Teoria automatów i języków formalnych. Określenie relacji
|
|
- Elżbieta Grabowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego dwóch zbiorów: A (dziedzina relacji) i B (przeciwdziedzina relacji) R A B Zamiast pisać (a, b) R piszemy często arb. Jeśli dziedzina i przeciwdziedzina relacji są tym samym zbiorem (AB), to mówimy o relacji określonej na zbiorze A. R A A
2 Właściwości relacji Własności relacji: ówimy, Ŝe relacja R na zbiorze A jest: zwrotna, jeśli ( a A) (ara) przeciwzwrotna, jeśli ( a A) ( (ara)) przechodnia, jeśli (arb brc) arc symetryczna, jeśli arb bra przeciwsymetryczna, jeśli arb (bra) antysymetryczna, jeśli (arb bra) ab Relacje równowaŝności Relację R na zbiorze A nazywamy relacją równowaŝności, gdy R jest: zwrotna, symetryczna, przechodnia. Relacja równowaŝności dzieli zbiór A na klasy równowaŝności (klasy abstrakcji). Przez [a] R oznaczamy klasę równowaŝności relacji R o reprezentancie a. [a] R { b b A arb } ( a,b A) ( [a] R [b] R [a] R [b] R Ø ) [a] R A a A
3 Relacje częściowego porządku () Relacją częściowego porządku na zbiorze A nazywamy relację, która jest: zwrotna, przechodnia, antysymetryczna. Jeśli jest relacją częściowo porządkującą zbiór A to parę (A, ) nazywamy zbiorem częściowo uporządkowanym. Przykładem relacji częściowego porządku moŝe być relacja zawierania się zbiorów ( ) określona na zbiorze potęgowym. Relacje częściowego porządku (2) Przykład: Zbiór P {, 2, } jest częściowo uporządkowany przez relację podzielności (n m n jest dzielnikiem m), gdyŝ: n n (zwrotność), (n m m k) n k (przechodniość), (n m m n) nm (antysymetria). Jeśli jest relacją częściowego porządku na zbiorze A, to relacja zdefiniowana w A następująco: a b (a b a b) jest relacją przeciwzwrotną, przechodnią i przeciwsymetryczną nazywaną quasi-porządkiem. KaŜdy częściowy porządek w zbiorze A wyznacza pewien quasi-porządek i, na odwrót, jeśli jest quasi-porządkiem w A, to relacja zdefiniowana formułą a b (a b a b) jest częściowym porządkiem w A.
4 Relacje porządkujące - element minimalny Niech (A, ) będzie zbiorem częściowo uporządkowanym. Element a nazywamy minimalnym, jeśli nie poprzedza go Ŝaden element w tym zbiorze, czyli ( a A) (a a ) Przykład: w zbiorze P {, 2, } częściowo uporządkowanym przez relację podzielności (n m n jest dzielnikiem m) jest dokładnie jeden element minimalny. Jest to, gdyŝ dzieli ona wszystkie pozostałe liczby, a nie istnieje liczba, która dzieli jedynkę. Przykład: w zbiorze P 2 {2, 3, } częściowo uporządkowanym przez relację podzielności (n m n jest dzielnikiem m) jest nieskończenie wiele elementów minimalnych. Są to wszystkie liczby pierwsze, gdyŝ Ŝadna liczba n p ze zbioru nie dzieli liczby pierwszej p. Relacje porządkujące - element najmniejszy Niech (A, ) będzie zbiorem częściowo uporządkowanym. Element a nazywamy najmniejszym, jeśli jest on w relacji ze wszystkimi elementami tego zbioru, czyli a a dla kaŝdego a A Przykład: w zbiorze P {, 2, } częściowo uporządkowanym przez relację podzielności (n m n jest dzielnikiem m) jest dokładnie jeden element najmniejszy. Jest to, gdyŝ dzieli ona wszystkie pozostałe liczby. Przykład: w zbiorze P 2 {2, 3, } częściowo uporządkowanym przez relację podzielności (n m n jest dzielnikiem m) nie ma elementu najmniejszego, gdyŝ Ŝadna liczba n > nie dzieli wszystkich liczb większych od.
5 Relacje liniowego porządku Relacją liniowego porządku na zbiorze A nazywamy relację R, która posiada następujące własności: jest relacją częściowego porządku, tzn. jest zwrotna, przechodnia i antysymetryczna, spełnia warunek spójności: ( a,b A) ( arb bra ) Jeśli jest relacją liniowo porządkującą zbiór A to parę (A, ) nazywamy zbiorem liniowo uporządkowanym. Przykładem relacji liniowego porządku jest relacja mniejszy lub równy ( ) określona na zbiorze nieujemnych liczb całkowitych. Relacje liniowego porządku oraz relacje dobrego porządku Jeśli (A, ) jest zbiorem liniowo uporządkowanym, a B Ajest podzbiorem zbioru A, to (B, ) jest równieŝ zbiorem liniowo uporządkowanym. W zbiorze liniowo uporządkowanym (A, ) następujące warunki są równowaŝne: a jest elementem minimalnym, a a dla kaŝdego a A {a } a jest elementem najmniejszym. Zbiór liniowo uporządkowany (A, ) jest zbiorem dobrze uporządkowanym, jeśli kaŝdy niepusty podzbiór B zbioru A (B A, B ) posiada element najmniejszy. Jeśli (A, ) jest zbiorem dobrze uporządkowanym, a B A jest podzbiorem zbioru A, to (B, ) jest równieŝ zbiorem dobrze uporządkowanym.
6 Domknięcia relacji: Domknięcia relacji () k-ty stopień R k relacji R na zbiorze A określamy następująco: czyli np. ar b ab ar b arb... ar k b ( c A) (arc cr k- b) ar 2 b ( c A) (arc crb) ar 3 b ( c A) (arc c R 2 b) ( c,c 2 A) (arc c Rc 2 c 2 Rb) Domknięcia relacji (2) Przykład: R N N N {,, 2,...} zbiór liczb naturalnych (z zerem) nrm n m+2 nr 2 m n p+2 p m+2 n m+4 nr 3 m n p +2 p p 2 +2 p 2 m+2 n m+6 (8, 6) R (8, 4) R 2 (8, 2) R 3
7 Domknięcia relacji (3) Przechodnie domknięcie R + relacji R na zbiorze A definiujemy następująco: ar + b ( i ) ( ar i b ) Przechodnie i zwrotne domknięcie R* relacji R na zbiorze A definiujemy następująco: ar*b ( i ) ( ar i b ) Inna (rekurencyjna) definicja domknięcia przechodniego R + ) arb ar + b 2) (ar + b br + c) ar + c 3) nic innego nie naleŝy do R + poza tym, co wynika z punktów () i (2). Domknięcia relacji (4) Niektóre uŝyteczne zaleŝności: ar*b ar + b ab R* R + R o R + R i i R * R i i
8 Domknięcia relacji (5) Przechodnie domknięcie R +k relacji R stopnia k na zbiorze A definiujemy następująco: ar +k b ( i k ) ( ar i b ) Przechodnie i zwrotne domknięcie R *k relacji R stopnia k na zbiorze A definiujemy następująco: ar *k b ( i k ) ( ar i b ) Niektóre uŝyteczne zaleŝności: R +k R R 2... R k R i i k R *k R R... R k R i Twierdzenie: i k Niech n #A, n< (zbiór A jest skończony). Wtedy R + R +n acierze boolowskie relacji () acierze boolowskie relacji: Niech: A {a, a 2,..., a n } R A A I n {, 2,..., n} acierzą boolowską reprezentującą relację R nazywamy odwzorowanie: : I n I n {, } takie, Ŝe: airaj ( i, j) (aira j )
9 acierze boolowskie relacji (2) Przykład: A {a, a 2, a 3 } R {(a, a 3 ), (a 2, a 3 ), (a 3, a 2 )} acierze boolowskie relacji (3) Niech R i R będą relacjami i niech reprezentuje R oraz reprezentuje R. R A A R A A Niech R będzie sumą teoriomnogościową R i R R R R a Ra 2 a R a 2 a R a 2 Wówczas:
10 acierze boolowskie relacji (4) Niech teraz R będzie złoŝeniem R i R R R R a Ra 2 ( a A ) ( a R a ar a 2 ) Wówczas: ik n V k kj ik kj ik ik kj kj acierze boolowskie relacji (5) Przykład: A {a, b} R {(a, a), (a, b), (b, b)} R {(a, b), (b, a)} R R R {(a, a), (a, b), (b, a), (b, b)} R 2 R R {(a, a), (a, b), (b, a)} 2
11 acierze boolowskie relacji (6) Obliczanie domknięcia przechodniego dla R A A; n #A < PoniewaŜ R + R +n, więc wystarczy obliczyć R + R R 2... R n Algorytm: Wejście: R reprezentowane przez Wyjście: R + reprezentowane przez + + : ; ( macierz zerowa) : ; for i : to n do begin + : + ; end; : ; acierze boolowskie relacji (7) Przykład: A {a, b, c} R {(a, c), (b, c), (c, a)} Początkowo: + ;
12 acierze boolowskie relacji (8) i i 2 i 3 Ostatecznie: R + {(a, a), (a, c), (b, a), (b, c), (c, a), (c, c)} + ; + ; ; +
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Relacje. Relacje / strona 1 z 18
Relacje Relacje / strona 1 z 18 Relacje (para uporządkowana, iloczyn kartezjański) Definicja R.1. Parą uporządkowaną (x,y) nazywamy zbiór {{x},{x,y}}. Uwaga: (Ala, Ola) (Ola, Ala) Definicja R.2. (n-tka
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.
- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka
Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.
RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Wykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje
RELACJE I ODWZOROWANIA
RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Relacje i relacje równoważności Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Zbiór i iloczyn kartezjański Pojęcie zbioru Zbiór jest
Symbol, alfabet, łańcuch
Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)
Logika I. Wykład 3. Relacje i funkcje
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},
Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27
Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim
Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y.
Zdania stwierdzające relację Pewne wyrazy i wyraŝenia wskazują na stosunki, czyli relacje, jakie zachodzą między róŝnymi przedmiotami. Do takich wyrazów naleŝą m. in. wyrazy: nad, pod, za, przy, braterstwo,
Lista zadań - Relacje
MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,
Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc.
Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc. 3. Porządki liniowe. Porządki gęste, ciągłe i dobre. dradamkolany,mailto:ynalok64@wp.pl,http://kolany.pl,gg:1797933,tel.(+48)602804128...
O relacjach i algorytmach
2 O relacjach i algorytmach Relacja jest podstawowym pojęciem matematycznym, również użytecznym w informatyce: Operatory relacji =,, , w językach programowania. Relacyjne bazy danych. W eksploracji
Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.
Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA Lekcja 17 Relacje częściowego porządku. Diagramy Hassego. ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 8a Relacyjny model danych 21.11.2008 Relacyjny model danych Jednym z najważniejszych zastosowań komputerów jest przechowywanie i przetwarzanie informacji. Relacyjny
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 8a: Relacyjny model danych http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Relacyjny model danych Jednym z najważniejszych
Relacje. 1 Iloczyn kartezjański. 2 Własności relacji
Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest
O relacjach i algorytmach. Zenon Gniazdowski Warszawska Wyższa Szkoła Informatyki zgniazdowski@wwsi.edu.pl
O relacjach i algorytmach Zenon Gniazdowski Warszawska Wyższa Szkoła Informatyki zgniazdowski@wwsi.edu.pl < 266 > Informatyka + Wszechnica Popołudniowa > O relacjach i algorytmach < 267 > Streszczenie
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)
Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,
O ALGORYTMACH BADANIA WŁASNOŚCI RELACJI
ZESZYTY NAUKOWE 23-37 Zenon GNIAZDOWSKI 1 O ALGORYTMACH BADANIA WŁASNOŚCI RELACJI Streszczenie W artykule omówione relacje dwuargumentowe, oraz algorytmy służące do badania ich własności, a także przedstawiono
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Rozdział 7 Relacje równoważności
Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony
1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Wykład ze Wstępu do Logiki i Teorii Mnogości
Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
RACHUNEK ZBIORÓW 5 RELACJE
RELACJE Niech X i Y są dowolnymi zbiorami. Układ ich elementów, oznaczony symbolem x,y (lub też (x,y) ), gdzie x X i y Y, nazywamy parą uporządkowaną o poprzedniku x i następniku y. a,b b,a b,a b,a,a (o
Wszechnica Popołudniowa: Algorytmika i programowanie O relacjach i algorytmach. Zenon Gniazdowski
Wszechnica Popołudniowa: Algorytmika i programowanie O relacjach i algorytmach Zenon Gniazdowski O relacjach i algorytmach Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: O relacjach i algorytmach Autor:
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Analiza matematyczna 1
Analiza matematyczna 1 Marcin Styborski Katedra Analizy Nieliniowej pok. 610E (gmach B) marcins@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/marcins () 28 września 2010 1 / 10 Literatura podstawowa R. Rudnicki,
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
KaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości.
elacja chemat relacji chemat relacji jest to zbiór = {A 1,..., A n }, gdzie A 1,..., A n są artybutami (nazwami kolumn) np. Loty = {Numer, kąd, Dokąd, Odlot, Przylot} KaŜdemu atrybutowi A przyporządkowana
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy teorii mnogości. II 1 Elementy teorii mnogości Część II Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości.
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Rozdzia l 3. Relacje binarne
Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Logika Matematyczna. Jerzy Pogonowski. Własności relacji. Zakład Logiki Stosowanej UAM
Logika Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Logika Matematyczna Własności relacji 1 / 46 Wprowadzenie
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub
Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009
Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Elementy teorii mnogości. Część I. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy teorii mnogości 1 Elementy teorii mnogości Część I Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości 2 1. Pojęcia
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
IVa. Relacje - abstrakcyjne własności
IVa. Relacje - abstrakcyjne własności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny wiva. Krakowie) Relacje - abstrakcyjne własności 1 / 22 1 Zwrotność
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 1/10 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
Teoria popytu. Popyt indywidualny konsumenta
Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 1/15 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
Strona główna. Strona tytułowa. Spis treści. Strona 1 z 403. Powrót. Full Screen. Zamknij. Koniec
Strona z 403 Przedmowa Do wydania pierwszego Podręcznik przeznaczony jest dla studentów pierwszego roku studiów w Szkole Głównej Handlowej. Składa się dziesięciu rozdziałów zawierających teorię (definicje,
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
Topologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
1. Teoria mnogości, zbiory i operacje na zbiorach, relacje i odwzorowania, moc zbiorów.
1. Teoria mnogości, zbiory i operacje na zbiorach, relacje i odwzorowania, moc zbiorów. Teoria mnogości inaczej nazywana teorią zbiorów jest to teoria matematyczna badająca własności zbiorów (mnogość dawna
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Logika Matematyczna 16 17
Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.
Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty Dr inŝ. Janusz Majewski Katedra Informatyki Literatura Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques