Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
|
|
- Janina Stankiewicz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da ma inny kolor wªosów - biaªy, czarny, rudy, albo zielony (tak, rusaªki te» przyszªy). Mªodzieniec o imieniu Zbrozªo planuje zata«czy przy ognisku 6 ta«ców. a) Zbada na ile sposobów mog odby si te ta«ce, przy zaªo»eniach»e Zbrozªo zata«czy z dziewczyn ka»dego koloru wªosów oraz dwa razy nie b dzie ta«czyª z t sam partnerk. b) Zbada na ile sposobów mog odby si te ta«ce, je±li Zbrozªo rozró»nia dziewczyny jedynie po kolorze wªosów (w tym przypadku partnerki mog si powtarza ). W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. a) Zauwa»my,»e mo»liwe s dwie rozª czne sytuacje - albo Zbrozªo zata«czy z trzema dziewczynami o takim samym kolorze wªosów (wtedy pozostaªe kolory wªosów b d reprezentowane przez jedn partnerk ), albo nie (wtedy dwa kolory wªosów reprezentowane s przez dwie dziewczyny, a pozostaªe kolory przez jedn ). W pierwszym przypadku mo»emy na 4 sposoby wybra kolor, w którym wªosy maj trzy partnerki Zbrozªy, na ( ) 11 3 sposobów trzy dziewczyny o tym kolorze wªosów, a pozostaªe partnerki na 11 3 sposobów (po jednej dziewczynie z ka»dego koloru). Tym samym partnerki mo»na w tym przypadku wybra na 4 (11 ) sposobów. W drugim przypadku na ( 4 2) sposobów wybieramy kolory, które b d reprezentowane przez dwie partnerki, potem na ( ) sposobów wybieramy po dwie dziewczyny z ka»dego wybranego koloru, a na 11 2 sposobów po jednej dziewczynie z pozostaªy dwóch kolorów. Czyli partnerki w tym wypadku mo»na wybra na ( 4 ) ( 2 11 ) sposobów. W ka»dym przypadku pozostaje na 6! sposobów ustali w jakiej kolejno±ci odbywaj si ta«ce, czyli ostateczna odpowied¹ to 6! ( 4 ( ) ( ) 4 2 ( ) ) b) W tym wypadku ka»da organizacja ta«ców to w istocie ci g dªugo±ci 6 o wyrazach ze zbioru {B, C, R, Z}, gdzie literki odpowiadaj kolorom wªosów, a takich ci gów jest 4 6.
2 Zadanko 2 (12p.) W zbiorze wszystkich ci gów dªugo±ci 5 o wyrazach ze zbioru {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} wprowad¹my relacj tak,»e dwa ci gi b d w relacji, je±li jeden jest pewn permutacj drugiego. Przykªadowo ci gi 10075, i s parami w relacji. Jak mo»na zobaczy niewielkim kosztem relacja ta jest relacj równowa»no±ci. a) Wyznaczy liczb klas abstrakcji relacji ; b) Wyznaczy liczb klas abstrakcji relacji, które zawieraj ci gi, w których cyfry 5, 7 i 9 mog si pojawi co najwy»ej raz.
3 Zadanko 3 (12p.) Niech n > 0. Niech G = ({v 1,..., v n }, E) i G = ({w 1,..., w n }, E ) b d izomor- cznymi grafami, gdzie funkcja f(v i ) = w i dla i [n] jest izomorzmem. Zdeniujmy graf a) Wykaza,»e je±li H jest eulerowski, to 2 n. H = ({v 1,..., v n, w 1,..., w n }, E E {v 1 w 1,..., v n w n }). b) Wykaza,»e je±li G jest hamiltonowski, to H te» jest hamiltonowski. 1. Zauwa»my,»e ( i) deg H (v i ) = deg G (v i ) + 1. Skoro H jest eulerowski, to z twierdzenia Eulera otrzymujemy,»e ( i)2 deg H (v i ), co oznacza ª cznie z powy»sz obserwacj,»e ( i)2 deg G (v i ). Czyli wszystkie wierzchoªki w grae G maj nieparzyste stopnie, co poci ga za sob,»e graf G musi mie parzy±cie wiele wierzchoªków, czyli 2 n. 2. Bez straty ogólno±ci mo»emy zaªo»y,»e (v 1,..., v n, v 1 ) jest cyklem Hamiltona w G. Wtedy ci g (w 1,..., w n, w 1 ) jest cyklem Hamiltona w G, a (v 1,..., v n, w n,..., w 1, v 1 ) cyklem Hamiltona w H.
4 Zadanko 4 (12p.) Graf G = (V, E) nazywamy krytycznym je±li χ(g v) < χ(g) dla ka»dego wierzchoªka v grafu G. Graf G nazywamy k-krytycznym, je±li jest krytyczny oraz χ(g) = k. a) Pokaza,»e je±li G jest k-krytyczny, to δ(g) k 1; b) Pokaza,»e je±li G jest k-krytyczny, to G jest spójny. Ponadto, je±li dodatkowo k > 1, to G v jest spójny dla ka»dego wierzchoªka v V (G). (a) Zaªó»my przez zaprzeczenie,»e G jest k-krytyczny oraz δ(g) < k 1. We¹my wierzchoªek x V (G) taki,»e deg(x) = δ(g) oraz rozwa»my H = G x. Z zaªo»enia o k-krytyczno±ci grafu G mamy,»e χ(h) = k 1. Z zasady szuadkowej natomiast widzimy,»e je±li S i dla i = 1,..., k 1 oznacza b d podzbiory wierzchoªków grafu H pokolorowane na i-ty kolor w dobrym kolorowaniu, to istnieje kolor j dla którego»aden z wierzchoªków z S j nie jest poª czony kraw dzi z wierzchoªkiem x. Z tego oczywiscie wynika,»e je±li teraz pokolorujemy wierzchoªki grafu G tak jak wierzchoªki grafu H oraz x pokolorujemy na kolor j to b dzie to dobre kolorowanie G na k 1 kolorów. Sprzeczno±. (b) Niech G b dzie k-krytyczny. W pierwszej cz ±ci udowodnimy,»e musi by spójny. Przez zaprzeczenie zaªó»my,»e G jest jednak niespójny. Niech G 1,..., G l b d skªadowymi spójno±ci G. Istnieje G i takie,»e χ(g i ) = k. Je±li we¹miemy dowolny wierzchoªek x V (G) \ V (G i ), to oczywiscie G x b dzie zawieraª G i jako swój podgraf. Oznacza to,»e χ(g) χ(g i ) = k. Sprzeczno±. Teraz przejdziemy do drugiej cz ±ci podpunktu. Niech k > 1 i niech, przez zaprzeczenie, G v b dzie niespójny dla pewnego v V (G). Oznacza to,»e G v ma dwa podgrafy H 1, H 2 takie,»e H 1 H 2 = G v oraz V (H 1 ) V (H 2 ) =. Z k-krytyczno±ci grafu G wynika,»e χ(h i ) k 1. Z faktu,»e G jest k-krytyczny wynika,»e podgrafy indukowane G[V (H i ) {v}] dla i = 1, 2 maj liczb chromatyczn która nie przekracza k 1. Przedstawimy teraz dobre kolorowanie grafu G w dwóch krokach. Najpierw kolorujemy podgraf indukowany G[V (H 1 ) {v}] na co najwy»ej k 1 kolorów. Do peªnego pokolorowania grafu G brakuje nam kolorów na wierzchoªkach ze zbioru V (H 2 ). Aby pokolorowa te wierzchoªki, u»ywamy kolorowania podgrafu indukowanego G[V (H 2 ) {v}] na co najwy»ej k 1 kolorów pami taj c,»e wierzchoªek v zostaª juz pokolorowany na pewien kolor w pierwszym kroku. Poniewa» nie ma»adnych kraw dzi mi dzy H 1 i H 2, to przedstawione wy»ej kolorowanie jest dobre. Oznacza to,»e χ(g) k 1. Sprzeczno±.
5 Zad. 5 (12p.) Udowodni,»e graf G = (V, E) jest dwuspójny wtedy i tylko wtedy, gdy dla ka»dych dwóch ró»nych x, y V istnieje w G cykl prosty przechodz cy przez x i y. Czy która± implikacja pozostanie prawdziwa je±li opu±cimy sªowo prosty? Je±li tak to która? A mo»e obie?
c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie
2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona
Teoria grafów i jej zastosowania. 1 / 126
Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie
8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,
c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie
7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,
Minimalne drzewa rozpinaj ce
y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Podstawowepojęciateorii grafów
7 Podstawowepojęciateorii grafów Wiele sytuacji z»ycia codziennego mo»e by w wygodny sposób opisanych gracznie za pomoc rysunków skªadaj cych si ze zbioru punktów i linii ª cz cych pewne pary tych punktów.
Wykªad 4. Droga i cykl Eulera i Hamiltona
Wykªad 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G b dzie grafem spójnym. Denicja Je»eli w grae G istnieje zamkni ta droga prosta zawieraj ca wszystkie kraw dzie
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Grafy. 3. G = (V, E ) jest podgrafem G = (V, G), je±li V V i E E. 4. G = (V, G) jest sum grafów G = (V, E ), G = (V, E ), je±li V = V V, E = E E.
Grafy 1. Denicja. Graf jest par G = (V, E), gdzie V jest zbiorem wierzchoªków, a E zbiorem kraw dzi. Kraw dzie s nieuporz dkowanymi parami wierzchoªków lub parami uporz dkowanymi (mówimy wtedy o grafach
Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki
Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz
Grafy i Zastosowania. 5: Drzewa Rozpinaj ce. c Marcin Sydow. Drzewa rozpinaj ce. Cykle i rozci cia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinaj ce Spis zagadnie«grafy i i lasy cykle fundamentalne i wªasno±ci cykli i rozci przestrzenie cykli i rozci * : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne.
Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne. IIUWr. II rok informatyki. Przygotowaª: Krzysztof Lory± 1 Schemat ogólny. Typowe zadanie rozwi zywane metod zachªann ma charakter optymalizacyjny.
Algorytmiczna teoria grafów
18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych
Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow. Digrafy. Porz dki cz ±ciowe * Euler i Hamilton. Turnieje
9: (grafy skierowane) Spis zagadnie«cz ±ciowe Przykªady: gªosowanie wi kszo±ciowe, Digraf (graf skierowany) Digraf to równowa»ny termin z terminem graf skierowany (od ang. directed graph). W grafach skierowanych
Kolorowanie punktów na pªaszczy¹nie, czyli kilka sªów o geometrii kombinatorycznej.
Kolorowanie punktów na pªaszczy¹nie, czyli kilka sªów o geometrii kombinatorycznej. Paulina Michta V Liceum Ogólnoksztaªc ce im. Augusta Witkowskiego w Krakowie Opiekun: dr Jacek Dymel 2 1 Wprowadzenie
XVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Metoda tablic semantycznych. 1 Metoda tablic semantycznych
1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
O pewnym zadaniu olimpijskim
O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Teoria grafów i sieci 1 / 58
Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych
Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1
Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,
Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009
Wprowadzenie Drzewa Gomory-Hu Jakub Š cki 14 pa¹dziernika 2009 Wprowadzenie 1 Wprowadzenie Podstawowe poj cia i fakty 2 Istnienie drzew Gomory-Hu 3 Algorytm budowy drzew 4 Problemy otwarte Wprowadzenie
Grafy i Zastosowania. 1: Wprowadzenie i poj cia podstawowe. c Marcin Sydow. Wprowadzenie. Podstawowe poj cia. Operacje na grafach.
1: i podstawowe Spis Zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu s siedztwo i incydencja izomorzm grafów stopnie wierzchoªków (w tym wej±ciowy i wyj±ciowy), lemat
10a: Wprowadzenie do grafów
10a: Wprowadzenie do grafów Spis zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu drogi i cykle, spójno± w tym sªaba i silna drzewo i las: denicja, charakteryzacje, wªasno±ci
1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,
XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1
Strategia czy intuicja?
Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),
Wykªad 1. Wprowadzenie do teorii grafów
Wykªad 1. Wprowadzenie do teorii grafów 1 / 112 Literatura 1 W. Lipski; Kombinatoryka dla programistów. 2 T. Cormen, Ch. E. Leiserson, R. L. Rivest; Wprowadzenie do algorytmów. 3 K. A. Ross, Ch. R. B.
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze dr Andrzej Mróz (UMK w Toruniu) 2013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013
Wykªad nr 6 11 kwietnia 2013 System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. Dowód Redukcja PP O3 C max : bierzemy
Przekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Grafy i Zastosowania. 11: Twierdzenia Minimaksowe. c Marcin Sydow. Wst p: Tw. Halla. Dualno± Zbiory niezale»ne. Skojarzenia c.d.
11: Twierdzenia Minimaksowe Spis zagadnie«wst p: Kojarzenie Maª»e«stw i i twierdzenia minimaksowe i pokrycia (Tw. Gallai) w grafach (tw. Berge'a) w grafach dwudzielnych (tw. Königa, ) Pokrycia macierzy
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Podstawowe algorytmy grafowe i ich zastosowania
Podstawowe algorytmy grafowe i ich zastosowania Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
E ' E G nazywamy krawędziowym zbiorem
Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie
Stereometria (geometria przestrzenna)
Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy
W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji
W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt
c Marcin Sydow Podstawy Grafy i Zastosowania Kod Prüfera 3: Drzewa Drzewa ukorzenione * Drzewa binarne Zastosowania Podsumowanie
Grafy i Grafy i 3: Spis zagadnie«grafy i drzewo i las: denicja, charakteryzacje, wªasno±ci kodowanie Prüfera i zliczanie drzew etykietowanych (tw. Cayleya) drzewa drzewa zliczanie drzew binarnych (tw.
Algorytmy i Struktury Danych
Lista zada«. Nr 4. 9 kwietnia 2016 IIUWr. II rok informatyki. Algorytmy i Struktury Danych 1. (0pkt) Rozwi» wszystkie zadania dodatkowe. 2. (1pkt) Uªó» algorytm znajduj cy najta«sz drog przej±cia przez
Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska
Andrzej Jastrz bski Akademia ET I Graf Grafem nazywamy par G = (V, E), gdzie V to zbiór wierzchoªków, E zbiór kraw dzi taki,»e E {{u, v} : u, v V u v}. Wierzchoªki v, u V s s siaduj ce je±li s poª czone
Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2
Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.
Podstawowe algorytmy grafowe i ich zastosowania
Podstawowe algorytmy grafowe i ich zastosowania dr Andrzej Mróz (UMK w Toruniu) 2013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
2 Podstawowe obiekty kombinatoryczne
2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,
Algorytmy i struktury danych
Algorytmy i struktury danych Cz ± druga Prowadz cy: dr Andrzej Mróz, Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika 1 / 82 Rekurencja Procedura (funkcja) rekurencyjna wywoªuje sam siebie.
TEORIA GRAFÓW. Graf skierowany dla ka»dej kraw dzi (oznaczanej tutaj jako ªuk) para wierzchoªków incydentnych jest par uporz dkowan {u, v}.
Podstawowe denicje: TEORIA GRAFÓW Graf (nieskierowany) G = (V, E) struktura skªadaj ca si ze: zbioru wierzchoªków V = {,,..., v n } oraz zbioru kraw dzi E = {e 1, e 2,..., e m }. Z ka»d kraw dzi e skojarzona
Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.
Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy
tylko poprawne odpowiedzi, ale nie wszystkie 2 pkt poprawne i niepoprawne odpowiedzi lub brak zaznaczenia 0 pkt
Wydziaª Matematyki i Informatyki UJ 14 wrze±nia 2017 TEST NA STUDIA DOKTORANCKIE Z INFORMATYKI Przed Pa«stwem test wielokrotnego wyboru. Po zapoznaniu si z pytaniami prosz zaznaczy w tabeli, na zaª czonej
Biedronka. Wej±cie. Wyj±cie. Przykªady. VI OIG Zawody dru»ynowe, Finaª. 19 V 2012 Dost pna pami : 64 MB.
Biedronka Pªot ma D cm dªugo±ci i zbudowany jest z desek zako«czonych trójk tami równoramiennymi, poª czonych ze sob w jedn caªo±. Dªugo± ramienia ka»dego z trójk tów stanowi P % dªugo±ci podstawy. Po
Materiaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach
12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego
Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Krzysztof Kapulkin IX Warsztaty Logiczne 5 12 lipca 2008 1 Wst p W referacie tym przedstawiamy wyniki uzyskane przez Andrzeja Ehrenfeuchta i Andrzeja
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
METODY ALGORYTMICZNE W BADANIACH SIŠY NIEREGULARNO CI GRAFÓW
Uniwersytet im. Adama Mickiewicza Wydziaª Matematyki i Informatyki Maciej Kalkowski METODY ALGORYTMICZNE W BADANIACH SIŠY NIEREGULARNO CI GRAFÓW rozprawa doktorska Promotor: prof. dr hab. Michaª Karo«ski
Wielomiany o wspóªczynnikach rzeczywistych
Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0
Zadania. 4 grudnia k=1
Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
Teoria grafów i sieci 1 / 188
Teoria grafów i sieci / Drzewa z wagami Drzewem z wagami nazywamy drzewo z korzeniem, w którym do ka»dego li±cia przyporz dkowana jest liczba nieujemna, nazywana wag tego li±cia. / Drzewa z wagami Drzewem
Minimalne drzewo rozpinaj ce
Minimalne drzewo rozpinaj ce Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania
Mierzalne liczby kardynalne
czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,
Niezmienniki i póªniezmienniki. Weronika Koªodziejczykyg V Liceum Ogólnoksztaªc ce w Krakowie Opiekun pracy: dr Jacek Dymel
Niezmienniki i póªniezmienniki Weronika Koªodziejczykyg V Liceum Ogólnoksztaªc ce w Krakowie Opiekun pracy: dr Jacek Dymel 2 3 Problemy 1 Wprowadzenie Niniejsza praca jest zbiorem problemów zwi zanych
Minimalne drzewo rozpinaj ce
Minimalne drzewo rozpinaj ce dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu dydaktycznego
Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska
Kombinatoryka Magdalena Lema«ska Zasady zaliczenia przedmiotu Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to 100 punktów = 100 procent. Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to
Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie
Ekstremala teoria grafów Filip Lurka V Liceum ogóloksztaªc ce w Krakowie 1 Ekstremala Teoria Grafów 1 Ekstremala Teoria Grafów Filip Lurka 1.1 Teoria Deicja 1.1 Klik azywamy graf peªy; ka»de dwa wierzchoªki
c Marcin Sydow Grafy i Zastosowania BFS DFS 4: Przeszukiwanie Grafów (BFS, DFS i zastosowania) DFS nieskierowane DFS skierowane Podsumowanie
4: Przeszukiwanie Grafów (, i zastosowania) Spis zagadnie«przeszukiwanie grafów (rola, schemat ogólny, zastosowania) realizacje (kolejka, stos, rekurencja) przeszukiwanie wszerz zastosowania przeszukiwanie
Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2
Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile
Egzaminy i inne zadania. Semestr II.
Egzaminy i inne zadania. Semestr II. Poni»sze zadania s wyborem zada«ze Wst pu do Informatyki z egzaminów jakie przeprowadziªem w ci gu ostatnich lat. Ponadto doª czyªem szereg zada«, które pojawiaªy si
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 2 Podstawowe zasady i prawa przeliczania
Grafy i Zastosowania. 6: Najkrótsze ±cie»ki. c Marcin Sydow. Najkrótsze cie»ki. Warianty. Relaksacja DAG. Algorytm Dijkstry.
6: ±cie»ki Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3: dowolny graf () ±cie»ki dla wszystkich
Omówienie zada«potyczki Algorytmiczne 2015
Omówienie zada« Biznes Najszybsze rozwi zanie: Jarosªaw Kwiecie«(0:24) Na pocz tku mamy kapitaª P (megabajtalarów) i dochody 0 (megabajtalary/rok). W dowolnym momencie mo»emy kupi maszyn typu i, co kosztuje
AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Twierdzenie Wedderburna Witold Tomaszewski
Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
12: Znajdowanie najkrótszych ±cie»ek w grafach
12: Znajdowanie najkrótszych ±cie»ek w grafach Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3:
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................
Geometria Algebraiczna
Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.
Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1
II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
Wojewódzki Konkurs Matematyczny
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY 16 listopada 2012 Czas 90 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych. 2. Obok
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 8/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Liczby Ramseya z cyklem C 4
Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Janusz Dybizba«ski Liczby Ramseya z cyklem C 4 rozprawa doktorska Promotor rozprawy prof. UG dr hab. Andrzej Szepietowski Instytut Informatyki,
Optymalizacja 1 A. Strojnowski 1. 1 Wprowadzenie. Zagadnienie diety. Zagadnienie transportowe:
Optymalizacja 1 A Strojnowski 1 1 Wprowadzenie Rozpoczniemy od przedstawienia kilku charakterystycznych przykªadów zada«optymalizacji liniowej Zagadnienie diety Jak wymiesza pszenic, soj i m czk rybna
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki
Imi i nazwisko:... Nr indeksu:... Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Egzamin wst pny na studia II stopnia na kierunku INFORMATYKA Test próbny 19 lutego 2010 roku W ka»dym
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja