ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

Wielkość: px
Rozpocząć pokaz od strony:

Download "ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15"

Transkrypt

1 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15

2 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych 17 5 Maªe Twierdzenie Fermata 20 6 Twierdzenie Eulera 23 7 Twierdzenie Lagrange'a 27 8 Chi«skie Twierdzenie o Resztach 30 9 RSA i gra w orªa i reszk przez telefon Kongruencje wy»szych stopni Liczby pseudopierwsze Pierwiastki pierwotne Istnienie pierwiastków pierwotnych Logarytm dyskretny Pewne zastosowania pierwiastków pierwotnych 61 2

3 Wykªad 11 Liczby pseudopierwsze Teoria liczb znalazªa najwi ksze zastosowanie w kryptograi, a tam potrzeba du»ych liczb pierwszych i to takich, których nikt nie zna. Pojawia si zatem potrzeba szybkich algorytmów szukaj cych liczb pierwszych lub testuj cych liczby na pierwszo±. Warunek równowa»ny pierwszo±ci liczby, daje nam np. Twierdzenie Wilsona, które mówi,»e liczba n jest pierwsza wtedy i tylko wtedy, gdy (n 1)! 1 (mod n). Nie jest to jednak dobre kryterium ªatwiej sprawdzi czy n jest liczb pierwsz dziel c j przez kolejne liczby nieparzyste ni» oblicza (n 1)! (nawet modulo n). Dobrym testem pierwszo±ci jest Maªe Twierdzenie Fermata (5.1). Problem w tym, i» nie jest to warunek równowa»ny pierwszo±ci. Na przykªad, (mod 341), (11.1) chocia» 341 nie jest liczb pierwsz. Nasze rozwa»ania oprzemy jednak na tym twierdzeniu, badaj c które liczby zªo»one speªniaj tez MTF. Liczb zªo»on n nazywamy pseudopierwsz przy podstawie a (lub a- pseudopierwsz ), je±li a n 1 1 (mod n). (11.2) Piszemy wówczas w skrócie: n jest psp(a). Zauwa»my,»e ka»da liczba pseudopierwsza przy podstawie a jest wzgl dnie pierwsza z a, Jak wynika z (11.1), liczba 341 jest 2-pseudopierwsza. Jak pokazaª Sarrus w 1819 roku, jest to najmniejsza liczba pseudopierwsza przy podstawie 2. Kolejne odkrywane liczby psp(2) byªy nieparzyste. Dopiero w 1950, D.H. Lehmer odkryª pierwsz parzyst liczb 2-pseudopierwsz. Najmniejsz liczb pseudopierwsz przy podstawie 3 jest, natomiast,

4 Skoro najmniejsze liczby pseudopierwsze s tak du»e, to powstaje pytanie, czy jest ich niesko«czenie wiele. Odpowied¹ jest pozytywna Twierdzenie. Mamy niesko«czenie wiele liczb pseudopierwszych przy podstawie a. Dowód. Niech p > 2 b dzie dowoln liczb pierwsz. Rozwa»my liczby n = ap 1 a 1, m = ap + 1 a + 1, N = nm. Przypu± my,»e p nie jest dzielnikiem a, a 1 ani a + 1. Wówczas z Maªego Twierdzenia Fermata mamy p a p 1 1. Poniewa» a 1 a p 1 1 oraz NWD(p, a 1) = 1, wi c p ap 1 1. Zatem a 1 n 1 = ap a p 1 + a p 1 1 a 1 1 = a p ap 1 1 a 1 jest podzielna przez p. Dodatkowo jeszcze, n = 1 + a + a a p 1, wi c n 1 jest sum parzystej ilo±ci liczb o tej samej parzysto±ci, czyli jest liczb parzyst. Zatem 2p n 1. Dalej, mamy m 1 = ap a a + 1 = aap 1 1 a + 1. Poniewa» p a + 1, wi c, podobnie jak poprzednio, zauwa»amy»e 2p m 1. Ale, N 1 = nm 1 = (n 1)(m 1) + (n 1) + (m 1), wi c 2p N 1. Zauwa»my teraz,»e czyli N(a 2 1) = a 2p 1 i N = nm = ap 1 a 1 ap + 1 a + 1 = a2p 1 a 2 1, a 2p 1 (mod N). (11.3) Rozwa»my a N 1 1. Poniewa» 2p N 1, wi c istnieje liczba k, taka»e N 1 = 2pk. Po podniesieniu obu stron kongruencji (11.3) do pot gi k otrzymujemy a N 1 1 (mod N). Zatem N, która jest oczywi±cie liczb zªo»on, jest psp(a). Oczywi±cie, takich liczb N jest niesko«czenie wiele, poniewa» mamy niesko«czenie wiele liczb pierwszych, za pomoc których mo»emy zdeniowa liczby n oraz m. 47

5 Posªu»ymy si algorytmem z powy»szego twierdzenia. Dla a = 2 oraz p = 5 otrzymujemy liczb N = 341, a dla p = 7, liczb Podobnie, podstawiaj c a = 3 oraz p = 5, dostajemy liczb N = 7381, pseudopierwsz przy podstawie 3. Ogólnie, mamy 5597 liczb psp(2) mniejszych od miliarda oraz 5804 liczby psp(3) mniejsze od miliarda. Posiadaj c baz tych liczb mo»emy zastosowa nast puj cy test pierwszo±ci dla liczb n mniejszych od miliarda: 1. sprawd¹, czy liczba n speªnia tez Maªego Twierdzenia Fermata dla a = 2, je±li tak 2. sprawd¹, czy liczba n jest na li±cie liczb pseudopierwszych przy podstawie 2. Je±li nie, n jest pierwsza. 3. Je±li tak, powtórz kroki 1 i 2 dla a = 3. Jak wida, liczby pseudopierwsze nie s tak g sto rozmieszczone jak liczby pierwsze. Wydaje si wi c,»e bior c odpowiednio du»o pocz tkowych liczb pierwszych jako podstawy dojdziemy w ko«cu do sytuacji, w której nie znajdziemy liczb pseudopierwszych mniejszych od okre±lonej liczby. Jak odkryª w 1912 roku R.D. Carmichael, jest to sytuacja niemo»liwa. Liczb zªo»on n nazywamy liczb Carmichaela, je±li n jest psp(a) dla ka»dej liczby a wzgl dnie pierwszej z n. Jak pokazaª w roku 1992 A. Granville, liczb Carmichaela jest niesko«czenie wiele. Podamy przykªad jednej z nich Przykªad. Mamy 561 = Niech a b dzie liczb wzgl dnie pierwsz z 561. Korzystaj c z Maªego Twierdzenia Fermata, otrzymujemy: a 2 1 (mod 3) a 560 (a 2 ) (mod 3) a 10 1 (mod 11) a 560 (a 10 ) 56 1 (mod 11) a 16 1 (mod 17) a 560 (a 16 ) 35 1 (mod 17). Dalej, z chi«skiego twierdzenia o resztach, dostajemy a (mod 561), co oznacza,»e 561 jest liczb Carmichaela. Do± du»y post p w skuteczno±ci testów opartych na liczbach pseudopierwszych daje nast puj ca obserwacja. Je±li liczba p jest pierwsza, to kongruencja x 2 1 (mod p) ma dokªadnie 2 rozwi zania: 1 i 1 (twierdzenie Lagrange'a). Z tego samego twierdzenia wynika,»e je»eli kongruencja x 2 1 (mod n) 48

6 ma wi cej ni» dwa rozwi zania, to n musi by liczb zªo»on. Zatem problem testowania liczby n na pierwszo± sprowadza si do szukania nietrywialnych pierwiastków stopnia 2 z jedynki modulo n. Z oczywistych wzgl dów, b dziemy dalej rozwa»a tylko nieparzyste liczby n. Skoro n jest nieparzysta, to n 1 mo»na zapisa w postaci 2 r s, gdzie s jest liczb nieparzyst oraz r > 0. Przypu± my,»e liczba n jest pierwsza lub pseudopierwsza przy podstawie a. Wówczas a n 1 1 (mod n). Rozwa»amy po kolei liczby x 0 = a s mod n, x 1 = a 2s mod n,... x r = a 2rs mod n. Zauwa»my,»e aby obliczy warto±ci wszystkich wyrazów ci gu X = (x 0, x 1,..., x r ), wystarczy obliczy x 0, a nast pnie podnosi j sukcesywnie do kwadratu i redukowa modulo n otrzymuj c kolejne wyrazy. Ostatecznie, mamy 3 mo»- liwo±ci: 1. istnieje 0 < t r, takie»e x t = 1 oraz x t 1 = 1, 2. istnieje 0 < t r, takie»e x t = 1, x t 1 ±1, 3. x 0 = 1. Oczywi±cie, je±li x t = 1, to dla i > t mamy x i = 1. Zatem je±li w pewnym momencie konstrukcji w ci gu X pojawi si 1, to wszystkie nast pne wyrazy te» s równe 1. Poniewa» x r = a n 1, wi c x r = 1. Je±li speªniony jest warunek 2, to oznacza to,»e kongruencja x 2 1 (mod n) ma wi cej ni» dwa pierwiastki (bo 1, 1 oraz x t 1 ), czyli n na pewno nie jest liczb pierwsz. Pozostaªe przypadki daj nast puj c denicj. Przypu± my,»e n jest nieparzyst psp(a). Mówimy,»e n jest liczb silnie pseudopierwsz, przy podstawie a lub spsp(a), je»eli a s 1 (mod n) lub istnieje 0 < t < r, takie»e a 2ts 1 (mod n), gdzie n 1 = 2 r s, s jest liczb nieparzyst oraz r > 0. W terminologii ci gu X mamy,»e n jest spsp(a), je±li jest speªniony warunek 1 lub Przykªad. Rozwa»my najmniejsz psp(2), czyli 341. Mamy 340 = oraz x 0 = 32, x 1 =1. Oznacza to,»e 341 nie jest spsp(2). Co wi cej, poniewa» x 0 jest nietrywialnym pierwiastkiem kwadratowym z 1 modulo 341, wi c mo»emy znale¹ rozkªad 341 obliczaj c NWD(32 1, 341) = 31 oraz NWD(32 + 1, 341) =

7 11.4 Przykªad. We¹my n = 561. Jest to liczba Carmichaela, czyli jest ona pseudopierwsza przy ka»dej podstawie. Mamy 560 = i niech a = 2. Wówczas x 0 = 263, x 1 = 166, x 2 = 67, x 3 = 1. Zatem 561 nie jest spsp(2) Przykªad. Najmniejsz liczb silnie pseudopierwsz przy podstawie 2 jest 2047 = Poka»emy,»e jest to istotnie liczba silnie pseudopierwsza. Mamy 2046 = oraz x 0 = 1. Wszystkich liczb psp(2) mniejszych od dziesi ciu miliardów jest 14884, ale liczb spsp(2) jest ju» tylko Najmniejsz liczb b d c jednocze±nie spsp(2) oraz spsp(3) jest = Nie ma liczby mniejszej od dziesi ciu miliardów, która by byªa jednocze±nie spsp(a) dla liczb a z przedziaªu [2, 13]. Mimo to liczb silnie pseudopierwszych przy dowolnej podstawie jest niesko«czenie wiele, co udowodnili C. Pomerance, J.L. Selfridge i S.S. Wagsta w 1980 roku. Trudny dowód ogólnego twierdzenia pomijamy i zadowolimy si tylko dowodem w przypadku a = Twierdzenie. Je±li n jest nieparzyst psp(2), to 2 n 1 jest spsp(2). Dowód. Poniewa» n jest liczb zªo»on, wi c tak»e 2 n 1 jest liczb zªo»on. Dalej, n jest psp(2), wi c 2 n 1 1 (mod n). Zapiszmy 2 n 1 1 = nk, przy czym liczba k (tak jak n) jest nieparzysta. Niech m = 2 n 1. Wówczas m 1 = 2 n 2 = 2nk. Zatem cz ±ci nieparzyst m 1 jest s = nk. Poniewa» mamy oczywist kongruencj 2 n 1 0 (mod m), wi c zachodzi te» 2 n 1 (mod m). Podnosz c strony tej kongruencji do pot gi k otrzymamy 2 nk 1 (mod m), czyli 2 s 1 (mod m) i m jest spsp(2). 50

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2015/16

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2015/16 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2015/16 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Liczenie podziaªów liczby: algorytm Eulera

Liczenie podziaªów liczby: algorytm Eulera Liczenie podziaªów liczby: algorytm Eulera Wojciech Rytter Podziaªy liczb s bardzo skomplikowanymi obiektami kombinatorycznymi, przedstawimy dwa algorytmy liczenia takich oblektów. Pierwszy prosty algorytm

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Odwrotne twierdzenie Fermata. Odwrotne twierdzenie Fermata

Odwrotne twierdzenie Fermata. Odwrotne twierdzenie Fermata Przypomnijmy... a p, a p 1 1 (mod p). Zachodzi naturalne pytanie...... czy z faktu a m 1 1 (mod m) wynika, że m = p? Niekoniecznie. Wprawdzie, jeszcze przed 25 wiekami chińscy matematycy uważali, że podzielność

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05 ELEMENTY TEORII LICZB Grzegorz Szkibiel Jesie«2004/05 Spis tre±ci 1 Liczby i wielomiany 5 1.1 Wielomiany............................ 5 1.2 Podzielno± liczb......................... 8 1.3 Podzielno± wielomianów.....................

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Wykªad 3. Funkcje skrótu

Wykªad 3. Funkcje skrótu Wykªad 3 Funkcje skrótu Damian Niwi«ski Instytut Informatyki, Uniwersytet Warszawski Funkcje jednokierunkowe Podstawowa intuicja funkcji jednokierunkowej jest: ªatwo obliczalna, ale trudno odwracalna,

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym. ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Metoda tablic semantycznych. 1 Metoda tablic semantycznych

Metoda tablic semantycznych. 1 Metoda tablic semantycznych 1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera

Bardziej szczegółowo

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstracyjnej 1. Nawiasami [[]] oznacza b d omentarze. 2. Denicja 0.1 Grup z [[jaim± abstracyjnym]] dziaªaniem nazywamy zbiór G speªniaj cy waruni

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów wiczenia

Podstawy logiki i teorii zbiorów wiczenia Spis tre±ci 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Ró»nica symetryczna 4 5 Kwantykatory 5 6 Relacje 7 7 Relacje porz dku i równowa»no±ci 8 8 Funkcje

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Teoria grafów i jej zastosowania. 1 / 126

Teoria grafów i jej zastosowania. 1 / 126 Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2

Bardziej szczegółowo

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Kolokwium Zadanie 1. Dla jakich warto±ci parametrów a i b funkcja sklejona

Kolokwium Zadanie 1. Dla jakich warto±ci parametrów a i b funkcja sklejona Kolokwium 3 0.0. Zadanie. Dla jakich warto±ci parametrów a i b funkcja sklejona a : π, f() = cos() : π < π, a + b : π < jest ci gªa? Rozwi zanie: Funkcja jest ci gªa we wszystkich punktach poza, by mo»e,

Bardziej szczegółowo

Liniowe zadania najmniejszych kwadratów

Liniowe zadania najmniejszych kwadratów Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

Lekcja 9 Liczby losowe, zmienne, staªe

Lekcja 9 Liczby losowe, zmienne, staªe Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe

Bardziej szczegółowo

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic

Bardziej szczegółowo

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za

Bardziej szczegółowo

Algorytmy tekstowe. Andrzej Jastrz bski. Akademia ETI

Algorytmy tekstowe. Andrzej Jastrz bski. Akademia ETI Andrzej Jastrz bski Akademia ETI Wyszukiwanie wzorca Wyszukiwaniem wzorca nazywamy sprawdzenie, czy w podanym tekscie T znajduje si podci g P. Szukamy sªowa kot: Ala ma kota, kot ma ale. Algorytm naiwny

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Protokoªy o zerowej wiedzy i przekazy nierozró»nialne 3 1.1 Kolorowanie mapy........................ 3 1.2 Logarytm dyskretny.......................

Bardziej szczegółowo

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016 WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego

Bardziej szczegółowo

Interpolacja Lagrange'a, bazy wielomianów

Interpolacja Lagrange'a, bazy wielomianów Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,

Bardziej szczegółowo

Elementarna statystyka

Elementarna statystyka Elementarna statystyka Alexander Bendikov 26 marca 2017 Klasyczny model: eksperyment o jednakowo prawdopodobnych wynikach Zaªo»enia: 1 Przestrze«próbek S ma sko«czenie wiele wyników ω 1, ω 2,..., ω n,

Bardziej szczegółowo

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio: 5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona

Bardziej szczegółowo

Funkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina

Funkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina Poj cie unkcji i podstawowe wªasno±ci Alina Semrau-Giªka Uniwerstet Technoloiczno-Przrodnicz 30 stcznia 209 Funkcj ze zbioru X w zbiór Y nazwam odwzorowanie, które ka»demu elementowi ze zbioru X przporz

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo