Wektory w przestrzeni
|
|
- Rafał Czyż
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem wektora. Wektor o pocz tku w punkcie A i ko«cu w punkcie B oznaczamy AB i przedstawiamy na rysunku w postaci odcinka AB zako«czonego w punkcie B grotem strzaªki. Wektorem zerowym nazywamy wektor, którego pocz tek i koniec pokrywaj si. Wektor zerowy oznaczamy zerem: 0. Je»eli punkt A = (x A, y A, z A ) jest pocz tkiem wektora, a B = (x B, y B, z B ) jego ko«cem, to AB = [x B x A, y B y A, z B z A ], natomiast ró»nice wspóªrz dnych punktów A i B : x B x A, y B y A, z B z A - wspóªrz dnymi tego wektora. Wielko±ci opisuj ce wektor: kierunek: kierunkiem wektora niezerowego nazywamy kierunek prostej, na której le»y wektor; zwrot: zwrotem wektora niezerowego AB nazywamy ten zwrot prostej AB, w którym punkt A poprzedza punkt B. dªugo± ; punkt przyªo»enia (gdy go nie ma to mówimy o wektorach swobodnych). Denicja. Dªugo±ci wektora AB nazywamy dªugo± odcinka AB i oznaczamy przez AB. Zatem dªugo± wektora u = [x, y, z] lub te» AB = [x B x A, y B y A, z B z A ] jest okre±lona wzorem: u = x + y + z lub AB = (x B x A ) + (y B y A ) + (z B z A ). Wektory u = [x u, y u, z u ] i v = [x v, y v, z v ] s równolegªe (co zapisujemy u v) wtedy i tylko wtedy, gdy maj proporcjonalne wspóªrz dne czyli wtedy i tylko wtedy, gdy x u x v = y u y v = z u z v λ R u = λ v. Warunek wspóªpªaszczyznowo±ci wektorów: Wektory u, v, w s wspóªpªaszczyznowe wtedy i tylko wtedy, gdy x u y u z u x v y v z v x w y w z w = 0 λ 1 λ R w = λ 1 v + λ u. 1
2 Denicja 3. Wersorem niezerowego wektora u = [x u, y u, z u ] nazywamy wektor jednostkowy (dªugo±ci jeden), którego kierunek i zwrot jest zgodny z kierunkiem i zwrotem wektora u. Wersor oznaczamy przez û i wyznaczamy ze wzoru [ xu û = u, y u u, z ] u. u Ponadto maj miejsce wzory: u = [ u cos α, u cos β, u cos γ], oraz û = [cos α, cos β, cos γ]. gdzie α, β, γ to k ty jakie tworzy wektor u z kolejnymi osiami (Ox, Oy, Oz) ukªadu wspóªrz dnych. Denicja 4. Niech u = [u x, u y, u z ], v = [v x, v y, v z ] b d dowolnymi wektorami w R 3. Iloczyn skalarny (oznaczamy symbolem ) wektorów u i v jest liczb rzeczywist i okre±lamy wzorem: u v = u v cos ϕ, lub u v = u x v x + u y v y + u z v z ; gdzie ϕ jest k tem mi dzy wektorami u i v. Zastosowania iloczynu skalarnego: do wykazywania prostopadªo±ci wektorów: wektory u i v s prostopadªe wtedy i tylko wtedy, gdy u v = 0; do obliczania k ta pomi dzy dwoma wektorami do obliczania dªugo±ci wektora u = u u. Rzut prostok tny u wektora a na wektor b wyra»a si wzorem: u = a b b Denicja 5. Iloczynem wektorowym wektorów u = [u x, u y, u z ], v = [v x, v y, v z ] nazywamy wektor w, który oznaczamy symbolem i j k w = u v = u x u y u z v x v y v z, i który w przypadku, gdy u v jest wektorem zerowym. Natomiast, je»eli u i v nie s równolegªe, to wektor w speªnia warunki: ma kierunek prostopadªy do u i prostopadªy do v, jego dªugo± jest równa polu równolegªoboku rozpi tego na wektorach u i v, co mo»na zapisa : gdzie ϕ jest k tem mi dzy wektorami u i v; b. w = u v sin ϕ,
3 zwrot wektora w jest taki,»e wektory u, v, w tworz ukªad zgodnie skr tny z ukªadem wektorów i, j, k. Zastosowanie iloczynu wektorowego: pole trójk ta rozpi tego na wektorach u i v: P = 1 u v ; pole równolegªoboku rozpi tego na wektorach u i v: P = u v ; do wykazywania równolegªo±ci wektorów; wektory u i v s równolegªe wtedy i tylko wtedy, gdy u v = 0. Denicja 6. Iloczyn mieszanym uporz dkowanej trójki wektorów u = [u x, u y, u z ], v = [v x, v y, v z ], w = [w x, w y, w z ] okre±lamy wzorem: ( u, v, w) = ( u v) w. Mo»na wykaza,»e Zastosowanie iloczynu mieszanego: u x u y u z ( u, v, w) = v x v y v z w x w y w z. obj to± czworo±cianu rozpi tego na wektorach u, v, w: obj to± prostopadªo±cianu rozpi tego na wektorach u, v, w: V = 1 ( u, v, w) ; 6 V = ( u, v, w) wykazywanie wspóªpªaszczyznowo±ci wektorów. Denicja 7. Je±li zachodzi równo± : x = c 1 x 1 + c x c n x n to mówimy, ze wektor x jest kombinacj liniow wektorów x 1, x,..., x n o odpowiednich wspóªczynnikach c 1, c,..., c n. Denicja 8. Je±li tylko zerowa kombinacja liniowa wektorów x 1, x,..., x n daje nam wektor zerowy tzn. c 1 x 1 + c x c n x n = 0 c 1 = c =... = c n = 0 to ukªad wektorów x 1, x,..., x n nazywamy liniowo niezale»nym. W przeciwnym wypadku tzn. gdy istniej co najmniej jedna staªa c k 0 taka»e zachodzi to ukªad ten nazywamy liniowo zale»nym. c 1 x 1 + c x c n x n = 0, 3
4 Zadania 1. W trapezie OABC, zachodzi OA = 3 CB. Wyra¹: a) wektor OA przez wektory OB i OC, b) wektor OB przez wektory OA i OC.. Dane s wektory u = [1, 0, 1], v = [, 1, 3], w = [1, 1, 3] oraz punkty A = (1, 1, ), B = (0,, 4), C = ( 1,, 3). Oblicz: a) u + v, b) 5 u 4 w, c) 3 u v + 3 w d) AC e) CA f) u g) BA i) u w j) w u j) CA BA h) u v 3. Dany jest wektor AB = [1, 4, 6]. Wyznacz wspóªrz dne punktu A wiedz c,»e B = (1, 5, ). 4. Znajd¹ wektor o tym samym kierunku i zwrocie co wektor u = [, 4, 8] ale o dªugo±ci równej u. 5. Oblicz iloczyn skalarny wektorów: a) u = i 3 j + k, v = i + j 4 k b) u = i + k, v = 3 i + j k 6. Obliczy iloczyn skalarny u v wiedz c,»e a) u =, v = 3, ( v, u) = π, b) u = 1, v = 4, ( v, u) = π, 3 3 c) u =, v = 5, ( v, u) = π, d) u = 1, v = 3, ( v, u) = π. 7. Znale¹ dªugo± wektora u = v 3 w, wiedz c»e wektory v i w s prostopadªe a ich dªugo±ci v = 4 i w =. 8. Sprawdzi, czy punkty A = (1,, 1), B = (, 3, 4), C = (0, 3, 3) i D = (5, 5, 5) s wspóªpªaszczyznowe. 9. Czy wektory u = [ 1, 3, 5], v = [1, 1, 1], w = [4,, 0] s komplanarne(wspóªpªaszczyznowe). 10. Dane s punkty A = (3, 1, 1), B = (4, 3, 1). Znajd¹ wersor wektora AB. 11. Znajd¹ dªugo± i cosinusy kierunkowe wektorów u = [1, 1, 1] oraz v = [ 1, 4, 5] 1. Oblicz miary k tów pomi dzy wektorami: a) u = [ 4, 8, 3] oraz v = [, 1, 1] b) u = [, 3, 0] oraz v = [ 6, 0, 4] 13. Oblicz u v : a) u = [, 1, ], v = [1, 0, ] b) u = [1, 1, ], v = [,, 4] c) u = i + 3 j + k, v = i + j 5 k d) u = i 3 j, v = i + j 5 k 14. Wiedz c,»e ( u, v) = π oraz u = v = 1 oblicz: 3 a) ( u v) + u v, b) ( u + 3 v) ( v u). 15. Obliczy iloczyn mieszany ( u, v, w) wektorów: a) u = [1,, 0], v = [1,, 3], w = [0, 1, 3], b) u = 3 i + j + k v = j 5 k, w = i + 3 j 4 k. 4
5 16. Zbada, liniow niezale»no± nast puj cych wektorów: a) u 1 = [1, 1], u = [1, 1] b) u 1 = [ 1, 3], u = [, 6] c) u 1 = [0, 1, ], u = [0, 1, 3] d) u 1 = [, 1, 0], u = [1, 0, 1], u = [1, 1, 1] e) u 1 = [1,, 1], u = [0, 1, 1], u 3 = [1, 1, 1] f) u 1 = [0, 1, 1], u = [1,, 3], u 3 = [1, 1, 1] 17. Wyznaczy pola trójk ta ABC : a) o wierzchoªkach A = (3, 1, 4), B = (1, 3, 5), C = (5, 3, 6) b) o wierzchoªkach A = (0, 0, ), B = (, 1, 1), C = ( 1, 1, 0) c) rozpi tego na wektorach AB = [1, 1, 1] i AC = [, 1, 3]. 18. Wyznaczy pola równolegªoboku zbudowanego na wektorach u = [1, 3, 1] i v = [, 1, 3]. 19. Znajd¹ rzut prostok tny u wektora a = i j + k na prosta wyznaczon przez wektor b = i + j k oraz k t pomi dzy tymi wektorami. 0. Sprawdzi czy trójk t o wierzchoªkach A = (3,, 1), B = ( 1, 6, 5), C = (5, 3, ) jest prostok tny. 1. Znajd¹ dªugo± wysoko±ci trójk ta o wierzchoªkach A = (4, 4, 6), B = (1, 3, 0), C = (0, 5, ) prostopadªej do boku ª cz cego dwa ostatnie wierzchoªki.. Dla czworo±cianu o wierzchoªkach A = (1,, 1), B = (3,, ), C = (, 5, ), D = (, 3, 5) wyznaczy obj to± i dªugo± jego wysoko±ci opuszczonej z wierzchoªka A. 3. Obliczy pole i obj to± równolegªo±cianu rozpi tego na wektorach u = [, 3, 4], v = [0, 4, 1], w = [5, 1, 3]. 4. Dla jakich warto±ci parametru p R wektory u = [0,, 1] i v = [1, p, p] s prostopadªe? 5. Wykaza,»e je»eli u + v oraz u v s prostopadªe to wektory u i v s równej dªugo±ci. 6. Dla jakiego parametru p R punkty A = (1, 1, 0), B = (0, 1, 1), C = (p, 1, 1) i D = (0, 1, ) le» na jednej pªaszczy¹nie? 7. Oblicz iloczyn skalarny wektorów u = a + 4 b i v = 3 a + b je»eli ( a, b) = π 3 b =. oraz a = 3 i 5
Elementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Bardziej szczegółowoArkusz 4. Elementy geometrii analitycznej w przestrzeni
Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowoZadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
Bardziej szczegółowoElementy geometrii analitycznej w przestrzeni
Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad
Bardziej szczegółowor = x x2 2 + x2 3.
Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni
Bardziej szczegółowoWBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0
WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które
Bardziej szczegółowoWektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).
Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany
Bardziej szczegółowo1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
Bardziej szczegółowoRachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Bardziej szczegółowoFunkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Bardziej szczegółowo1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl
Bardziej szczegółowoAM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego
Bardziej szczegółowoStereometria (geometria przestrzenna)
Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy
Bardziej szczegółowoPochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +
Bardziej szczegółowo1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,
XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1
Bardziej szczegółowoGeometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Bardziej szczegółowoArkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Bardziej szczegółowoElementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
Bardziej szczegółowoMateriaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Bardziej szczegółowoArkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowoKURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
Bardziej szczegółowoStereometria. Zimowe Powtórki Maturalne. 22 lutego 2016 r.
Stereometria Zimowe Powtórki Maturalne 22 lutego 2016 r. 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 2 1. Przek
Bardziej szczegółowoKinematyka 2/15. Andrzej Kapanowski ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Kapanowski Kinematyka
Kinematyka 2/15 Andrzej Kapanowski http://users.uj.edu.pl/ ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków 2018 Podstawowe poj cia Kinematyka jest cz ±ci mechaniki, która zajmuje si opisem
Bardziej szczegółowoZbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
Bardziej szczegółowo2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)
Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla
Bardziej szczegółowoFunkcje, wielomiany. Informacje pomocnicze
Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a
Bardziej szczegółowoWYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Bardziej szczegółowoPODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Bardziej szczegółowoAlgebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Bardziej szczegółowoMacierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Bardziej szczegółowoGraka komputerowa Wykªad 3 Geometria pªaszczyzny
Graka komputerowa Wykªad 3 Geometria pªaszczyzny Instytut Informatyki i Automatyki Pa«stwowa Wy»sza Szkoªa Informatyki i Przedsi biorczo±ci w Šom»y 2 0 0 9 Spis tre±ci Spis tre±ci 1 Przeksztaªcenia pªaszczyzny
Bardziej szczegółowoXVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Bardziej szczegółowoWykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Bardziej szczegółowoSkrypt z Algebry Liniowej 1
Uniwersytet Wrocªawski Wydziaª Matematyki i Informatyki Instytut Matematyczny specjalno± : matematyka nauczycielska Patrycja Piechaczek Skrypt z Algebry Liniowej 1 Praca magisterska napisana pod kierunkiem
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowoArkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. W pewnym sonda»u partia A uzyskaªa o 8 punktów procentowych wi ksze poparcie ni» partia B. Wiadomo,»e liczba gªosów oddanych w sonda»u
Bardziej szczegółowoistnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,
Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy
Bardziej szczegółowoPrzeksztaªcenia liniowe
Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II
Wykład II I. Algebra wektorów 2.1 Iloczyn wektorowy pary wektorów. 2.1.1 Orientacja przestrzeni Załóżmy, że trójka wektorów a, b i c jest niekomplanarna. Wynika z tego, że żaden z tych wektorów nie jest
Bardziej szczegółowoMetody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Bardziej szczegółowoIloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Bardziej szczegółowoFunkcje wielu zmiennych
dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu
Bardziej szczegółowoIloczyn wektorowy. Autorzy: Michał Góra
Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z
Bardziej szczegółowoMacierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Bardziej szczegółowoMacierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Bardziej szczegółowoUkªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
Bardziej szczegółowoWektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja
Bardziej szczegółowoGeometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Bardziej szczegółowodet A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Bardziej szczegółowoMacierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,
Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0
Bardziej szczegółowoMatematyka 2 (Wydziaª Architektury) Lista 1: Funkcje dwóch zmiennych
Matematka 2 (Wdziaª Architektur) Lista : Funkcje dwóch zmiennch I Wznacz i narsowa dziedzin funkcji:. z = 3 2 5 2. z = sin(2 + 2 ) 2 + 2 3. z = arcsin(2 + 2 ) 2 + 2 4. z = 5. z = ln 2 2 + 2 4 2 ( ) 2 +
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoKurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Bardziej szczegółowoZadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.
Bardziej szczegółowoa) f : R R R: f(x, y) = x 2 y 2 ; f(x, y) = 3xy; f(x, y) = max(xy, xy); b) g : R 2 R 2 R: g((x 1, y 1 ), (x 2, y 2 )) = 2x 1 y 1 x 2 y 2 ;
Zadania oznaczone * s troch trudniejsze, co nie oznacza,»e trudne.. Zbadaj czy funkcjonaª jest dwuliniowy, symetryczny, antysymetryczny, dodatniookre±lony: a) f : R R R: f(x, y) = x y ; f(x, y) = 3xy;
Bardziej szczegółowoUkłady współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Bardziej szczegółowoLiczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
Bardziej szczegółowoRozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Bardziej szczegółowoWektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Bardziej szczegółowoANALIZA MATEMATYCZNA Z ALGEBR
ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie
Bardziej szczegółowo1 Rozwi zywanie ukªadów równa«. Wyznaczniki.
Rozwi zywanie ukªadów równa«. Wyznaczniki.. Ukªad dwu równa«liniowych z dwiema niewiadomymi Niech b dzie dany ukªad dwu równa«liniowych z dwiema niewiadomymi x, y: Zdeniujmy: W x = n b n 2 b 2 W = a x
Bardziej szczegółowoZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
Bardziej szczegółowoWielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
Bardziej szczegółowoFunkcja kwadratowa, wielomiany oraz funkcje wymierne
Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoTeoria grafów i sieci 1 / 58
Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo
Bardziej szczegółowoWykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoMATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
Bardziej szczegółowoWojewódzki Konkurs Matematyczny
sumaryczna liczba punktów (wypeªnia sprawdzaj cy) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych.
Bardziej szczegółowoInformacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Bardziej szczegółowoLiniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie
Bardziej szczegółowo2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Bardziej szczegółowo1 Geometria analityczna
1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,
Bardziej szczegółowoEgzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
Bardziej szczegółowoCo i czym mo»na skonstruowa
Co i czym mo»na skonstruowa Jarosªaw Kosiorek 5 maja 016 Co mo»na skonstruowa? Maj c dany odcinek dªugo±ci 1 mo»na skonstruowa : 1. odcinek dªugo±ci równej dowolnej liczbie wymiernej dodatniej;. odcinek
Bardziej szczegółowoCaªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona
Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci
Bardziej szczegółowoLiczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:
Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór
Bardziej szczegółowo1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.
GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
Bardziej szczegółowoFunkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)
Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem
Bardziej szczegółowo1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Bardziej szczegółowoRównania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoELEMENTARNA TEORIA LICZB. 1. Podzielno±
ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
Bardziej szczegółowoPrzestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Bardziej szczegółowoFunkcje. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Funkcje Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Uzasadnij,»e równanie x 3 + 2x 2 3x = 6 ma dwa niewymierne pierwiastki. Funkcja f dana jest wzorem f (x) = 2x + 1. Rozwi» równanie f (x +
Bardziej szczegółowoZagadnienia na wej±ciówki z matematyki Technologia Chemiczna
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?
Bardziej szczegółowo2 Statyka. F sin α + R B = 1 1 n ( 1. Rys. 1. mg 2
1 Moment p du Zad. 1.1 Cz stka o masie m = 5 kg znajduj c si w poªo»eniu r = 3i + j + k [m] ma pr dko± v = i [m/s]. Obliczy wektor momentu p du L cz stki wzgl dem pocz tku ukªadu wspóªprzednych, wzgl dm
Bardziej szczegółowoi, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
Bardziej szczegółowoGeometria Algebraiczna
Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.
Bardziej szczegółowoStatystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Bardziej szczegółowo1. H.S.M. Coxeter Wst p do geometrii dawnej i nowej. 2. R.Courant, H. Robbins Co to jest matematyka.
Literatura: 1. H.S.M. Coxeter Wst p do geometrii dawnej i nowej. 2. R.Courant, H. Robbins Co to jest matematyka. 3. M. Kordos, L.W. Szczerba Geometria dla nauczycieli. 4. M. Stark Geometria analityczna.
Bardziej szczegółowoPrzyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9.
Zadanie. Przyk³adowe zdania Napisz równanie prostej przechodz¹cej przez punkty A (, ) i B (, 4 ). Zadanie. Napisz równanie prostej, której wspó³czynnik kierunkowy równy jest, wiedz¹c, e przechodzi ona
Bardziej szczegółowoALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowo