Rys. 1 Schemat układu obrazującego 2f-2f
|
|
- Bogusław Czech
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając szczególną uwagę na ich głębię ostrości. Układy obrazujące Jest wiele układów obrazujących, które formują obraz rzeczywisty przedmiotu z powiększeniem równym 1. Najprostszym układem tego typu jest tzw. układ 2f-2f, w którym wykorzystuje się pojedynczą cienką soczewkę skupiającą o znanej ogniskowej f. Schemat układu przedstawia Rys. 1. Obraz powstaje odwrócony. Rys. 1 Schemat układu obrazującego 2f-2f W celu osiągnięcia powiększenia jednostkowego istotne jest, by zarówno przedmiot (przeźrocze z matówką), jak i płaszczyzna macierzy światłoczułej znajdowały się w odległości równej podwójnej ogniskowej soczewki, według równania soczewki: 1 x + 1 y = 1 (1) f oraz: a więc: y = 1, (2) x x = y = 2f. (3) W praktyce układ zestawiony na ostro, czyli z rozogniskowaniem równym 0, pozwala 1
2 na uzyskanie obrazu ostrego, lecz rozmytego ze względu na skończoną aperturę elementu obrazującego (czyli soczewki). W przypadku układu rozogniskowanego płaszczyzna akwizycji obrazu rzeczywistego jest przesunięta wzdłuż osi optycznej układu (tak, jak pokazuje Rys. 2). Rys. 2 Schemat układu obrazującego 2f-2f z rozogniskowaniem Obraz uzyskany w takim układzie będzie nieostry. Wielkość rozogniskowania układu można wyrazić liczbowo przy użyciu parametru w 20, zdefiniowanego według poniższych zależności: ε = 1 x + 1 y 1 f, (4) oraz gdzie: x odległość przedmiotowa, y odległość obrazowa, f ogniskowa soczewki, d średnica soczewki, λ długość fali światła. w 20 = ε d2 8λ, (5) Odpowiedź impulsowa układu Odpowiedź impulsową układu można zdefiniować, jako obraz punktowego źródła światła uzyskany w badanym układzie obrazującym. W rzeczywistych układach optycznych odpowiedź impulsową można zbadać poprzez umieszczenie w płaszczyźnie przedmiotowej quasi-punktowego źródła światła takiego, jak pinhola. Drugim sposobem jest użycie soczewki skupiającej dobrej jakości i wypozycjonowanie jej tak, aby ognisko znalazło się w płaszczyźnie przedmiotowej badanego układu obrazującego. Można powiedzieć, że liniowy układ optyczny przy oświetleniu quasi-monochromatycznym i koherentnym przestrzennie jest liniowy ze względu na zespoloną amplitudę. Układ taki opisujemy przez podanie odpowiedzi impulsowej układu h, która jest funkcją zespoloną. Natomiast liniowy układ optyczny oświetlony światłem quasi-monochromatycznym i niekoherentnym przestrzennie jest układem liniowym ze względu na natężenie światła. 2
3 Wtedy opisujemy go za pomocą funkcji rozmycia punktu (czyli z ang. PSF Point Spread Function). PSF = h 2, (6) Przykładowy kształt funkcji PSF dla układu bez rozogniskowania przedstawia Rys. 3. Rys. 3 Kształt funkcji PSF dla układu bez rozogniskowania. W przypadku idealnym funkcja PSF powinna być punktem, jednakże w wyniku ograniczonych rozmiarów apertury układu obrazującego jest ona zawsze rozmyta. Poniższa ilustracja prezentuje wyniki eksperymentalnego pomiaru kształtu PSF przy zwiększającym się rozogniskowaniu układu optycznego. Pokazany jest też wpływ rozogniskowania na ostrość uzyskanego obrazu przeźrocza zawierającego cyfrę 4. w 20 PSF Obraz 0,5 1 2 Rys. 4 Kształt funkcji PSF (z lewej) i otrzymany obraz (z prawej) dla układu o zwiększającym się rozogniskowaniu. Transformata Fouriera funkcji PSF nosi nazwę optycznej funkcji przenoszenia (z ang. OTF Optical Transfer Function), a jej moduł to funkcja przenoszenia modulacji (czasem też 3
4 nazywana funkcją przenoszenia kontrastu, czyli z ang. MTF - Modulation Transfer Function). Funkcja OTF pokazuje stopień przenoszenia kontrastu dla poszczególnych częstości przestrzennych, co ilustruje Rys. 5. Rys. 5 Przykładowy wykres funkcji OTF dla trzech różnych parametrów rozogniskowania (gdzie f 0 to częstość odcięcia dla oświetlenia koherentnego przestrzennie). Element Miecz Świetlny i powiększona głębia ostrości Transmitancja fazowa takiego elementu może zostać zdefiniowana w następujący sposób: πr 2 Pha(R, T) =, f(t π) λ (f + π ) gdzie: R współrzędna radialna, T współrzędna azymutalna. (7) Element ten posiada właściwość skupiania wiązki nie w punkt, ale w odcinek ogniskowy tworzący wzdłuż osi optycznej linię śrubową o długości zależnej od parametru f. W związku z tym, jako element obrazujący charakteryzuje się on zwiększoną głębią ostrości, co ilustruje Rys. 6. Rys. 6 Porównanie biegu promieni światła za soczewką (po lewej) i za elementem Miecz Świetlny (po prawej). Zaznaczono obszar powiększonej głębi ostrego obrazowania. 4
5 W ćwiczeniu należy zaobserwować rozciągłe ognisko i zwiększoną głębię ostrości w przypadku obrazowania wykorzystującego element Miecz Świetlny dla różnych parametrów rozogniskowania. Przebieg ćwiczenia 1) Zarejestrowanie odpowiedzi impulsowej układu obrazującego z wykorzystaniem syntetycznej soczewki Fresnela. 2) Zarejestrowanie odpowiedzi impulsowej układu obrazującego z wykorzystaniem syntetycznego elementu typu miecz świetlny. 3) Wykonanie obrazowania za pomocą syntetycznej soczewki Fresnela oraz obserwacja obrazu podczas różnego rozogniskowania układu. 4) Wykonanie obrazowania za pomocą syntetycznego elementu typu miecz świetlny oraz obserwacja obrazu podczas różnego rozogniskowania układu. 5) Obrazowanie gwiazdy Siemensa obserwacja odwrócenia kontrastu i zwiększonej głębi ostrości. 5
Ćwiczenie 4. Część teoretyczna
Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
ĆWICZENIE 7 OBRAZOWANIE
Komputerowe Metod Optki lab. Wdział Fizki, Politechnika Warszawska ĆWICZENIE 7 OBRAZOWANIE Celem ćwiczenia jest zasmulowanie działania układów obrazującch w świetle monochromatcznm oraz przeprowadzenie
Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
Obrazowanie w świetle quasi-monochromatycznym, niekoherentnym przestrzennie dodają się natężenia.
Obrazowanie w świetle quasi-monochromatycznym, niekoherentnym przestrzennie dodają się natężenia. Przy wprowadzonych oznaczeniach mamy: h u,v 2 - natężeniowa odpowiedź impulsowa (natężeniowy obraz z punktu
Optyka instrumentalna
Optyka instrumentalna wykład 7 11 kwietnia 2019 Wykład 6 Optyka geometryczna Równania Maxwella równanie ejkonału promień zasada Fermata, zasada stacjonarnej fazy (promienie podążają wzdłuż ekstremalnej
Rys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
Optyka instrumentalna
Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego
Ćwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
ĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego.
OBRAZOWANIE W OŚWIETLENIU CZĘŚ ĘŚCIOWO KOHERENTNYM 1. Propagacja światła a częś ęściowo koherentnego prof. dr hab. inŝ. Krzysztof Patorski Krzysztof PoniŜej zajmiemy się propagacją promieniowania quasi-monochromatycznego,
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel
Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych
ĆWICZENIE 1 Optyczna filtracja sygnałów informatycznych 1. Wprowadzenie Przyjmijmy że znamy pole świetlne w płaszczyźnie ( ) czyli że znamy rozkład jego amplitudy i fazy we wszystkich punktach gdzie określony
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją
CZĘŚĆ A CZŁOWIEK Pytania badawcze: Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją Czy obraz świata jaki rejestrujemy naszym okiem jest zgodny z rzeczywistością? Jaki obraz otoczenia
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska
Ćwiczenie 2. Interferometr Ronchiego - badanie jakości soczewek. Sensor Shack ahartmann a badanie frontów sferycznych i porównanie z falą płaską.
Ćwiczenie 2 Interferometr Ronchiego - badanie jakości soczewek. Sensor Shack ahartmann a badanie frontów sferycznych i porównanie z falą płaską. Interferometr Twymana-Greena. Test ostrza noża.. Część teoretyczna
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
POMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki
POMIARY OPTYCZNE 1 { Proste przyrządy optyczne Damian Siedlecki Lupa to najprostszy przyrząd optyczny, dający obraz pozorny, powiększony i prosty. LUPA Aperturę lupy ogranicza źrenica oka. Pole widzenia
Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką
Ćwiczenie 3. Koherentne korelatory optyczne
Ćwiczenie 3 Koherentne korelatory optyczne 1. Wprowadzenie Historycznie jednym z waŝniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę zdjęć lotniczych lub
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
OPTYKA GEOMETRYCZNA Własności układu soczewek
OPTYKA GEOMETRYCZNA Własności układu soczewek opracował: Dariusz Wardecki Wstęp Soczewką optyczną nazywamy bryłę z przezroczystego materiału, ograniczoną (przynajmniej z jednej strony) zakrzywioną powierzchnią
Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Ćw.6. Badanie własności soczewek elektronowych
Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki
Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA
GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.
- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.
Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego
Propagacja w przestrzeni swobodnej (dyfrakcja)
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki.
1 Badamy jak światło przechodzi przez soczewkę - obrazy tworzone przez soczewki. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:
Propagacja światła we włóknie obserwacja pól modowych.
Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących
MODULATOR CIEKŁOKRYSTALICZNY
ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera
Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
Ćwiczenie 3. Wybrane techniki holografii. Hologram podstawy teoretyczne
Ćwiczenie 3 Wybrane techniki holografii Hologram podstawy teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym. Dzięki temu można m.in. odtwarzać trójwymiarowe obiekty w ich naturalnym,
Ćwiczenie 3. Elementy fotometrii i testy rozdzielczości obiektywów fotograficznych. Wprowadzenie teoretyczne. Elementy fotometrii
Ćwiczenie 3 Elementy fotometrii i testy rozdzielczości obiektywów fotograficznych Wprowadzenie teoretyczne Elementy fotometrii W ogólności pomiarem ilościowym promieniowania fal elektromagnetycznych zajmuje
Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic
TELEDETEKCJA A źródło B oddziaływanie z atmosferą C obiekt, oddziaływanie z obiektem D detektor E zbieranie danych F analiza G zastosowania A D TELEDETEKCJA UKŁADY OPTYCZNE Najprostszym elementem optycznym
Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf
B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017
Optyka Wykład X Krzysztof Golec-Biernat Zwierciadła i soczewki Uniwersytet Rzeszowski, 20 grudnia 2017 Wykład X Krzysztof Golec-Biernat Optyka 1 / 20 Plan Tworzenie obrazów przez zwierciadła Równanie zwierciadła
Wykład 6. Aberracje układu optycznego oka
Wykład 6 Aberracje układu optycznego oka Za tydzień termin składania projektów prac zaliczeniowych Rozogniskowanie Powody rozogniskowania: nieskorygowana wada refrakcyjna oka słaby bodziec (równomiernie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 10, 30.10.2015. Radosław Łapkiewicz, Michał Nawrot
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 10, 30.10.2015 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Łapkiewicz, Michał Nawrot Łukasz Zinkiewicz Wykład 9 - przypomnienie
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
mgr Mateusz Wojtaszek, dr Dagmara Sokołowska Dodatek A Promień światła zawsze wraca do punktu, z którego został wysłany.
Poniższe dodatki są przeznaczone dla nauczycieli. Kolorem czerwonym na rysunkach zaznaczono bieg promieni padających na lustra, zwierciadła i soczewki. Proponowane dodatki są rozszerzeniem nieobowiązkowym
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
Podstawowe Parametry Obrazów
Podstawowe Parametry Obrazów Schemat urządzenia Camera Obscura. Urządzenie składa się z wyczernionego wewnątrz pudełka, co ma zapobiec powstawaniu odbić światła od ścianek. Światło ze źródła S, znajdującego
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi
Mikro optyka MO Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Systemy bazujące na mikrooptyce Zalety systemów MO duże macierze wysoka dokładność pozycjonowania
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Rodzaje obrazów. Obraz rzeczywisty a obraz pozorny. Zwierciadło. Zwierciadło. obraz rzeczywisty. obraz pozorny
Rodzaje obrazów Obraz rzeczywisty a obraz pozorny cecha sposób powstania ustawienie powiększenie obraz rzeczywisty pozorny prosty odwrócony powiększony równy pomniejszony obraz rzeczywisty realna obecność
f = -50 cm ma zdolność skupiającą
19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło
Obrazowanie za pomocą soczewki
Marcin Bieda Obrazowanie za pomocą soczewki (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki
Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Metody analizy i kształtowania wiązki laserowej Źródło: Beyer Wiązka gaussowska Natężenia promieniowania poprzecznie do kierunku propagacji
Różne sposoby widzenia świata materiał dla ucznia, wersja guided inquiry
CZĘŚĆ A CZŁOWIEK Pytania badawcze: Różne sposoby widzenia świata materiał dla ucznia, wersja guided inquiry Czy obraz świata jaki rejestrujemy naszym okiem jest zgodny z rzeczywistością? Jaki obraz otoczenia
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Mówiąc prosto, każdy aparat jest światłoszczelnym pudełkiem z umieszczonym w przedniej ściance obiektywem, przez który jest wpuszczane światło oraz
Początek fotografii Mówiąc prosto, każdy aparat jest światłoszczelnym pudełkiem z umieszczonym w przedniej ściance obiektywem, przez który jest wpuszczane światło oraz materiałem lub matrycą światłoczułą.
Hologram gruby (objętościowy)
Hologram gruby (objętościowy) Wprowadzenie teoretyczne Holografia jest bardzo rozległą dziedziną optyki i na pewno nie dziwi fakt, że istnieją hologramy różnego typu. W zależności od metody zapisu hologramu,
Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela
ĆWICZENIE 3 Dwuekspozycyjny hologram Fresnela 1. Wprowadzenie Holografia umożliwia zapis pełnej informacji o obiekcie, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych
Moc optyczna (właściwa) układu soczewek Płaszczyzny główne układu soczewek: - płaszczyzna główna przedmiotowa - płaszczyzna główna obrazowa Punkty kardynalne: - ognisko przedmiotowe i obrazowe - punkty
Laboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy
ĆWICZENIE 5 Sprzęganie fazy 1. Wprowadzenie Ćwiczenie polega na praktycznym wykorzystaniu zjawiska sprzęgania fazy. Efekt sprzężenia fazy realizowany będzie w sposób holograficzny. Podstawowym zadaniem
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Hologramy generowane komputerowo - CGH Widmo obrazu: G x, y FT g x, y mające być zapisane na hologramie, dyskretyzujemy
Katedra Fizyki i Biofizyki UWM, Instrukcje do ćwiczeń laboratoryjnych z biofizyki. Maciej Pyrka wrzesień 2013
M Wyznaczanie zdolności skupiającej soczewek za pomocą ławy optycznej. Model oka. Zagadnienia. Podstawy optyki geometrycznej: Falowa teoria światła. Zjawisko załamania i odbicia światła. Prawa rządzące
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK Temat: Soczewki. Zdolność skupiająca soczewki. Prowadzący: Karolina Górska Czas: 45min Wymagania szczegółowe podstawy programowej (cytat): 7.5) opisuje (jakościowo)
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Wyznaczanie parametro w wiązki gaussowskiej
Wyznaczanie parametro w wiązki gaussowskiej Spis treści 1. Wstęp... 1 2. Definicja wiązki gaussowskiej... 2 3. Parametry określające wiązkę gaussowską... 4 4. Transformacja wiązki gaussowskiej przez soczewki...
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
6. Badania mikroskopowe proszków i spieków
6. Badania mikroskopowe proszków i spieków Najprostszy układ optyczny stanowią dwie współosiowe soczewki umieszczone na końcach tubusu (rysunek 42). Odwzorowanie mikroskopowe jest dwustopniowe: obiektyw
PODSUMOWANIE SPRAWDZIANU
PODSUMOWANIE SPRAWDZIANU AGNIESZKA JASTRZĘBSKA NAZWA TESTU SPRAWDZIAN NR 1 GRUPY A, B, C LICZBA ZADAŃ 26 CZAS NA ROZWIĄZANIE A-62, B-62, C-59 MIN POZIOM TRUDNOŚCI MIESZANY CAŁKOWITA LICZBA PUNKTÓW 39 SEGMENT
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.
Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Dyfrakcja zasada Babineta + = Ekrany E 1 E 2 0 Pole na ekranie E 1 + E 2 = 0 E 1 = E 2 To samo tylko w przeciw