Elementy geometrii w przestrzeni R 3
|
|
- Ryszard Marczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016
2 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi ko«cem wektora. Wektor o pocz tku A i ko«cu B oznaczamy symbolem AB, a, u. Wektorem zerowym nazywamy wektor, w którym pocz tek pokrywa si z ko«cem wektora. Wektor zerowy oznaczamy symbolem 0. Dªugo±ci wektora AB nazywamy odlegªo± punktów A i B i oznaczamy przez AB
3 Podstawowe denicje Denicja Wektory u i v nazywamy równymi co zapisujemy u = v, je»eli wektory te s zerowe lub je»eli obydwa wektory u i v s niezerowe oraz s równolegªe, maj równe dªugo±ci i te same zwroty. Uwaga O wektorach których równo± zostaªa okre±lona w powy»szej denicji mówimy,»e s wektorami swobodnymi.
4 Podstawowe denicje Sum wektorów u i v oznaczon przez u + v nazywamy wektor o pocz tku w pocz tku wektora u i ko«cu w ko«cu wektora v, gdy pocz tek wektora v, pokrywa si z ko«cem wektora u. Denicja Iloczynem wektora przez liczb λ nazywamy wektor λ u, który jest równolegªy do wektora u ma dªugo± λ u ma ten sam zwrot co wektor u, gdy λ > 0; ma zwrot przeciwny do wektora u gdy λ < 0. Je»eli u = 0 lub λ = 0 to λ u, jest wektorem zerowym.
5 Podstawowe denicje Denicja Ukªadem wspóªrz dnych w przestrzeni R 3 nazywamy trzy ustalone proste x, y, z przecinaj ce si w jednym punkcie O, wzajemnie prostopadªe. Taki ukªad wspóªrz dnych nazywamy kartezja«skim i oznaczamy Oxyz. Proste Ox, Oy, Oz nazywamy osiami, a pªaszczyzny Oxy, Oyz, Oxz pªaszczyznami ukªadu wspóªrz dnych. P unktowi P R 3 przyporz dkowujemy uporz dkowan trójk liczb rzeczywistych (x,y,z) zwan wspóªrz dnymi tego punktu przy czym x, y, z, s wspóªrz dnymi rzutów prostok tnych punktu P na osie Ox, Oy, Oz. Niech dane b d w przestrzeni dwa punkty: A(x 1, y 1, z 1 ) i B(x 2, y 2, z 2 ). Wspóªrz dne wektora AB wyznaczamy : AB = [x 2 x 1, y 2 y 1, z 2 z 1 ].
6 Podstawowe denicje Denicja Wektory i = [1, 0, 0] j = [0, 1, 0] k = [0, 0, 1] nazywamy wersorami ukªadu wspóªrz dnych Oxyz. Wektor i jest wersorem osi Ox, Wektor j jest wersorem osi Oy a wektor k jest wersorem osi Oz. Denicja Dªugo±ci wektora u = [x, y, z] nazywamy liczb u = x 2 + y 2 + z 2
7 Podstawowe denicje Dziaªania na wektorach: Niech u = [x 1, y 1, z 1 ] v = [x 2, y 2, z 2 ] oraz λ R. u + v = [x1 + x 2 ; y 1 + y 2 ; z 1 + z 2 ]; λ u = [λx 1, λy 1, λz 1 ],
8 Iloczyn skalarny Denicja Niech u, v b d dowolnymi wektorami. Iloczyn skalarny wektorów u, v okre±lamy wzorem: u v = u v cosϕ, gdzie ϕ jest k tem mi dzy wektorami u i v. Iloczyn skalarny ma nast puj ce wªasno±ci: u v = v u ; u ( v + w ) = u v + u w ; (α u ) v = α( u v ); v v = v 2.
9 Iloczyn skalarny Twierdzenie Wektory niezerowe u i v s prostopadªe wtedy i tylko wtedy gdy u v = 0. Twierdzenie W ukªadzie Oxyz iloczyn skalarny wektorów u = [x 1, y 1, z 1 ] oraz v = [x2, y 2, z 2 ] wyra»a si wzorem: u v = x1 x 2 + y 1 y 2 + z 1 z 2.
10 Orientacja ukªadu wspóªrz dnych. Wyró»niamy dwie orientacje ukªadu wspóªrz dnych Oxyz: ukªad prawoskr tny i ukªad lewoskr tny. Orientacja ukªadu zale»y od wzajemnego poªo»enia osi ukªadu Ox,Oy,Oz. Nazwa orientacji ukªadu wspóªrz dnych jest efektem nast puj cej interpretacji : je»eli kr cimy ±rub prawoskr tn i jej ruch post puj cy jest zgodny ze zwrotem osi OZ to ukªad jest prawoskr tny w przeciwnym przypadku jest lewoskretny. W dalszej cz ±ci wykªadu b dziemy rozpatrywa wyª cznie ukªad prawoskr tny.
11 Iloczyn wektorowy Denicja Niech u i v b d niezerowymi i nierównolegªymi wektorami. Iloczynem wektorowym uporz dkowanej pary wektorów u i v nazywamy wektor w = u v który speªnia warunki: w jest prostopadªy do obu wektorów u i v ; dªugo± wektora w dana jest wzorem w = u v sin ϕ; gdzie ϕ jest k tem mi dzy wektorami u i v orientacja trójki wektorów u, v i w jest zgodna z orientacj ukªadu wspóªrz dnych Oxyz ( prawoskr tna ).
12 Iloczyn wektorowy Uwaga. Iloczyn wektorowy nie jest przemienny, wynika to wprost z z punktu 3 denicji. Je»eli jeden z wektorów u, v jest wektorem zerowym to przyjmujemy,ze u v = 0. Wªasno±ci iloczynu wektorowego: u v = v u ; (α u ) v = u (α v ) = α( u v ); ( u + v ) w = u w + v w ; u ( v + w ) = u v + u w.
13 Zastosowania iloczynu wektorowego Twierdzenie Wektory u i v sa równolegªe wtedy i tylko wtedy gdy u v = 0. Twierdzenie W ukªadzie Oxyz iloczyn wektorowy wektorów u = [x 1, y 1, z 1 ], v = [x2, y 2, z 2 ] wyra»a si wzorem u v = [y1 z 2 y 2 z 1 ; x 2 z 1 x 1 z 2 ; x 1 y 2 x 2 y 1 ] co mo»na zapisa symbolicznie w nast puj cy sposób: u v = i j k x 1 y 1 z 1 x 2 y 2 z 2 gdzie i, j, k sa wersorami odpowiednio na osiach Ox, Oy, Oz.,
14 Zastosowania iloczynu wektorowego Iloczyn wektorowy mo»emy stosowa do: obliczenia pola równolegªoboku rozpi tego na wektorach u i v tzn. P r = u v, obliczenia pola trójkata rozpi tego na wektorach, u i v tzn. P t = 1 2 u v, sprawdzenia równolegªo±ci wektorów (niezerowych) u v = 0 u v
15 Iloczyn mieszany wektorów Denicja Iloczyn mieszany ( u, v, w ) wektorów u, v, w nazywamy liczb okre±lon wzorem: Wªasno±ci iloczynu mieszanego: ( u, v, w ) = u ( v w ). ( u, v, w ) = ( v, w, u ); ( u, v, w ) = ( v, u, w ); ( u + r, v, w ) = ( u, v, w ) + ( r, v, w ); α( u, v, w ) = (α u, v, w );
16 Iloczyn mieszany wektorów Twierdzenie Wektory u, v i w le» w jednej pªaszczy¹nie wtedy i tylko wtedy gdy ( u, v, w ) = 0 Twierdzenie W ukªadzie Oxyz iloczyn mieszamy wektorów u = [x 1, y 1, z 1 ], v = [x2, y 2, z 2 ] i w = [x 3, y 3, z 3 ] wyra»a si wzorem ( u, v, w ) = x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3.
17 Zastosowania iloczynu mieszanego wektorów Zatem iloczyn mieszany mo»emy stosowa do: obliczenia obj to±ci równolegªo±cianu rozpi tego na wektorach: u, v i w tzn. V r = u ( v w ), obliczenia obj to±ci czworo±cianu rozpi tego na wektorach: u, v i w tzn. V c = 1 6 u ( v w ), sprawdzenia wspóªpªaszczyznowo±ci wektorów (niezerowych) u ( v w ) = 0 u, v, w π
18 Równania pªaszczyzny w R 3 Niech dany b dzie punkt P(x 0, y 0, z 0 ) le» cy na pªaszczy¹nie π oraz niezerowy wektora n = [A, B, C] prostopadªy do tej pªaszczyzny. Wtedy dowolny punkt P(x,y,z)pªaszczyzny π speªnia równanie: n P0 P = 0 St d mo»emy sformuªowa równanie pªaszczyzny przechodz cej przez punkt P(x 0, y 0, z 0 ) i prostopadªej do wektora n = [A, B, C]: π : A(x x 0 ) + B(y y 0 ) + C(z z 0 ) = 0.
19 Równania pªaszczyzny w R 3 Podstawiaj c D = Ax 0 By 0 Cz 0 otrzymujemy równanie pªaszczyzny w postaci ogólnej: π : Ax + By + Cz + D = 0. Wektor n = [A, B, C] prostopadªy do π nazywamy wektorem normalnym. Je±li D 0 to równanie z postaci ogólnej mo»emy przeksztaªci do nast puj cej postaci odcinkowej: π : x a + y b + z c = 1 Pªaszczyzna opisana powy»szym wzorem przecina osie Ox, Oy oraz Oz ukªadu wspóªrz dnych Oxyz w punktach równych odpowiednio (a, 0, 0) ; (0, b, 0) i (0, 0, c).
20 Równania pªaszczyzny w R 3 Równanie pªaszczyzny π przechodz cej przez punkt P(x 0, y 0, z 0 ) i równolegªej do dwóch nierównolegªych wektorów v = [xv ; y v ; z v ], w = [x w ; y w ; z w ] ma posta : x = x 0 + tx v + sx w y = y 0 + ty v + sy w t, s R z = z 0 + tz v + sz w Powy»sze równanie nazywamy równaniem parametrycznym pªaszczyzny. Uwaga. W tym przypadku wektor normalny jest iloczynem wektorowym wektorów v, w
21 Równania pªaszczyzny w R 3 Dane s punkty: P 0 (x 0, y 0, z 0 ), P 1 (x 1, y 1, z 1 ), P 2 (x 2, y 2, z 2 ). Trzy niewspóªliniowe punkty wyznaczaja jednoznacznie pªaszczyzn π. Punkt P(x, y, z) ró»ny od danych punktów tworzy w przestrzeni R 3, z punktami P 0, P 1, P 2 pewien czworo±cian, je»eli P π to czworo±cian "nie ma wysoko±ci" i jego obj to± wynosi 0, zatem korzystaj c z wªasno±ci iloczynu mieszanego dla wektorów: PP 0, PP 1, PP 2 otrzymujemy: x x 0 x 1 y 0 x 2 x 0 y y 0 y 1 y 0 y 2 y 0 z z 0 z 1 z 0 z 2 z 0 = 0. Powy»sze równanie nazywa si równaniem pªaszczyzny przechodz cej (wyznaczonej) przez trzy niewspóªliniowe punkty.
22 Wzajemne poªo»enie pªaszczyzn pªaszczyzny s równolegªe, je±li ich wektory normalne n 1, n 2 s równolegªe tzn. n 1 n 2 = 0 pªaszczyzny s przecinaj si, je±li ich wektory normalne n 1, n 2 nie s równolegªe tzn. n 1 n 2 0 pªaszczyzny s do siebie prostopadªe, je±li ich wektory normalne n 1, n 2 s prostopadªe tzn. n 1 n 2 = 0
23 Równania prostej w R 3 Niech prosta l przechodzi przez punkt P 0 (x 0, y 0, z 0 ) i niech b dzie równolegªa do niezerowego wektora v = [v x, v y, v z ] Wówczas ka»dy punkt P(x, y, z) le» cy na tej prostej speªnia równanie: P 0 P = t v, t R. St d otrzymujemy równanie prostej w postaci parametryczne: x = x 0 + tv x y = y 0 + tv y t R z = z 0 + tv z
24 Równania prostej w R 3 Je±li v x 0, v y 0, v z 0, to przeksztaªcaj c ukªad równa«otrzymujemy St d x x 0 v x = t, y y 0 v y = t, z z 0 v z x x 0 v x = y y 0 v y = z z 0 v z. = t, t R Równanie powy»sze nazywamy równaniem prostej w postaci kierunkowej, wektor v nazywamy wektorem kierunkowym prostej. Uwaga. Aby nie ogranicza ogólno±ci zapisu przyj to,»e w mianowniku mog symbolicznie wyst pi zera wtedy równie» wyst puj zera w liczniku i równanie nie jest sprzeczne.
25 Równania prostej w R 3 Prost l mo»na zada jako cz ± wspóln dwóch nierównolegªych pªaszczyzn π 1 : A 1 x +B 1 y +C 1 z +D 1 = 0; π 2 : A 2 x +B 2 y +C 2 z +D 2 = 0 tj { A 1 x + B 1 y + C 1 z + D 1 = 0; A 2 x + B 2 y + C 2 z + D 2 = 0. Jest to równanie prostej w postaci kraw dziowej Uwaga. Wektor kierunkowy prostej przedstawionej równaniem w postaci kraw dziowej jest iloczynem wektorowym wektorów normalnych pªaszczyzn wyznaczaj cych t prost v = [A1, B 1, C 1 ] [A 2, B 2, C 2 ].
26 Wzajemne poªo»enie prostych Dane s dwie proste l i k w postaci kierunkowej: l : x x 1 v x = y y 1 v y = z z 1 v z, k : x x 2 u x = y y 2 u y = z z 2 u z Wektory kierunkowe tych prostych to odpowiednio: v = [vx, v y, v z ], u = [u x, u y, u z ] Okre±lamy wyznacznik: W = x 1 x 2 v x u x y 1 y 2 v y u y z 1 z 2 v z u z i przy jego pomocy omówimy wzajemne poªo»enie prostych w przestrzeni trójwymiarowej..
27 Wzajemne poªo»enie prostych proste s sko±ne (nie maja punktów wspólnych i nie le» w jednej pªaszczy¹nie), je±li W 0, proste s równolegªe, nie maj punktów wspólnych (nie pokrywaj si ), je±li W = 0, v u = 0, proste przecinaj si (maja jeden punkt wspólny), je±li W = 0, v u 0 proste przecinaj si pod k tem prostym, je±li W = 0, v u = 0,
Elementy geometrii analitycznej w przestrzeni
Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Arkusz 4. Elementy geometrii analitycznej w przestrzeni
Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
r = x x2 2 + x2 3.
Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni
WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0
WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które
Rachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Stereometria (geometria przestrzenna)
Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Krzywe i powierzchnie stopnia drugiego
Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0
Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).
Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Macierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)
Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Geometria. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Geometria Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Dane s równania postych, w których zawarte s boki trójk ta ABC : 3x 4y + 36 = 0 x y = 0 4x + 3y + 23 = 0 1. Obliczy wspóªrz dne wierzchoªków
Macierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Graka komputerowa Wykªad 3 Geometria pªaszczyzny
Graka komputerowa Wykªad 3 Geometria pªaszczyzny Instytut Informatyki i Automatyki Pa«stwowa Wy»sza Szkoªa Informatyki i Przedsi biorczo±ci w Šom»y 2 0 0 9 Spis tre±ci Spis tre±ci 1 Przeksztaªcenia pªaszczyzny
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,
XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1
Kinematyka 2/15. Andrzej Kapanowski ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Kapanowski Kinematyka
Kinematyka 2/15 Andrzej Kapanowski http://users.uj.edu.pl/ ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków 2018 Podstawowe poj cia Kinematyka jest cz ±ci mechaniki, która zajmuje si opisem
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
XVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Funkcje wielu zmiennych
Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl
Ekoenergetyka Matematyka 1. Wykład 6.
Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
1 Geometria analityczna
1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
ANALIZA MATEMATYCZNA Z ALGEBR
ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie
Matematyka dla studentów kierunku Projetowanie Architektury Wn trz i Otoczenia. Jolanta Rosiak
Matematyka dla studentów kierunku Projetowanie Architektury Wn trz i Otoczenia Jolanta Rosiak 3 grudnia 2018 2 Geometria analityczna w przestrzeni Przestrzeni R 3 nazywamy zbiór wszystkich uporz dkowanych
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan
Plan Spis tre±ci 1 Gradient 1 1.1 Pochodna pola skalarnego...................... 1 1.2 Gradient................................ 3 1.3 Operator Hamiltona......................... 4 2 Ró»niczkowanie pola
Skrypt z Algebry Liniowej 1
Uniwersytet Wrocªawski Wydziaª Matematyki i Informatyki Instytut Matematyczny specjalno± : matematyka nauczycielska Patrycja Piechaczek Skrypt z Algebry Liniowej 1 Praca magisterska napisana pod kierunkiem
Funkcja kwadratowa, wielomiany oraz funkcje wymierne
Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj
Iloczyn wektorowy. Autorzy: Michał Góra
Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z
istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,
Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy
Geometria Analityczna w Przestrzeni
Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045
Funkcje wielu zmiennych
dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu
Materiaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego
Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:
Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór
Przeksztaªcenia liniowe
Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y
CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016
WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego
Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
ELEMENTARNA TEORIA LICZB. 1. Podzielno±
ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Ekstremalnie fajne równania
Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
1 Rozwi zywanie ukªadów równa«. Wyznaczniki.
Rozwi zywanie ukªadów równa«. Wyznaczniki.. Ukªad dwu równa«liniowych z dwiema niewiadomymi Niech b dzie dany ukªad dwu równa«liniowych z dwiema niewiadomymi x, y: Zdeniujmy: W x = n b n 2 b 2 W = a x
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Geometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Dynamika Bryªy Sztywnej
Dynamika Bryªy Sztywnej Adam Szmagli«ski Instytut Fizyki PK Kraków, 27.10.2016 Podstawy dynamiki bryªy sztywnej Bryªa sztywna to ukªad cz stek o niezmiennych wzajemnych odlegªo±ciach. Adam Szmagli«ski
a) f : R R R: f(x, y) = x 2 y 2 ; f(x, y) = 3xy; f(x, y) = max(xy, xy); b) g : R 2 R 2 R: g((x 1, y 1 ), (x 2, y 2 )) = 2x 1 y 1 x 2 y 2 ;
Zadania oznaczone * s troch trudniejsze, co nie oznacza,»e trudne.. Zbadaj czy funkcjonaª jest dwuliniowy, symetryczny, antysymetryczny, dodatniookre±lony: a) f : R R R: f(x, y) = x y ; f(x, y) = 3xy;
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI
UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej
Funkcje, wielomiany. Informacje pomocnicze
Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a
- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe
1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. W pewnym sonda»u partia A uzyskaªa o 8 punktów procentowych wi ksze poparcie ni» partia B. Wiadomo,»e liczba gªosów oddanych w sonda»u
DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,
TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II
Wykład II I. Algebra wektorów 2.1 Iloczyn wektorowy pary wektorów. 2.1.1 Orientacja przestrzeni Załóżmy, że trójka wektorów a, b i c jest niekomplanarna. Wynika z tego, że żaden z tych wektorów nie jest
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
1 Granice funkcji wielu zmiennych.
AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica
Funkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n
Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Przekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Stereometria. Zimowe Powtórki Maturalne. 22 lutego 2016 r.
Stereometria Zimowe Powtórki Maturalne 22 lutego 2016 r. 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 2 1. Przek
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia
Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych
Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =