Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz
|
|
- Lidia Madej
- 6 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz
2 Wykład 10 - przypomnienie lupa, powiększenie, sposoby używania okular, nomenklatura, przykładowe konstrukcje klasyczny mikroskop optyczny: konstrukcja, parametry (powiększenie, zdolność rozdzielcza) mikroskop ciemnego pola mikroskop konfokalny mikroskop dwufotonowy luneta i teleskop optyka adaptacyjna w teleskopach astronomicznych aparat fotograficzny
3 akomodacja oka - rewizyta włókna sprężyste mięsień rzęskowy mięsień rzęskowy
4 superpozycja fal EM, 1 przypomnienie - wykład 1: równanie falowe 2 x υ 2 t 2 ψ = 0 jest liniowe suma rozwiązań jest także rozwiązaniem Dwie płaskie fale monochromatyczne E 1 r, t = E 10 cos k 1 r ωt + φ 1 = E 10 cos δ 1 E 2 r, t = E 20 cos k 2 r ωt + φ 2 = E 20 cos δ 2 δ 1 = k 1 r ωt + φ 1 δ 2 = k 2 r ωt + φ 2 Dają falę wypadkową E r, t = E 1 r, t + E 2 r, t = E 10 cos δ 1 + E 20 cos δ 2
5 przypomnienie - wykład 2: superpozycja fal EM, 2 wektor Poyntinga i natężenie światła w próżni S = 1 μ 0 E B = E H dla superpozycji 2 fal: E 2 r, t = E 1 r, t + E 2 r, t E 1 r, t + E 2 r, t = = E 10 2 cos 2 δ 1 + E 20 2 cos 2 δ 2 + 2E 10 E 20 cos δ 1 cos δ 2 odrobina trygonometrii: cos δ 1 cos δ 2 = cos k 1 r ωt + φ 1 cos k 2 r ωt + φ 2 = = cos k 1 r + φ 1 cos ωt + sin k 1 r + φ 1 sin ωt cos k 2 r + φ 2 cos ωt + sin k 2 r + φ 2 sin ωt = = cos k 1 r + φ 1 cos k 2 r + φ 2 cos 2 ωt + + sin k 1 r + φ 1 sin k 2 r + φ 2 sin 2 ωt + + cos ωt sin ωt S = cε 0 E 2 1 T = cε 0 T 0 E 2 dt plus uśrednianie po okresie i tożsamość 2π 0 sin 2 2π x dx = 0 cos 2 x dx = 1 2 cos α β = cos α cos β + sin α sin β daje: E 10 E 20 cos δ 1 cos δ 2 = E 10 E 20 cos δ δ = δ 1 δ 2 = k 1 r k 2 r + φ 1 φ 2
6 superpozycja fal EM, 3 S = cε 0 E 2 = cε 0 2 E 2 cε E cε0 E 10 E 20 cos δ, δ = δ 1 δ 2 I 1 I 2 człon interferencyjny rachunki są dużo prostsze dla liczb zespolonych E 1 r, t = E 10 e iδ 1 bo E 2 r, t = E 20 e iδ 2 E 2 = E E = E 10 e iδ 1 + E 20 e iδ 2 E 10 e iδ 1 + E 20 e iδ 2 = = E E E10 E 20 cos δ δ = δ 1 δ 2 Uwaga: ten wynik nie zależy od tego jakie fale dodajemy do siebie należy tylko odpowiednio zdefiniować różnicę faz δ, które może zależeć także od czasu jeśli fale mają różne częstości.
7 superpozycja fal EM, 4 S = cε 0 E 2 = cε 0 2 E 2 cε E cε0 E 10 E 20 cos δ wynik interferencji zależy od polaryzacji światła! wzajemnie prostopadłe polaryzacje nie interferują. Dla identycznych polaryzacji: I = I 1 + I I 1 I 2 cos δ W szczególnym przypadku I 1 = I 2 = I 0 mamy: I = 2I cos δ = 4I 0 cos 2 δ 2
8 superpozycja fal EM, 5 y k1 2 płaskie fale monochromatyczne, ta sama częstość k 2 /2 /2 z ekran Identyczne natężenia obu fal: I = 2I cos δ δ = k 1 r k 2 r + φ 1 φ 2 = k 1 k 2 r + φ 1 φ 2 maksima dla: 2ky sin Θ 2 + φ 1 φ 2 = m 2π, m = 0, ±1, ±2, Δy = π k sin Θ 2 = λ 2 sin Θ 2 I = I 1 + I I 1 I 2 cos δ k 1 = 0, k sin Θ 2, k cos Θ 2 k 2 = 0, k sin Θ 2, k cos Θ 2 I Δy k 1 k 2 r = ky sin Θ 2 y różne amplitudy = płytsza modulacja 0 λ 2 sin Θ 2
9 superpozycja fal EM, 6 prążki interferencyjne bi-pryzmat Fresnela Δy = λ 2 sin Θ 2 prążki jasne prążki ciemne Fale przeciwbieżne: Θ = π dają rozkład natężenia I = 2I cos 2y λ + φ 1 φ 2 - fala stojąca Fale współbieżne: Θ = 0 dają rozkład natężenia I = 2I cos φ 1 φ 2 -??????
10 prążki - zastosowania Δy = λ 2 Produkcja siatek dyfrakcyjnych holograficznych: pokrywanie fotooporem naświetlanie trawienie pokrywanie metalem Światłowodowe filtry Bragga fotoopór szkło Δy światłowód modulacja n
11 holograficzne siatki dyfrakcyjne
12 Interferencja fal sferycznych Dwie sferyczne, spójne, monochromatyczne fale EM E 1 r 1, t = E 10 r 1 cos kr 1 ωt + φ 1 = E 10 r 1 cos δ 1 E 2 r 2, t = E 20 r 2 cos kr 2 ωt + φ 2 = E 20 r 2 cos δ 2 I = I 1 + I I 1 I 2 cos δ δ = δ 1 δ 2 maksima dla: δ = m 2π, m = 0, ±1, ±2, r 1 r 2 = 2mπ + φ 1 φ 2 k minima dla: δ = m π, m = ±1, ±3, ±5 r 1 r 2 = m π + φ 1 φ 2 k prążki przestrzenne - hiperboloidy obrotowe
13 doświadczenie Younga, 1 Thomas Young
14 doświadczenie Younga, 2 P S a S 2 S 1 B r 1 r 2 s O y Jeśli a, y s (małe kąty, obserwacja w dalekim polu) to S 1 B S 1 P S 2 P r 1 r 2 = S 1 B = aθ I = I 1 + I I 1 I 2 cos δ δ = k r 1 r 2 = 2π r 1 r 2 λ Interferencja konstruktywna dla r 1 r 2 = mλ, m = 0, ±1, ±2, θ m = m λ, m = 0, ±1, ±2, a
15 doświadczenie Younga, 3 I 1 = I 2 = I 0 I = 4I 0 cos 2 πay sλ Δy = sλ a
16 doświadczenie Younga źródło punktowe P S Φ r 1 r 2 B S 1 S 2 r 2 B r 1 Θ s O y d warunek na zerowy prążek: r 1 r 2 + r 1 r 2 = 0 dla małych kątów: 2aΦ = 2aΘ Φ = Θ opóźnienie fazowe: δ = r 1 + r 1 r 2 + r 2 = r 1 r 2 + r 1 r 2
17 doświadczenie Younga źródło rozciągłe kwazi-monochromatyczne Źródło jest niespójne każdy jego punkt tworzy własny zestaw prążków. Dodajemy natężenia tych prążków. P 1 2a O d Θ s s P 2 I Uuwaga: kolory oznaczają tutaj różne punkty na powierzchni źródła a nie barwy. Barwa jest jedna bo źródło jest wąskopasmowe. O O y y Widzialność prążków: V = I max I min I max + I min Prążki rozmywają się gdy niebieski (P 2 ) i czerwony (P 1 ) mają przeciwne fazy: Δy = λs = Θ 2 4a ss Θ s = λ 4a
18 Interferometr gwiazdowy Michelsona p 0 r 0 r s 2a p 1 r p 2 r 0 r 0 r V V źródło w postaci koła o promieniu natężenie I r I r r p r 0 2a 1.22 s 2a
19 Spójność przestrzenna Soczewka zapewnia obserwację w dalekim polu a E r, t f Mierzymy widzialność prążków V dla różnych odległości pomiędzy otworami V Pole spójne, niespójne, częściowo spójne Spójność czasowa Spójność przestrzenna Funkcja korelacji pola G r 1, r 2, τ = E r 1, t E r 2, t + τ oznacza uśrednianie po czasie 0 a
20 Interferencja na błonach, 1 n i i B n t A C d t n i D 2d Δs = n t n cos Θ i AB t AB = AC sin Θ i = 2d tan Θ t sin Θ i 2d Δs = n t 2d tan Θ cos Θ t sin Θ i t Prawo Snella + rachunki: Δs = 2d n 2 t n 2 i sin Θ i opóźnienie fazowe δ = kδs = 4πd n λ 2 t n 2 i sin Θ i Wykład 5; dodatkowe przesunięcie fazy o π: δ = 4πd λ n t 2 n i 2 sin Θ i + π
21 Interferencja na błonach, 2 δ = 4πd λ n t 2 n i 2 sin Θ i + π Dla padania normalnego: δ = 4πn td + π λ Maksimum natężenia fali odbitej dla δ = m 2π, m = 1, 2, 3, Co daje 2m 1 λ d =, m = 1, 2, 3, 4n t Woda n t = 1.33 i λ = 650nm daje d = 2m 1 122nm
22 Interferometr Michelsona detektor E out M 2 E in d 2 Albert Abraham Michelson ( ) I out M 1 d 1 rozważmy falę monochromatyczną E in = E 0 e iωt E out = E 0 2 e iωt e iφ e i2kd 1 + e i2kd 2 I out = I in 1 + cos δ, δ = 2k d 2 2 d 1 d d 2 1 /2 d d 2 1
23 Int. Michelsona uwagi praktyczne M 1 C d 1 BS M 2 d 2 BS C Płytka światłodzieląca (ang. Beam-Splitter) Kompensator AR M AR, M 1 2 Lustra Antyrefleks (ang. AntiReflexion coating) Dalekie pole za soczewką
24 doświadczenie Michelsona-Morleya obserwator M 2 L c c c T 1 = L c + υ + L c υ = 2L c 1 υ 2 c 2 Michelson-Morley (1887) oczekiwane 0.4 prążka zmierzone <0.01 prążka M 1 L T 2 = 2L c 1 υ 2 c 2 nie ma eteru!!! 1887
25 Interferometr Michelsona + szerokie pasmo I out d d c 2 1 / Widzialność prążków: V = I max I min I max + I min zależy od opóźnienia V = V(τ) I out c czas spójności: droga spójności: τ c l c = τ c c 2 d d / c 2 1 τ c 1, Δν szerokość widma Δν
26 widmo światła, przypomnienie wykład 4 Natężenie spektralne (widmo) I ω, I λ : I ω dω - natężenie dla częstości z przedziału ω, ω + dω I λ dλ - natężenie dla długości fali z przedziału λ, λ + dλ Dla danego pola fali E(t) liczymy jego transformatę Fouriera i dostajemy amplitudę spektralną pola: E ω = 1 2π E(t)e iωt dt Mając amplitudę spektralną możemy wrócić do domeny czasu: E t = 1 2π E (ω)e iωt dω Twierdzenie Parsevala: E(t) 2 dt = E (ω) 2 dω I(t)dt = I(ω)dω natężenie widmo funkcja autokorelacji pola 1-go rzędu: AC(τ) = E t E(t τ)dt twierdzenie Wienera-Chinczyna I ω = AC(τ)e iωτ dτ
27 Czasowa autokorelacja pola detektor M 2 Funkcja korelacji czasowej pola G τ = E t E t + τ oznacza uśrednianie po czasie Pole na wyjściu z interferometru M 1 d 1 d 2 E out t, τ = 1 2 E in t + E in t + τ Detektor całkuje: I out E out E out = = 1 4 E in t + E in t + τ E in t + E in t + τ = = 1 I 2 in + 1 Re G(τ) = 2 = 1 I 2 in + 1 G(τ) 2 ostatecznie: G τ = 2I out I in Korzystamy z twierdzenie Wienera-Chinchina aby wyliczyć I(ω): I ω = G(τ)e iωτ dτ
28 Spektrometr fourierowski E in Detektor 1 ruchome lustro (dwustronne) Detektor 2 wiązka lasera wzorcowego r I 2 Procedura: 1. Przesuwamy lustro i rejestrujemy I 1 oraz I 2 2. z I 2 dostajemy opóźnienie τ I 1 3. Liczymy 2I out I in 4. Z twierdzenia Wienera-Chinchina wyliczamy I(ω)
29 Interferencja spektralna E in spektrometr Na wyjściu interferometru mamy: E out t, τ = 1 E 2 in t + E in t + τ E out ω = 1 1 2π E 2 in t + E in t + τ e iωt dt = = 1 E 2 in(ω) 1 + e iωτ Mierzymy widmo: I out ω = E out ω 2 = I in (ω) 1 + cos ωτ I(ω) ω spektrometr 2π τ E in E out ω = 1 2 E in(ω) 1 + e iφ(ω) I out ω = E out ω 2 = I in (ω) 1 + cos φ(ω) φ(ω)
30 Interferencja spektralna, przykład
31 Int. Michelsona rozbieżna wiązka M 1 d 1 M 2 d 2 BS
32 Int. Michelsona zachowanie energii
33 Interferometr Macha-Zehndera M 1 I 1 I 2 BS 1 BS 2 M 2 I 1 I 2
34 Interferometr Macha-Zehndera, pomiar n M 1 dozowanie gazu I 1 d I 2 BS 1 BS 2 M 2 próżnia I 1 nd Pomiar rozkładów przestrzennych n: plazma gazy (przepływy) p
35 Interferometr Sagnaca - żyroskop liczba prążków N = 4Aω cλ gdzie A to powierzchnia pętli a λ długość fali N = 4MAω cλ M zwojów
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Bardziej szczegółowoZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie
Bardziej szczegółowoWykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Bardziej szczegółowoG:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Bardziej szczegółowofalowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 13, 6.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie stosy
Bardziej szczegółowoOPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Bardziej szczegółowoOptyka instrumentalna
Optyka instrumentalna wykład 9 4 maja 2017 Wykład 8 Przyrządy optyczne Oko ludzkie Lupa Okular Luneta, lornetka Teleskopy zwierciadlane Mikroskop Parametry obiektywów, rozdzielczość Oświetlenie (dia, epi,
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoWykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Bardziej szczegółowoWłasności światła laserowego
Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie
Bardziej szczegółowoWykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
Bardziej szczegółowoRys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoWykład FIZYKA II. 8. Optyka falowa
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html
Bardziej szczegółowoBADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Bardziej szczegółowoWykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
Bardziej szczegółowoBADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Bardziej szczegółowoFizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Bardziej szczegółowoInterferencja. Dyfrakcja.
Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal
Bardziej szczegółowoDr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja
Bardziej szczegółowoĆwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Bardziej szczegółowoOscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Bardziej szczegółowoPodstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Bardziej szczegółowoPomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
Bardziej szczegółowoOptyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Bardziej szczegółowoWykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Bardziej szczegółowoOptyka falowa. dr inż. Ireneusz Owczarek CMF PŁ 2012/13
Optyka falowa dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Fale elektromagnetyczne 2 1.1. Model falowy światła...........................................
Bardziej szczegółowoOptyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Bardziej szczegółowoGŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
Bardziej szczegółowoWykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoOscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Bardziej szczegółowoWŁASNOŚCI FAL (c.d.)
RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Bardziej szczegółowoWykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Bardziej szczegółowoPrawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Bardziej szczegółowoWYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
Bardziej szczegółowoElektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Bardziej szczegółowo18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Bardziej szczegółowoPodstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
Bardziej szczegółowoprzenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole
Bardziej szczegółowoInterferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Bardziej szczegółowoĆwiczenie 12. Wprowadzenie teoretyczne
Ćwiczenie 12 Hologram cyfrowy. I. Wstęp Wprowadzenie teoretyczne Ze względu na sposób zapisu i odtworzenia, hologramy można podzielić na trzy grupy: klasyczne, syntetyczne i cyfrowe. Hologramy klasyczny
Bardziej szczegółowoDyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
Bardziej szczegółowoPonadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
Bardziej szczegółowoBadanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
Bardziej szczegółowoŚwiatło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Bardziej szczegółowoBADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
Bardziej szczegółowoĆwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Bardziej szczegółowoProblemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Bardziej szczegółowoDualizm korpuskularno falowy
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p
Bardziej szczegółowoWykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość
Bardziej szczegółowo3. Materiały do manipulacji wiązkami świetlnymi
3. Materiały do manipulacji wiązkami świetlnymi Modulatory światła: wymuszona dwójłomność efekty magnetoi elektro-optyczne Np. modulatory natężenia (AM) substancja dwójłomna między skrzyż. polaryzatorami
Bardziej szczegółowoŚwiatłowodowe Sensory interferencyjne: zasady pracy i konfiguracje
Światłowodowe Sensory interferencyjne: zasady pracy i konfiguracje Sensory interferencyjne Modulacja fazy: Int. Mach-Zehndera Int. Sagnacą Int. Michelsona RF włókna odniesienia SF włókno sygnałowe Int.
Bardziej szczegółowoWyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 4, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 24.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner wykład 3 przypomnienie źródła
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoOPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
Bardziej szczegółowoOPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 4, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 4, 13.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz wykład 3 przypomnienie
Bardziej szczegółowoWstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca
Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms
Bardziej szczegółowoPromieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoLaboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona
Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia
Bardziej szczegółowoDYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości
Bardziej szczegółowoWykład VI Dalekie pole
Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie
Bardziej szczegółowoRys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Bardziej szczegółowoInterferencja promieniowania
nterferencja promieniowania Zastosowania Metrologia Nanotechnologie Czujniki szczególnie światłowodowe Elementy fotoniczne Wyjaśnianie: generacji modów w laserze propagacji modów w światłowodach Generacja
Bardziej szczegółowoDYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE I. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali świetlnej, szerokości szczeliny
Bardziej szczegółowoWykład 27 Dyfrakcja Fresnela i Fraunhofera
Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).
Bardziej szczegółowoDrgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Bardziej szczegółowoΨ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Bardziej szczegółowoElektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Bardziej szczegółowoNatura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Bardziej szczegółowoPrzedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1
Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne
Bardziej szczegółowoTECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH
TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH Arkadiusz Olech, Wojciech Pych wykład dla doktorantów Centrum Astronomicznego PAN luty maj 2006 r. Wstęp do spektroskopii Wykład 7 2006.04.26 Spektroskopia
Bardziej szczegółowo