Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 10: Rozkłady statystyk z próby. Przedziały ufnoci.
|
|
- Liliana Wróblewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Rozkłay tatytyk z róby Metoy robabilitycze i tatytyka Wykła 0: Rozkłay tatytyk z róby. rzeziały foci. Małgorzata Krtowka Wyział Iforatyki olitechika Białotocka e-ail: ac@ii.b.bialytok.l troa www: htt://aragor.b.bialytok.l/~gkret Metoy robabilitycze i tatytyka, tia ziee Statytyk azyway zie loow, bc fkcj zieych loowych,,..., taowicych rób. Statytyka jako ziea loowa oiaa ewie rozkła, który azyway rozkłae tatytyki z róby. Zaley o rzee wzytki o rozkła olacji, z której ochozi róba oraz o liczeboci róby. Ze wzgl a liczebo róby rozkłay tatytyk zieliy a okłae - rozkłay rawooobietwa wyzaczoe la owolej liczby atralej, bcej liczeboci róby. S oe wykorzytywae la ałych rób. graicze - rozkła rawooobietwa tatytyki, który otrzyje i rzy załoei ieograiczeie ej róby,. ie a jeej, okreloej wartoci o której zajey rób za. W iektórych rzyakach rozkła okłay j la >30 iewiele rói i o rozkła graiczego, w iych rzyakach otrzebjey >00. Metoy robabilitycze i tatytyka, tia ziee Rozkła reiej arytetyczej z róby x x i. Cecha w olacji geeralej a rozkła,, zae. Z olacji tej obieray rób -eleetow,,...,. reia arytetycza z róby a rozkła:, fx 0,,0. Metoy robabilitycze i tatytyka, tia ziee 3 x reia arytetycza Rozkła reiej arytetyczej z róby w raktyce wykorzytjey zie taaryzowa: która a rozkła 0,. x. Cecha w olacji a rozkła,, iezae, 30 Dokojey rzekztałceia zwaego tetyzacj: t ziea t a rozkła t Steta z - toiai woboy. Liczba toi woboy jet araetre rozkła t-steta; jet oa rówa liczbie iezaleych oberwacji okrelajcych tatytyk t. Ze wzgl a zaleo: liczba iezaleych oberwacji w ty rzyak jet rówa -. x 0 Metoy robabilitycze i tatytyka, tia ziee 4
2 Metoy robabilitycze i tatytyka, tia ziee 5 Rozkła reiej arytetyczej z róby 3. Cecha w olacji a rozkła owoly, iezae, >30. Dla ych rób zakłaay, e. Korzytay ze tatytyki: która a rozkła 0,. x Metoy robabilitycze i tatytyka, tia ziee 6 Rozkła wariacji z róby. Cecha a w olacji geeralej rozkła, ;, - iezae; 30 Etyatore araetr jet wariacja z róby która a rozkła chi-kwarat z - toiai woboy.. Cecha a w olacji geeralej rozkła, ;, - iezae; > 30 Etyatore araetr jet wariacja z róby. a Korzytay z rozkła graiczego: b Korzytay z rozkła : χ, k k χ χ k- Statytyka a rozkła 0,, Statytyka a rozkła 0, i x i Metoy robabilitycze i tatytyka, tia ziee 7 Rozkła rocet rawooobietwa, wkaika trktry Cecha a w olacji geeralej rozkła wktowy, - rawooobietwo kce, > 00 Etyatore rawooobietwa jet: gzie - liczo róby, - liczba kceów w róbie ˆ ˆ, ˆ Statytyka a rozkła 0, Metoy robabilitycze i tatytyka, tia ziee 8 Rozkła róicy wóch reich. Baae olacje geerale aj rozkłay orale, i, ;, - zae, róby iezalee. Baae olacje geerale aj rozkłay orale, i, ;, - iezae, róby iezalee, 30, 30 tatytyka t a rozkła t Steta z - toiai woboy. 3. Baae olacje geerale aj rozkłay owole;, - iezae, róby iezalee, > 30, > 30., t,
3 Rozkła iloraz wariacji Baae olacje geerale aj rozkłay orale, i, ;,,, - iezae;, - liczeboci róby obraej z olacji I i II Rozkła róicy wóch wkaików trktry Baaa cecha a w wóch olacjach rozkła wktowy z rawooobietwe kce oowieio,. ˆ F ˆ ˆ iech ˆ ˆ ˆ ˆ, gzie - etyator wariacji z róby obraej z olacji I ; - etyator wariacji z róby obraej z olacji II ; Statytyka F a rozkła F Seecora z - i - toiai woboy Metoy robabilitycze i tatytyka, tia ziee 9 Metoy robabilitycze i tatytyka, tia ziee 0 Etyacja rzeziałowa Etyacja rzeziałowa olega a kotrowai rzeział liczbowego, który z góry okreloy - bliki jeoci - rawooobietwe bzie zawierał ieza warto zacowaego araetr θ. rzeział te oi azw rzeział foci: {g θ θ g θ } - Wółczyik foci Utaloe z góry rawooobietwo - azyway wółczyikie foci Iterretacja wółczyika foci: rzy wielokroty obierai rób - eleetowych i wyzaczai a ich otawie fkcji g θ oraz g θ reio w - 00% rzyaków otrzyalibyy rzeziały okrywajce ieza warto araetr θ, w 00% rzyaków - rzeziały ie okrywajce tej wartoci. Z regły za - rzyjjey: 0.9; 0.95, 0.99 gzie θ - etyator araetr θ, g θ - oly kraiec rzeział foci g θ - góry kraiec rzeział foci - - rawooobietwo tzw. wółczyik foci Metoy robabilitycze i tatytyka, tia ziee Dłgo rzeział foci: g θ - g θ > i łgo rzeział iejza ty ozacowaie barziej recyzyje Makyaly bł zack: g θ - g θ /. Metoy robabilitycze i tatytyka, tia ziee
4 rzeziały foci la wartoci oczekiwaej reiej Bowa rzeział foci la wartoci reiej oczekiwaej µe rozkła olacji zaley o: ty rozkła cechy w olacji geeralej zajooci wariacji ochyleia taarowego wielkoci róby U la wartoci reiej - Moel Załoeia: róba loowa obraa z olacji o rozkłazie, ; jet zae; Cel: bowa rzeział foci la rzy wółczyik foci -. Bowa rzeział foci: Etyatore araetr jet reia arytetycza z róby : r, która a rozkła,. Staaryzjc otrzyjey tatytyk U: U która a rozkła 0,. Metoy robabilitycze i tatytyka, tia ziee 3 Metoy robabilitycze i tatytyka, tia ziee 4 U la wartoci reiej - Moel - / / - 0 Rozkla tatytyki U - 0, rzeział foci la wartoci reiej: { U } Załoeia: U la wartoci reiej - Moel róba loowa obraa z olacji o rozkłazie, ; jet iezae; liczo róby ała 30 Cel: bowa rzeział foci la rzy wółczyik foci -. Bowa rzeział foci: rzy iezay araetrze otaw bowy tet itotoci la wartoci reiej jet tatytyka t o rozkłazie t-steta z - toiai woboy: t gzie Metoy robabilitycze i tatytyka, tia ziee 5 Metoy robabilitycze i tatytyka, tia ziee 6
5 U la wartoci reiej - Moel -t 0 t Rozkla t-steta - / / rzeział foci la wartoci reiej: { t t t } t t t t U la wartoci reiej - Moel 3 Załoeia: róba loowa obraa z olacji o owoly rozkłazie; jet iezae; liczo róby a > 30 Cel: bowa rzeział foci la rzy wółczyik foci -. Bowa rzeział foci: Dla ych rób rozkła t-steta oa rzybliy rozkłae oraly oraz. Wówcza rzeział foci jet aalogiczy jak w Moel : Metoy robabilitycze i tatytyka, tia ziee 7 Metoy robabilitycze i tatytyka, tia ziee 8 Załoeia: U la wariacji - Moel olacja geerala a rozkła,, - iezae; liczo róby 30 Cel: bowa rzeział foci la rzy wółczyik foci - Bowa rzeział foci: Etyatore araetr jet wariacja z róby. Bow rzeział foci orzey a tatytyce: χ która a rozkła chi-kwarat z - toiai woboy. Rozkla chi-kwarat / / - 0 c c U la wariacji - Moel rzeział foci la wariacji: c { χ } c c c c c Metoy robabilitycze i tatytyka, tia ziee 9 Metoy robabilitycze i tatytyka, tia ziee 0
6 Załoeia: U la wariacji - Moel olacja geerala a rozkła,, - iezae; liczo róby >30 Cel: bowa rzeział foci la rzy wółczyik foci - Bowa rzeział foci: Gy yojey rób rzeział foci la ochyleie taarowego bjey a otawie graiczego rozkła tatytyki. Ochyleie taarowe a wówcza rozkła, Staaryzjc otrzyjey tatytyk U: U która a rozkła 0,. Metoy robabilitycze i tatytyka, tia ziee U la wariacji - Moel - / / - 0 Rozkla tatytyki U - 0, { U } rzeział foci la ochyleia taarowego: Metoy robabilitycze i tatytyka, tia ziee U la rawooobietwa U la rawooobietwa U la wkaika trktry U la rocet U la frakcji Załoeia: Liczba eleetów w róbie >00 Cel: bowa rzeział foci la frakcji rocet eleetów oiaajcych wyróio cech w olacji geeralej Bowa rzeział foci: Etyatore rawooobietwa w olacji geeralej jet wkaik trktry w róbie ˆ /, gzie jet liczb jeotek w róbie oiaajcych wyróio cech, atoiat jet liczeboci róby. Dla ych rób wkaik W a rozkła, Metoy robabilitycze i tatytyka, tia ziee 3 U la rawooobietwa Dokojc taaryzacji etyatora W otrzyjey tatytyk: ˆ U która a rozkła 0,. - / / - 0 Rozkla tatytyki U - 0, { U } Metoy robabilitycze i tatytyka, tia ziee 4
7 Metoy robabilitycze i tatytyka, tia ziee 5 U la rawooobietwa 3 o rzekztałceiach otrzyjey: Dla ych rób oey załoy, e /, t rzeział foci la rawooobietwa rzyjje ota: Metoy robabilitycze i tatytyka, tia ziee 6 Zagaieie iialej liczeboci róby Z regły z olacji geeralej obiera i tylko je -eleetow rób zbyt a róba > zbyt e kozty, oóieia cza aalizy wyików zbyt ała róba > ie zaewia aej okłaoci i wiarygooci wiokowaia Aby wyzaczy iial liczeboci róby aley tali: ozio wółczyika foci taleie akyalego bł zack łgoci rzeział foci Metoy robabilitycze i tatytyka, tia ziee 7 iezba liczebo róby rzy zacowai reiej w olacji rzykła Moel I - zae ochyleie taarowe olacji Dłgo rzeział > akyaly bł zack Zakłaajc warto akyalego bł zack oraz ozio wółczyika itotoci - otrzyjey iial liczebo róby: ł Metoy robabilitycze i tatytyka, tia ziee 8 iezba liczebo róby rzy zacowai rawooobietwa Dłgo rzeział > akyaly bł zack Zakłaajc warto akyalego bł zack oraz ozio wółczyika itotoci - otrzyjey iial liczebo róby: ł
Rozkłady statystyk z próby
METODY PROBABILISTYCZE I STATYSTYKA WYKŁAD 0: ROZKŁADY STATYSTYK Z PRÓBY. PRZEDZIAŁY UFOŚCI. Rozkłady tatytyk z róby Statytyką azyway zieą loową, będącą fkcją zieych loowych,,..., taowiących róbę. Statytyka
Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci
Rozkłady tatytyk z próby Metody probabilitycze i tatytyka Wykład : Rozkłady tatytyk z próby. rzedziały ufoci Małgorzata Krtowka Wydział Iformatyki olitechika Białotocka e-mail: mmac@ii.pb.bialytok.pl troa
Rozkłady statystyk z próby Twierdzenia graniczne
Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej
Pojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby.
Pojcie estymacji Metody probabilistycze i statystyka Wykład 9: Estymacja puktowa. Własoci estymatorów. Rozkłady statystyk z próby. Szacowaie wartoci parametrów lub rozkładu zmieej losowej w populacji geeralej
Podstawowe pojęcia. Próba losowa. Badanie próby losowej
METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia
1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ
χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep d π Rozważy
Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:
Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep
1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Rachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Rachek rawdoodobieństwa i statystyka Wioskowaie statystycze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, ok407 ada@agh.ed.l Estymacja arametrycza Podstawowym arzędziem szacowaia iezaego arametr jest estymator
Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
Estymacja przedziałowa - przedziały ufności
Estymacja rzedziałowa - rzedziały ufości Próbę -elemetową charakteryzujemy jej arametrami ( x, s, s ). SłuŜą oe do ocey wartości iezaych arametrów oulacji (m, σ, σ). Nazywamy je estymatorami uktowymi iezaych
Z e s p ó ł d s. H A L i Z
C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g
Przykłady 8.1 : zbieżności ciągów zmiennych losowych
Rachuek rawopoobieństwa MA8 Wyział Matematyki, Matematyka Stosowaa rzykłay 8. Róże rozaje zbieżości ciągów zmieych losowych. rawa wielkich liczb. Twierzeia graicze. rzykłay 8. : zbieżości ciągów zmieych
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Testy statystyczne teoria
Tety tatytyczne teoria przygotowanie: dr A Goroncy, dr J Karłowka-Pik Niech X,, X n będzie próbą loową protą z rozkładu P θ, θ Θ oraz niech α (0, ) będzie poziomem itotności (najczęściej 0,, 0,05, czy
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
Testy dotyczące wartości oczekiwanej (1 próbka).
ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy
Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.
Analiza instrumentów pochodnych
Analiza inrumenów pochonych Dr Wiolea owak Wykła 7 Wycena opcji na akcję bez ywieny moel Blacka-cholea z prawami o ywieny moel Merona Założenia moelu Blacka-cholea. Ceny akcji zachowują logarymiczno-normalnym.
Wprowadzenie do laboratorium 1
Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja
Projekt ze statystyki
Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...
Przedziały ufności. dr Alina Semrau-Giłka
Przedziały ufości dr Alia Semrau-Giłka Co to jet przedział ufości? Przedział ufości loowy przedział mający tę właość, że z dużym, z góry zadaym prawdopodobieńtwem, pokrywa wartość zacowaego parametru 𝜃.
Parametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó
Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż
Ę ĘŃ ć Ą Ś ć ć ć ć ć ć Ń Ł ć Ń Ą ć ć Ę ć Ń ć Ń ć ź Ę Ń ć Ę ć ć ć ć ź ć ć ć ć ć ĄĄ Ę Ą ź ć Ą ć ć ź ź Ń Ą Ą Ę Ę Ę ć źć Ń Ą Ń ć Ł ź ź ć ć Ł ć Ę ć Ń Ń ź Ę ź ć Ę Ś Ń ć Ą Ń Ń Ń Ą Ą ź Ą Ę Ł ć Ń Ń ć ź Ń Ą Ę Ę
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
Wnioskowanie statystyczne dr Alicja Szuman
Wiokowaie tatytycze dr Alicja Szuma Literatura: J. Jóźwiak, J. Podgórki Statytyka od podtaw PWE Warzawa 006 J. Kudelki, I. Roeke Slomka Statytyka AE Pozań 995 J. Greń Statytyka matematycza. Modele i zadaia
3. 4 n a k r ę t k i M k o r p u s m i s a n a w o d ę m i s a n a w ę g i e l 6. 4 n o g i
M G 5 0 4 W Ę D Z A R K A M G 5 0 4 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y z a z a k u p p r o d u k t u M a s t e r G r i l l
Í í Í Á ń ý ý Ż í í ď Í Ĺ ń Í ń Ę ń ý Ż Ż ź ń ń Ę ń ý ý í ŕ Ĺ Ĺ Í Á í Ż Í É Í Ü ö ä Ż Ż Ż Ę ń ć Ę Ż ń Ę Ż ć ń Ł Ą ń Ę í Ę Ż Ż ý Ż Ż Ą Í É đ í Ł Ę Ł ć ő ť Ę ń í ć Í Ę Ę Ł Ą Ł ć ď ć Ę Ę ń Ó Ü ü Ĺ ý Ę ä í
Twierdzenie 1. Je»eli X 1, X 2,..., X n jest ci giem niezale»nych zmiennych losowych o jednakowym rozkªadzie normalnym N(m, σ), to zmienna losowa: X i
Twierdzenie 1. Je»eli X 1, X 2,..., X n jet ci giem niezale»nych zmiennych loowych o jednakowym rozkªadzie normalnym N(m, σ), to zmienna loowa: ma rozkªad normalny N(m, σ n ). X := 1 n Przykªad: 1. Wiadomo,»e
Modele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej
Moele zmieości akywów ryzykowych Moel muliplikaywy Rozkła logarymiczo-ormay Paramery siaki wumiaowej Moel muliplikaywy zmieości akywów Rekurecyjy moel muliplikaywy: (=, (k+ = (k u(k, k=,, Cea akywa w chwili
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli
Metody Statystyczne II
Metody Statytycze II dr Dorota Węziak-Białowolka Itytut Statytyki i Demograii Iormacje orgaizacyje Koultacje: poiedziałek 5:3 6:3 5F lub 73F Materiały: www.e-gh.pl/bialowolka/ms Zaliczeie: w ormie egzamiu
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
Automatyzacja Statku
Politechika ańka Wyział Oceaotechiki i Okętowictwa St. iż. I toia, em. IV, kieuek: RANSPOR Automatyzacja Statku 8 SABILIZACJA OŁYSAŃ BOCZNYCH SAU M. H. haemi Mazec 07 Automatyzacja tatku 8. Stabilizacja
Ł Ż ć Ę Ę Ę Ę Ż Ę Ź ć ć ć Ł Ż ć Ę ć Ł ć Ę ź Ż ć Ę ć ć Ł Ł ć ź Ż Ż Ż ć ć Ż ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć ć Ę Ę Ł ć Ś ć Ł Ż Ę ć ć ć Ż Ż Ę Ł Ę ć Ę ć ć ć ć ć Ę ć ć ć Ł ź Ż Ę Ż Ż ć Ę źć źć ź Ż Ł ć ć ć Ż Ę ź
Ó Ę Ę ź ź ź Ź ź ź ź Ż Ś Ś Ż Ś ź ź Ó Ś Ż ź ć Ść Ź Ż ć Ż Ć ć ź Ź Ź Ó Ś ć ć Ż Ć Ś ć ź Ż ć Ść ć ć Ż Ś Ż ć Ż ź ć ź Ż ź ć ć Ś Ź Ż ć ć ć ć ć Ś Ś Ż ź Ę Ś Ś Ś Ż ć ź ć ć ć Ż Ż ć ć Ż Ź ć Ś Ś Ś Ś Ź Ó Ś Ś ć Ś ć Ć ź
ż Ą ż Ó Ę Ś ć ż ć ż ć Ś ż Ś ż Ń ż ż Ź ż Ź ż Ą Ś ż ć ć Ś Ą ż ż ż ź ż ż Ń Ę ż ż ć Ń ż Ń ż ż ź ż ż ż ż ż ź Ś ż ż ź ż Ś Ś ż ź ź ż ź Ą ż Ź ż ź ź Ź ź Ź ź ż Ź ż ź Ę ż ż Ę ż Ó Ń ż ź ć ż ź ż Ę ż ć ż ź ź ź ż ż
Ę Ś ź Ę Ę ć ć ź ć ć ć ć ć źć ć ć ć ć Ź ź Ś ć Ł Ę ć ć Ą ź ć Ó Ł ź ć ć Ź Ł ć ć ć ć ć ć ć ź ć ć ć ć ź Ź ć ź ć ć ź ć ź Ź Ź ź ź ź Ś ź ź ć ć Ś Ę ć ź ć ć Ś ć ć ć ć ź ź ć ź ć ć ć Ź Ź ć Ś Ę ć Ć ć ź ć Ę ć ć ć ć
Ł Ę Ł Ż ż Ń Ą Ó Ó ż Ś Ź ć ż ż ć Ć ż Ż ć Ó ż Ś Ó Ś ż Ó ż Ś ć ć Ż Ł ż ż ż ć ć ż Ó Ó Ę Ż Ó Ż ż Ó ż Ó Ź Ż ż Ó Ó ć Ó ż ż ć ż Ś Ż ć Ó ż Ś Ś ż ć ć Ó ż Ó Ó ż Ź Ę Ł Ż Ł Ź Ż ż Ó ż ż ż ż Ż ż ż Ż ż Ł ć Ż ż Ż ż Ó Ż
ć Ł ć ć ź Ą ć ć ć źć Ź Ź ŹĆ ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ł ć ć ć ć ć ć ć ŚĆ Ś ź ć ć ć Ć Ó Ć ć Ą Ł Ł Ł ź Ś Ł ć ć Ą Ą ź ć ć Ą ć ź ć ź ź ć ź ź Ą Ą Ń ć ź Ł ć Ć ć ź ć Ś ć ć ć ć ć ć ć Ś ć ć ć ć
ć Ń Ż Ł ć ć Ś ź ŚĆ Ą ć ź ć ć Ż Ś ź Ą ć Ń Ć Ć ć ć Ą ć źć Ń Ł Ł Ł ź ć Ą ź Ś ź ć Ń Ń ć Ć Ć ź Ś ź ć Ś Ś Ł ź Ś Ś ź ć ź ć Ś ć Ś ć ć Ż ć Ż ź ź Ą ć Ł Ń Ć ć Ż Ś ć ć ć ć Ś ć ć ć Ą ć ć ź ć ć ć ć ć Ń Ż Ż Ż Ż Ś ć Ą
Ś ć ć Ż ć ć Ż ć ć ć ć ć Ę Ź Ż Ż ć Ę ć Ę Ź Ź Ó ć ć Ź ć Ó Ś ć Ź Ę Ę Ę ć Ń ć Ś ć Ż ć Ę Ę ć Ż Ł ź Ź Ś Ą ć Ą Ą ć Ą Ę ć ć Ę ć ć ć Ż ć Ź Ą Ł ć ć ć ć Ę ć Ź ć Ź ć Ą ć Ą ć ć ć ć Ą ć Ą ć Ż Ą ć ć ć ć ć ć Ść ć źć Ę
Ł Ł Ź Ź ź ź ć ź ć Ę Ź Ś Ś ć ć Ś ć ć ć Ź ć źć ć ć ć ć Ź ć ć ć ć ć ć ź ć Ś ć ć Ą ć Ź ć Ś Ó Ź Ś ź ć ź Ś ć Ł Ą ć ć ć ć Ź Ź ć Ź ć ć ć Ź ź ć ć ć ć ć Ś ć ć ć ć ć Ł ć Ś ć Ź Ź Ź ć ć Ś Ś ć ć ć ź Ą ć ć ć ć ć ć ć
ń ć ć ń Ń ź ć ć ć ć ź ć ć ń ć źć ń ź ć ć ć ć ć Ę ć ń ć ć ć Ę ź ń ń ć ć ń ć ć ć ć ć ć ć ć ć ć ń ć ź ć ć ć ć ź ć ń ć ć ć ń ć ć ć Ń ć ź ć ć ń ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ź Ń ń ź ń ć ń ć ć ć Ę ć
Ę Ę ć Ó ć ć Ń ź ź Ó Ć Ó ć ć ź ź ć ć ć Ń ć Ó ć ć ć ć Ó Ó ć Ó ć ć Ó Ę Ó ÓÓ Ę ć Ó ć ć Ó ć ć Ó Ę ć Ć Ó Ź Ę Ó Ó Ó ć Ó ź Ó ź Ń Ę Ó Ę Ę Ę ć ć Ć ć Ę Ę Ó Ó Ó ć ź Ń ć Ź ć ź ć ć Ę ć Ę ć ź ć Ó Ó Ę ć ć ć ź ć Ę ć Ź
Ó ż ń Ą ź ń ż ć Ó ń ć Ć Ą ż Ą ć Ł Ę Ę Ą ć Ó ź ć ć ć ń Ń Ą ć ć ż Ó ź Ł Ł Ę ć ż ć Ę Ł ć Ń Ą Ł Ł Ę Ł ć ż ż ż Ł ć ć Ę Ń Ę Ą ń Ą ń ń ż ż ń ż ź Ń ź ć ź ń Ó ń ć Ł Ą Ą ż ż ć Ó Ł ć ć ź Ó ź ź Ę ć ć ń źć Ą ż Ą ż
Ć Ć Ą ź ń ć ń Ź ń ć Ą ć ć ć Ę ć ń Ą Ą ź ń ź ń ń Ę ń ć ć Ę Ę ć Ę Ź Ź Ą Ę ń ń ń Ę ń ń Ą ń ń Ą Ą Ć Ą ć ń ć ń ć Ć ń ń Ą ń Ą Ą ć ć ź ź Ź ć ń ń Ą ń ń ń Ę Ą ć ń Ą ć Ą Ę ć ć Ę ń Ć Ę ń Ą Ź Ę ń Ę ń ń ć ć Ń ń Ą ń
Ł Ś ÓŻ Ż Ż Ż Ż Ś Ś Ę Ł ć Ą ŚĆ Ś Ą ć Ą Ś Ą Ś ź ć ź ć ć Ą ć Ą Ń ź ź ć Ą ć ć Ą ź Ę Ś Ą ź Ś ź Ą Ą ć Ę ć ź Ą ć Ą ć ć ć Ą Ą Ą Ą ŚĆ Ść ć Ń Ś ć ć Ę Ź ć Ę Ń ć Ć ć ć ć ć Ę Ń ć ć ć Ł ć Ą ć Ą Ą Ę Ć źć ć Ś ź Ę Ą Ś
N a l e W y u n i k a ć d ł u g o t r w a ł e g o k o n t a k t u p o l a k i e r o w a n y c h p o w i e r z c h n i z w y s o k i m i t e m p e r a
J L G 3 6 6 P A W I L O N O G R O D O W Y J L G 3 6 6 I N S T R U K C J A M O N T A V U I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y z a z a k u p p a w i l o n u o g
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
WARSZTATY RĘKODZIEŁA LUDOWEGO!
Uą G R-W 34-381 R W 700. 33 867 66 10 fx. 33 867 66 13 -: @-..-. Aś WARSZTATY RĘKODZIEŁA LUDOWEGO! WARSZTATY RĘKODZIEŁA LUDOWEGO! G C K Pj T ł bó ęł G R W! W bęą bł óę ż jż ść j j! Dj jść łń! W bć ę bęą
Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego
.Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je
są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Materiały do wykładu 4 ze Statystyki
Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Metody statystyczne w naukach biologicznych
Metoy statystycze w aukach biologiczych 006-04-11 Wykła: Weryfikacja hipotez statystyczych. Zaaiem statystyki matematyczej jest wioskowaie o populacji geeralej a postawie populacji próbej. Wioskowaie to
Estymacja przedziałowa:
Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.
WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
STATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
z d n i a 1 5 m a j a r.
C h o r ą g i e w D o l n o l ą s k a Z H P D e c y z j a n r 1 4 / I X / 2 0 1 5 K o m e n d a n t a C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 1 5 m a j a 2 0 1 5 r. w s p r a w i e g
Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa
Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Ż ć ź ć ć ź Ż Ż Ł Ż ć Ż Ż Ż ć Ł Ż ć ć ć ź Ż Ż Ż Ż Ż Ż ć ć ź Ż ć ć ć ź Ż Ż ć Ż Ż źć ć Ż Ż Ż ć Ż Ż Ż Ż Ś ć Ż ć Ł Ż Ł ć Ą Ż Ł ć Ż ć Ż Ż Ż ć ć ć Ż Ż Ż Ż Ż Ż Ł ć Ł Ż ź ć Ż Ż Ż ć ć ć ć ć Ż Ż Ą Ż Ż Ż ć Ż Ż ć
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i
M G 4 2 7 v.1 2 0 1 6 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
INSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE Rozaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji Ryzyko iwesycji w obligacje Ryzyko eiwesycyje możliwość uzyskaia iskiej sopy zwou z wypłacoych
ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości specyficznych parametrów populacji.
/7/06 Biotatytyka, 06/07 dla Fizyki Medyczej, tudia magiterkie etymacja etymacja średiej puktowa przedział ufości średiej rozkładu ormalego etymacja puktowa i przedziałowa wariacji rozkładu ormalego etymacja
Rys. 1. Schemat układu objętości poszczególnych składników w próbce gruntu.
CECHY FIZYCZNE GRUNTÓW Ośoek gutoy kłaa ię z ozielych zia i czątek, ięzy któyi ytęują oy, któe ą yełioe ajczęściej oą zaieającą ęchezyki gazu (oietza, ay oej, CO 2 ). Objętość ozczególych kłaikó zetaioo
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013
ZSZYTY AUKOW UIWRSYTTU SZCZCIŃSKIGO R 768 FIAS, RYKI FIASOW, UBZPICZIA R 63 03 JA PURCZYŃSKI Uniwerytet Szczecińki OCA JAKOŚCI STYMATORÓW PARAMTRÓW ROZKŁADU GD DLA WYBRAYCH MTOD STYMACJI Strezczenie W
Porównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
гадоў агульнапольскага фатаграфічнага конкурсу
l a t o g ó l n o p o l s k i e g o k o n k u r s u f o t o g r a f i c z n e g o гадоў агульнапольскага фатаграфічнага конкурсу P O D L A S I E W O B I E K T Y W I E 2 0 0 5-2 0 1 0 ' 2 0 0 5-2 0 1 0
Zasada działania profilometru laserowego służącego do pomiaru pola przekroju poprzecznego wyrobisk kopalnianych
57 Pae Istytt Mehaiki Góotwo P Tom 6, 3-, (00), s. 57-6 Istytt Mehaiki Góotwo P Zasaa ziałaia pofilomet laseowego słżąego o pomia pola pzekoj popzezego wyobisk kopaliayh DRZEJ KRCH, WCŁW TRUTWI Istytt
ź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
Wykład 10 Wnioskowanie o proporcjach
Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie