej szczegółowo

Teoria grafów i sieci 1 / 58

Teoria grafów i sieci 1 / 58 Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

Cz ± I. Analiza Matematyczna I

Cz ± I. Analiza Matematyczna I Cz ± I Analiza Matematyczna I ROZDZIAŠ Wst p.. Logika B dziemy rozwa»a zdania, o których mo»emy zawsze stwierdzi, czy s prawdziwe, czy faªszywe. Z punktu widzenia logiki istotne jest wyª cznie to, czy

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

Ekstrema lokalne i punkty otwarto±ci funkcji ci gªej

Ekstrema lokalne i punkty otwarto±ci funkcji ci gªej Politechnika Šódzka, Instytut Matematyki Konopnica, maj 2016 Plan Wspóªautorzy Omawiane wyniki zostaªy uzyskane w pracy M. Balcerzak, M. Popªawski, J. Wódka, Local extrema and nonopenness points for continuous

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

Informatyka, I stopień

Informatyka, I stopień Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, I stopień Sylabus modułu: Podstawy logiki i teorii mnogości (LTM200.2) wariantu modułu (opcjonalnie): 1. Informacje ogólne

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Sprawy organizacyjne

Sprawy organizacyjne Sprawy organizacyjne Literatura Wykªad b dzie w zasadzie samowystarczalny. Oto kilka pozycji przydatnej literatury uzupeªniaj cej wszystkie pozycje zostaªy wydane przez PWN): Andrzej Birkholc, Analiza

Bardziej szczegółowo

Teoria mnogo±ci. Twierdzenia podziaªowe. Piotr Zakrzewski. Toru«, 31 sierpnia 2009. Instytut Matematyki Uniwersytet Warszawski

Teoria mnogo±ci. Twierdzenia podziaªowe. Piotr Zakrzewski. Toru«, 31 sierpnia 2009. Instytut Matematyki Uniwersytet Warszawski Teoria mnogo±ci Twierdzenia podziaªowe Piotr Zakrzewski Instytut Matematyki Uniwersytet Warszawski Toru«, 31 sierpnia 2009 Istota twierdze«podziaªowych Jesli,du»y' zbiór podzielimy na,niewielk ' liczb

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa

Bardziej szczegółowo