Rys. 1 Geometria układu.
|
|
- Dariusz Górski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe obiekty w ich naturalnym, przestrzennym kształcie. Technika holograficzna polega na rejestracji natężeniowego pola świetlnego, powstającego w wyniku interferencji wzajemnie spójnych fal: wiązki przedmiotowej pochodzącej od obiektu i wiązki odniesienia. ys. 1 przedstawia geometrię dla obiektu punktowego P leżącego w płaszczyźnie Z = z o współrzędnych (x,y). Płaszczyzna hologramu Z = 0 odpowiada współrzędnym (x 0, y 0 ). ys. 1 Geometria układu. Punkt P(x, y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U eik, gdzie k = 2π i zgodnie z ys. 1 mamy: λ U = const. - amplituda przedmiotowej fali sferycznej. r = [x, y, 0] - promień wodzący punktu P w płaszczyźnie OXY. r 0 = [x 0, y 0, 0] - promień wodzący punktu (x 0, y 0 ) z płaszczyzny hologramu zaczepiony w punkcie O(0, 0, z). = oraz = r 0 r. 0 Dla uproszczenia założymy, że fala odniesienia jest falą płaską Ae ikz, gdzie A = const., i że propaguje się prostopadle do płaszczyzny hologramu, jak to pokazano na ys. 2. 1
2 ys. 2 Schemat rejestracji hologramu punktu. Natężenie pola interferencyjnego w płaszczyźnie Z = 0 ma postać: = U 2 2 I(x 0, y 0 ) = U eik + A 2 + U eik 2 + A 2 = A + U e ik gdzie " * " oznacza operator sprzężenia zespolonego. Powyższe natężenie można zarejestrować na kliszy holograficznej (klisza fotograficzna o wysokiej rozdzielczości) otrzymując płaski element optyczny o transmitancji I(x 0, y 0 ). Jest to właśnie hologram. Po odtworzeniu hologramu falą płaską identyczną z falą odniesienia zostaje wygenerowane pole świetlne o amplitudzie zespolonej AI(x 0, y 0 ), składające się zgodnie z równaniem (1) z następujących frontów falowych: a) A U 1 = A ( U A 2 ) (2) Wyrażenie w nawiasie nie zawiera żadnego czynnika fazowego, zatem pole (2) propaguje się zawsze zgodnie z kierunkiem fali odtwarzającej. Nie zawiera ono istotnej informacji o obiekcie i z punktu widzenia holografii Fresnela jest to zbędny szum. b) U 2 = U eik A 2 (3) Jeżeli A 2 = const. (czyli tak jak w naszym przypadku) wówczas U 2 przedstawia dokładne odtworzenie sferycznego frontu falowego emitowanego przez punkt P. W związku z tym obserwator widzi na hologramie pozorny obraz punktu P odtworzony przez pole (3). c) U 3 = U e ik A 2 (4) Wzór (4) opisuje falę sferyczną zbieżną. Ponieważ wielkość występuje jednocześnie we wzorach (3) i (4), zatem konfiguracja obu frontów sferycznych zbieżnego i rozbieżnego jest (1)
3 taka sama, z tym, że ze względu na odtworzenie hologramu z lewej strony (ys. 2) fala zbiega się w płaszczyźnie Z > 0. Z powyższego wynika, że jeżeli punkt przedmiotowy ma współrzędne P(x, y, Z = z), wówczas front sferyczny zbiega się w punkcie P (x, y, Z = z). P' jest obrazem rzeczywistym punktu przedmiotowego P. Zgodnie z naszą dyskusją punkty P i P' są symetryczne względem płaszczyzny hologramu Z = 0. Geometrię odtworzenia ilustruje ys. 3. a) b) ys. 3 Odtworzenie hologramu. Fala sferyczna rozbieżna formująca obraz pozorny punktu P (a) i fala sferyczna zbieżna tworząca w punkcie P rzeczywisty obraz punktu. Ponieważ dowolny obiekt jest continuum punktów, zatem powyższą dyskusję można przeprowadzić dla każdego punktu obiektu osobno i końcowy wniosek sprowadza się do możliwości holograficznego odtworzenia rozciągłych przedmiotów trójwymiarowych. Jeżeli tak jak, to było w naszym przykładzie, wiązka odniesienia i wiązka odtwarzająca są płaskimi falami, propagującymi się prostopadle do płaszczyzny hologramu, wówczas obraz pozorny obiektu powstaje dokładnie w miejscu oryginału. Ponadto obrazy rzeczywisty i pozorny są symetryczne względem płaszczyzny hologramu. W ogólności zarówno zespolona amplituda pola odniesienia, jak i pola odtwarzającego, może być zmienna w płaszczyźnie hologramu. Wtedy określenie położenia obrazu pozornego i obrazu rzeczywistego wymaga szczegółowej analizy. Mogą pojawić się dodatkowo aberracje, które wpływają na wierność odtworzenia holograficznego. Dobierając odpowiednią geometrię fali odniesienia i fali odtwarzającej można również uzyskiwać różne powiększenia obiektu (zarówno poprzeczne, jak i podłużne) przy odtworzeniu holograficznym. Przebieg ćwiczenia Ze względu na ograniczony czas zajęć, ćwiczenie dotyczy zapisu prostego hologramu Fresnela dwuwymiarowego obiektu dyfuzyjnego. Doświadczenie można przeprowadzić w układzie pokazanym na ys. 4. 3
4 ys. 4 - Przykładowy układ do zapisu hologramu Fresnela. Zwierciadło półprzepuszczalne Z 1 jest oświetlone falą płaską. Część padającego frontu falowego odbija się od Z 1, a następnie od zwierciadła odbiciowego Z 2 i pada na matówkę M umieszczoną tuż przed dwuwymiarowym obiektem Ob (w tym przypadku jest to przezrocze), którego hologram chcemy zapisać. Pole przedmiotowe po przejściu przez Ob interferuje w płaszczyźnie kliszy holograficznej z falą przechodzącą przez Z 1 i odbitą od zwierciadła odbiciowego Z 3, która stanowi wiązkę odniesienia. Aby hologram mógł zostać poprawnie zarejestrowany i był dobrej jakości, układ z ys. 4 musi spełniać następujące warunki: 1) Wiązka odniesienia i wiązka oświetlająca obiekt muszą być koherentne (czyli posiadać stałą w czasie różnicę faz), aby mogła zajść interferencja. 2) Kąt pomiędzy wiązką odniesienia i wiązką obiektową powinien być jak najmniejszy. Kąt ten wpływa na gęstość prążków pojawiających się w płaszczyźnie hologramu im mniejszy kąt, tym prążki mają większą stałą. W przypadku używanych w laboratorium klisz kąt nie powinien przekraczać 30, w przeciwnym wypadku prążki byłyby węższe niż rozmiary cząstek wykazujących efekt światłoczuły i informacja o hologramie nie zostałaby zapisana. 3) Drogi optyczne wiązki odniesienia (przechodzącej przez Z 1, odbitej od Z 3 i padającej na kliszę holograficzną) oraz wiązki przedmiotowej (odbijającej się od Z 1, następnie od Z 2, przechodzącej przez M i Ob i padającej na kliszę holograficzną) powinny być równe. Im mniejsza jest różnica dróg optycznych, tym większy uzyskamy kontrast po odtworzeniu hologramu. 4) Obiekt musi być dobrze oświetlony każdy jego punkt, który chcemy potem obserwować w trakcie odtworzenia hologramu, powinien emitować w przybliżeniu falę sferyczną (trzeba zwrócić szczególną uwagę na niepożądane cienie i odbłyski). 5) Cały układ powinien być stabilny mechanicznie. Jeśli ten warunek nie byłby spełniony to prążki interferencyjne przesuwałyby się i informacje zapisałyby się jedna na drugiej, uniemożliwiając ich późniejsze odtworzenie. 6) Natężenia wiązki przedmiotowej oraz wiązki odniesienia powinny być w przybliżeniu jednakowe. Ten warunek można zrealizować wstawiając odpowiednią ilość szarych 4
5 filtrów w mocniejszą wiązkę lub stosując zwierciadła 0% i 50%. Spełnienie tego warunku powoduje, że czas naświetlania ze względu na obie wiązki jest taki sam (lub podobny), co pozwala na uzyskanie prążków interferencyjnych o dobrym kontraście. Zapisu hologramu dokonujemy przy użyciu lasera He-Ne o długości fali 0,6328 μm. W tym ćwiczeniu ważne jest, aby wiązka odniesienia była falą płaską o dobrej jakości frontu falowego (kontrola interferometryczna). Taka konfiguracja układu umożliwi nam odtworzenie nieprzeskalowanego obrazu naszego przezrocza. Wtedy powstające obrazy rzeczywisty i urojony będą się znajdowały dokładnie w tej samej odległości od kliszy holograficznej co obiekt. Po rejestracji pola interferencyjnego na kliszy otrzymujemy hologram. Po wywołaniu i utrwaleniu wstawiamy kliszę z powrotem w płaszczyźnie zapisywanego pola. Usuwamy zwierciadło Z 2 (lub zasłaniamy je) i obserwujemy odtworzony obraz urojony dyfuzyjnego obiektu dwuwymiarowego (przeźrocza z matówką). Widoczny obraz rejestrujemy aparatem cyfrowym. Odtworzenia hologramu dokonujemy przy użyciu lasera He-Ne o długości fali 0,6328 μm. Następnie badamy obraz rzeczywisty. Odtworzenia hologramu dokonujemy przy użyciu lasera He-Ne o długości fali 0,6328 μm. Ważne jest, aby fala odtwarzająca była falą płaską o dobrej jakości frontu falowego (kontrola interferometryczna). Należy dokonać pomiaru odległości odtworzonego obrazu od hologramu oraz poprzecznych rozmiarów obrazu. Następnie badamy obraz rzeczywisty odtwarzany w fali sferycznej zbieżnej oraz rozbieżnej. Odtworzenia hologramu dokonujemy przy użyciu lasera He-Ne o długości fali 0,6328 μm. W tym przypadku należy dokonać pomiaru odległości odtworzonego obrazu od hologramu oraz poprzecznych rozmiarów obrazu. W kolejnym punkcie dokonujemy odtworzenia hologramu przy użyciu lasera zielonego o długości fali 0,532 μm. Ważne jest, aby fala odtwarzająca była falą płaską o dobrej jakości frontu falowego (kontrola interferometryczna). Należy dokonać pomiaru odległości odtworzonego obrazu od hologramu (kliszy holograficznej) oraz poprzecznych rozmiarów obrazu. 5
Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
ĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA
ĆWICZENIE 5. HOLOGAM KLASYCZNY TYP FESNELA Wstęp teoretyczny Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej przez falę elektromagnetyczną
Ćwiczenie H2. Hologram Fresnela
Pracownia Informatyki Optycznej Wydział Fizyki PW Ćwiczenie H Hologram Fresnela 1. Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej
Ćwiczenie 3. Wybrane techniki holografii. Hologram podstawy teoretyczne
Ćwiczenie 3 Wybrane techniki holografii Hologram podstawy teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym. Dzięki temu można m.in. odtwarzać trójwymiarowe obiekty w ich naturalnym,
Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
ĆWICZENIE 6. Hologram gruby
ĆWICZENIE 6 Hologram gruby 1. Wprowadzenie Na jednym z poprzednich ćwiczeń zapoznaliśmy się z cienkim (powierzchniowo zapisanym) hologramem Fresnela, który daje nam możliwość zapisu obiektu przestrzennego.
Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela
ĆWICZENIE 3 Dwuekspozycyjny hologram Fresnela 1. Wprowadzenie Holografia umożliwia zapis pełnej informacji o obiekcie, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Laboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy
ĆWICZENIE 5 Sprzęganie fazy 1. Wprowadzenie Ćwiczenie polega na praktycznym wykorzystaniu zjawiska sprzęgania fazy. Efekt sprzężenia fazy realizowany będzie w sposób holograficzny. Podstawowym zadaniem
Hologram gruby (objętościowy)
Hologram gruby (objętościowy) Wprowadzenie teoretyczne Holografia jest bardzo rozległą dziedziną optyki i na pewno nie dziwi fakt, że istnieją hologramy różnego typu. W zależności od metody zapisu hologramu,
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Ćwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
Laboratorium Informatyki Optycznej ĆWICZENIE 7. Hologram gruby widoczny w zakresie 360
ĆWICZENIE 7 Hologram gruby widoczny w zakresie 360 1. Wprowadzenie Klasyczne hologramy są jak dotąd najlepszą metodą rejestracji obiektów trójwymiarowych. Dzięki pełnemu zapisowi informacji o obiekcie
Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel
Rys. 1 Schemat układu obrazującego 2f-2f
Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając
Badanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
Ćwiczenie 12. Wprowadzenie teoretyczne
Ćwiczenie 12 Hologram cyfrowy. I. Wstęp Wprowadzenie teoretyczne Ze względu na sposób zapisu i odtworzenia, hologramy można podzielić na trzy grupy: klasyczne, syntetyczne i cyfrowe. Hologramy klasyczny
Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
Hologram Fresnela obiektu punktowego
Hologram Fresnela obiektu punktowego Ponieważ rejestracja hologramu opiera się na zjawisku interferencji jako źródło światła stosuje się laser. Wiązka laserowa charakteryzuje się tak dużym stopniem spójności,
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Ćwiczenie 1. Rys. 1. W układzie współrzędnych sferycznych (Rys.1) fala sferyczna jest opisana funkcją: A (2a)
Ćwiczenie 1 Regulacja pinholi. Generacja fali płaskiej i sferycznej. Badanie jakości fali płaskiej na etalonie. Interferometr Michelsona. Doświadczenie Younga Część teoretyczna Światło jest falą elektromagnetyczną,
Ćwiczenie 3. Koherentne korelatory optyczne
Ćwiczenie 3 Koherentne korelatory optyczne 1. Wprowadzenie Historycznie jednym z waŝniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę zdjęć lotniczych lub
Rodzaje obrazów. Obraz rzeczywisty a obraz pozorny. Zwierciadło. Zwierciadło. obraz rzeczywisty. obraz pozorny
Rodzaje obrazów Obraz rzeczywisty a obraz pozorny cecha sposób powstania ustawienie powiększenie obraz rzeczywisty pozorny prosty odwrócony powiększony równy pomniejszony obraz rzeczywisty realna obecność
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Układy holograficzne: Odbiciowe Transparentne Fourierowskie Tęczowe Kolorowe grube Plazmoniczne Hologramy generowane
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Optyka Fourierowska. Wykład 9 Hologramy cyfrowe
Optyka Fourierowska Wykład 9 Hologramy cyfrowe Hologramy generowane w komputerze Hologramy poza zapisem intefererujących fal koherentnych można wyliczyć za pomocą komputera i wydrukować na ploterze lub
Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
Badania elementów i zespołów maszyn laboratorium (MMM4035L)
Badania elementów i zespołów maszyn laboratorium (MMM4035L) Ćwiczenie 23. Zastosowanie elektronicznej interferometrii obrazów plamkowych (ESPI) do badania elementów maszyn. Opracowanie: Ewelina Świątek-Najwer
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Ćwiczenie 4. Część teoretyczna
Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu
PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE
Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 5 PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE 5.1 Cel ćwiczenia Zapoznanie się z zależnościami opisującymi kształt wiązki laserowej (mod
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Hologramy generowane komputerowo - CGH Widmo obrazu: G x, y FT g x, y mające być zapisane na hologramie, dyskretyzujemy
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Ćwiczenie 5. Rys. 1 Geometria zapisu Fresnela.
Ćwiczenie 5 Strefy Fresnela Wprowadzenie teoretyczne Wyobraźmy sobie, że fala płaska o długości, propagująca się wzdłuż osi OZ ma na płaszczyźnie OXY amplitudę A. Rys. 1 Geometria zapisu Fresnela. Z równania
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych
ĆWICZENIE 1 Optyczna filtracja sygnałów informatycznych 1. Wprowadzenie Przyjmijmy że znamy pole świetlne w płaszczyźnie ( ) czyli że znamy rozkład jego amplitudy i fazy we wszystkich punktach gdzie określony
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
ZASTOSOWANIE LASERÓW W HOLOGRAFII
ZASTOSOWANIE LASERÓW W HOLOGRAFII Holografia - dzia optyki zajmuj cy si technikami uzyskiwania obrazów przestrzennych metod rekonstrukcji fali (g ównie wiat a, ale te np. fal akustycznych). Przez rekonstrukcj
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.
Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
HOLOGRAFIA CEL ĆWICZENIA APARATURA ZAGADNIENIA DO KOLOKWIUM (INSTRUKCJA + PROPONOWANA LITERATURA) ZADANIA DO PRZYGOTOWANIA
H HOLOGRAFIA CEL ĆWICZENIA Ćwiczenie jest doświadczeniem z dziedziny interferometrii i rejestracji obrazów trójwymiarowych. W trakcie ćwiczenia wykonywane są hologramy typu odbiciowego, objętościowego
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.
Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego
Interferometr Michelsona
Marcin Bieda Interferometr Michelsona (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR KRZYWIZNY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania krzywizny soczewek. 2. Zakres wymaganych zagadnieo: Zjawisko dyfrakcji i interferencji
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III
Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:
18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu
Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny
Fotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne
Fotonika Wykład 2: Elementy refrakcyjne i dyfrakcyjne Plan: Siatka dyfrakcyjna: amplitudowa, fazowa Siatka Dammana Soczewka: refrakcyjna, dyfrakcyjna, macierz mikrosoczewek Łączenie refrakcji z dyfrakcją
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk