Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością i przyspieszeniem.................... 1. Definicje.................................................. 3.3 Energia ruchu drgającego (przypade sprężyny)............................ 3.4 Przedstawienie drgań przy pomocy liczb zespolonych......................... 3.5 Drgania harmoniczne proste w przestrzeni fazowej.......................... 4 UWAGA! Więszość rysunów wymaga własnoręcznego dopisania oznaczeń! 1 Ruch drgający. Dlaczego właśnie harmoniczny? Ten wyres z pewnością nie przedstawia drgania harmonicznego Rysune 1: Wychylenie ciała w funcji czasu (Dopisz oznaczenia na osiach) oraz widmo drgania. Ale oto przepis matematyczny ja rozłożyć taie drganie na drgania harmoniczne Poniżej widmo powyższego drgania y = A (sin x + 13 sin 3x + 15 ) sin 5x +... = A N=0 1 N + 1 sin [(N + 1)x] Drgania harmoniczne proste.1 Zależność między wychyleniem, prędością i przyspieszeniem Drgania harmoniczne (obietu) to drgania, w tórych wychylenie obietu spełnia zależność x = A cos(ωt + φ) moe by tae sinus! 1
.1 Zależność między wychyleniem, prędością i przyspieszeniem DRGANIA HARMONICZNE PROSTE Prędość obietu wynosi wtedy a przyspieszenie a = d x dt = d dt v = dx dt = Aω sin(ωt + φ) (.1) ( ) dx = d dt dt ( Aω sin(ωt + φ)) = Aω cos(ωt + φ) = ω x Z ostatniego równania wynia, że w ruchu harmonicznym musi być spełniona zależność d x dt = ω x (.) Jeżeli drgający obiet jest materialny to po pomnożeniu obu stron przez masę drgającego ciała m równanie (.) przyjmie postać m d x dt = F = mω x Ta więc aby ciało drgało harmonicznie, siła działająca na nie musi być proporcjonalna do wychylenia lecz przeciwnie do niego (wychylenia) sierowana. Rysune poniżej przedstawia porównanie czasowego przebiegu wychylenia, prędości i przyspieszenia ciała drgającego ruchem harmonicznym prostym Rysune : Porównanie czasowego przebiegu wychylenia, prędości i przyspieszenia dla ciała drgającego ruchem harmonicznym prostym. Zauważ, że wyresy są względem siebie przesunięte! Drgania ciała na sprężynie jao przyład drgań harmonicznych prostych W przypadu rozciągania lub ścisania sprężyny, siła sprężystości ma postać F = x Wychylenie musi więc spełniać równanie m d x dt = x czyli Na podstawie równania (.) otrzymamy d x dt = m x ω = m czyli zależność wychylenia od czasu ma ostateczną postać x = A cos ( ) m t + φ c Mariusz Krasińsi 006
. Definicje DRGANIA HARMONICZNE PROSTE Generalnie równanie ruchu dla ciała o masie m drgającego ruchem harmonicznym prostym ma postać m d x dt = x gdzie nie musi być współczynniiem sprężystości, ale może wyniać z innych własności uładu wyonującego drgania.. Definicje t + φ = ωt + φ nazywamy FAZĄ drgania m φ jest fazą początową (czyli taą fazą, tóra występuje dla t=0!) ω = jest częstością drgania (czasem zwana częstością ątową lub ołową) m Ores drgań T to tai najmniejszy czas, po tórym wychylenie (uwzględniając ierune ruchu) jest taie samo ja na początu (obserwacji) x(t) = x(t+t ). Można też powiedzieć, że ores drgania to najmniejszy czas, po tórym faza drgania zmieni się o π. częstość i ores powiązane są zależnością ω = π T wielość f = 1 T nazywamy częstotliwością.3 Energia ruchu drgającego (przypade sprężyny) E = mv + x = ( m A ω sin (ωt + φ) + ) A cos (ωt + φ) (.3) Ponieważ w ruchu harmonicznym prostym ω = /m to = mω Wyorzystując powyższą zależność w równaniu (.3) otrzymamy, że energia całowita uładu drgającego zależy od amplitudy A i stałej sprężystości ( E = A sin (ωt + φ) + ) A cos (ωt + φ) = A ( sin (ωt + φ) + cos (ωt + φ) ) = A (.4).4 Przedstawienie drgań przy pomocy liczb zespolonych.4.1 Ogólna postać liczby zespolonej x = A cos(ωt + φ) gdzie x = A cos(ωt + φ).4. Trygonometryczna postać liczby zespolonej Rysune 3: Trygonometryczna postać liczby zespolonej. Wyjaśnienie. c Mariusz Krasińsi 006 3
.5 Drgania harmoniczne proste w przestrzeni fazowej DRGANIA HARMONICZNE PROSTE z = R[cos(φ) + i sin(φ)].4.3 Wyładnicza postać liczby zespolonej z = Re iφ = R[cos(φ) + i sin(φ)] Liczba zespolona sprzężona z * = Re iφ = R[cos(φ) i sin(φ)] z = zz * = R (z 1 ± z ) * = z 1 * ± z * (z 1 z ) * = z 1z * * Drganie harmoniczne można więc przedstawić w postaci: x = Ae i(ωt+φ) Podobnie ja na początu (secja.1) wyliczmy, orzystając z zapisu wyorzystującego liczby zespolone, prędość i przyspieszenie w ruchu harmonicznym dx = v = Aωe i(ωt+φ) dt d x dt = a = d ( ) dx = d ( Aωe i(ωt+φ)) = Aω e i(ωt+φ) = ω x dt dt dt Otrzymaliśmy więc identyczną ja poprzednio zależność pomiędzy przyspieszeniem i wychyleniem ciała drgającego ruchem harmonicznym prostym d x dt = ω x.5 Drgania harmoniczne proste w przestrzeni fazowej Jeśli wychylenie drgającego ciała opisuje zależność to prędość ciała (zgodnie z równaniem (.1)) opisana jest zależnością Korzystając z jedyni trygonometrycznej oraz równań (.5) i (.6) otrzymamy x = A cos(ωt + φ) (.5) v = Aω sin(ωt + φ) (.6) cos (ωt + φ) + sin (ωt + φ) = 1 x A + v A ω = 1 Powyższe równanie przedstawia elipsę w ta zwanej przestrzeni fazowej. Dalsze wyjaśnienia na wyładzie. c Mariusz Krasińsi 006 4
.5 Drgania harmoniczne proste w przestrzeni fazowej DRGANIA HARMONICZNE PROSTE Rysune 4: Dopisz omentarze na wyładzie c Mariusz Krasińsi 006 5