Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 7, Radosław Chrapkiewicz, Filip Ozimek
|
|
- Marian Paluch
- 9 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 7, wykład: pokazy: ćwiczenia: Czesław Raewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner
2 Wykład 6 - przypomnienie światło na granicy dielektryk-przewodnik; zespolony kąt załamania, powierzchnie stałej fazy, powierzchnie stałej amplitudy, współczynnik odbicia, przesunięcie fazowe przy odbiciu płaski, symetryczny falowód dielektryczny; równanie falowe, warunki ciągłości pól na granicach, rozwiązania typu TE i TM, mody, liczba modów, efektywny współczynnik załamania, prędkość grupowa, dyspersja mięymodowa, dyspersja prędkości grupowej falowody cylindryczne światłowody, warunek pracy jednomodowej, tłumienie, dyspersja, produkcja światłowody fotoniczne
3 optyka geometryczna Haselbladt XPan30 20 l/mm 10 l/mm r-nia Maxwella r-nie falowe??? śleenie promieni 40 l/mm
4 eikonał, 1 Płaska fala (monochromatyczna): E r, t i k r ωt = E 0 e E E 0 E E 0 z E 0 k k x Fala sferyczna: E r, t = E 0 r ei k r ωt E r, t = E 0 r e iωt H r, t = H 0 r e iωt E 0 r = e r e ik 0S r H 0 r = h r e ik 0S r gie S r to eikonał: S r = k r r k 0 r-nia Maxwella, rachunki... pomijamy wyrazy z 1 k 0, 1 k 0 2
5 eikonał, 2 dostajemy r-nie eikonału S 2 + S 2 + S 2 = n 2 (x, y, z) x y z rachunki... kierunek wektora Poyntinga: S S = S S rachunki... trajektoria promienia: d ds dr n ds = n
6 promień świetlny trajektoria promienia: d ds dr n ds = n załóżmy: n = const mamy wtedy d 2 r ds 2 = 0 r = sa + b gie a i b to stałe wektory W ośrodkach jednorodnych (n = const) światło rozchoi się po liniach prostych W ogólnym przypadku, promień świetlny nie musi być linią prostą
7 miraże (do góry nogami) y d ds dr n ds = n n = n 0 1 2αy załóżmy, że promień jest (prawie) równoległy do osi z: z ds d dr n = n d d d dx n(y) dy n(y) n(y) = 0 2n 0 α 0 czyli n y d2 y 2 = 2n 0α rozwiązanie dla n y n 0 to parabola: y(z) = y 0 + ξz αz 2 y 0 = y 0, ξ = dy z=0
8 GRIN, 1 y n = n 0 1 α2 y 2 2 d ds dr n ds = n GRaded INdex z załóżmy, że promień jest (prawie) równoległy do osi z: ds d dr n = n d d d dx n(y) dy n(y) n(y) = 0 α 2 0 czyli n y d2 y 2 = α2 rozwiązanie dla n y n 0 to funkcja harmoniczna: y(z) = y 0 cos αz + φ y 0 oraz φ wyznaczamy z warunków początkowych
9 GRIN, 2 y y(z) = y 0 cos αz z Dla z 0 = π 2α mamy y z 0 = 0 n = n 0 1 α2 y 2 2 z 0 ogniskowanie niezależnie od y 0 y y(z) = y 0 sin αz y y(z) = y 0 sin αz z z obrazowanie 2z 0 kolimacja z 0
10 obrazowanie w odbiciu od lustra lustro- elipsoida obrotowa jest dobra bo reguła Fermata y x, y r 1 + r 2 = 2a s r 1 r 2 p 2a x r 1 r 2 r 1 + dr r 2 dr równanie elipsy: r 1 + r 2 = 2a x s 2 + y 2 + p x 2 + y 2 = 2a = p + s granica dużych odległości pomięy ogniskami p daje: x s 2 + y 2 + p x = p + s co prowai do paraboli y 2 = 4sx w 3D mamy paraboloidę obrotową
11 obrazowanie przez załamanie, 1 warunek obrazowania: r 1 + n 2 r 2 = s + n 2 p x + s 2 + y 2 + n 2 p x 2 + y 2 = s + n 2 p Prosty przykład: granica p daje x + a 2 a 2 y2 b 2 = 1 gie: a = s + n 2, b = s n 2 n 2 + hiperboloida obrotowa p,s punkty sprzężone Owale Kartezjusza
12 obrazowanie przez załamanie, 2
13 obrazowanie przez załamanie, 3 obraz wirtualny, warunek: r 1 n 2 r 2 = const = A n 2 (A a) r 1 r 2 Rozważmy przypadek const = 0: A n 2 A a = 0 n 2 A = n 2a n 2 x 2 + y 2 + z 2 n 2 x 2 + y 2 + z a 2 = 0 P r.. rachunki algebraiczne dają powierzchnię sferyczną. Dla n 2 = 1 mamy a A A C i R n 1 AC = R/n A C = nr n 1 nr R/ n Punkty aplanatyczne kuli
14 obrazowanie przez załamanie, 4 Punkty aplanatyczne kuli bezaberracyjne obrazowanie! Immersyjny obiektyw mikroskopowy:
15 powierzchnia sferyczna, 1 l o Θ 1 A h R Θ 2 φ S V C P oo l i Zasada Fermata rozwiązanie opowiada punktowi stacjonarnemu drogi optycznej DO = l o + n 2 l i oo - oś optyczna s o n 2 s i Drogę optyczną parametryzujemy podając kąt φ Z prawa kosinusów, dla trójkąta SAC: l o = R 2 + s o + R 2 2R s o + R cos φ Podobnie, dla trójkąta APC: l i = R 2 + s i R 2 2R s i R cos π φ Szukamy zerowej pochodnej DO: skąd mamy d dφ DO = R s o + R sin φ n 2R s o + R sin φ = 0 2l o 2l o l o + n 2 l i = 1 R n 2 s i l i s o l o
16 powierzchnia sferyczna, 2 A S φ o l o Θ 1 V h R φ Θ 2 l i C φ i P Warunek obrazowania (ścisły): + n 2 = 1 n 2 s i l o l i R l i s o l o n 2 s o s i Przybliżenie przyosiowe: kąty są małe cos x = 1 x2 2! + x4 4! x6 6! + sin x = x x3 3! + x5 5! x7 7! + Przyjmujemy: cos φ o = cos φ i 1 co daje s o l o s cos φ o o l i s i s cos φ i i + n 2 = n 2 s o s i R dla promieni przyosiowych (optyka gaussowska)
17 powierzchnia sferyczna - ogniska F i Warunek ogniskowania + n 2 = n 2 f i R f i = n 2 R n 2 ognisko obrazowe, ognisko tylne n 2 f i Warunek kolimacji f o + n 2 = n 2 R f o = n 2 R ognisko przedmiotowe, ognisko przednie konwencja znaków! Na rysunkach powyżej R, s o, s i, f o, f i są dodatnie
18 konwencja znaków S F o l o Θ 1 V A h R φ Θ 2 C l i F i P x o x i n 2 s o s i parametr znak warunek s o, f o + przedmiot/ognisko przednie na lewo od powierzchni x o + przedmiot na lewo od ogniska F o s i, f i + obraz/ognisko tylne na prawo od powierzchni x i + obraz na prawo od ogniska F i R + Środek sfery na prawo od punktu V y o, y i + przedmiot/obraz powyżej osi optycznej
19 cienka soczewka, 1 obraz tworzony przez pierwszą powierzchnię powstaje w odległości s i1 P' s i1 S C1 s o2 s o1 R 1 V 1 n 2 d V 2 C 2 R 2 s i2 przybliżenie cienkiej soczewki d s i2 daje: s o + s i = n 2 1 R 1 1 R 2 P s o1 + n 2 s i1 = n 2 R 1 i w stosunku do 2. powierzchni leży w s i1 s o2 = s o1 + d która tworzy kolejny obraz w co zapisujemy jako ( s i1 +d) + n 2 s i2 = n 2 R 2 s o1 + s i2 = n 2 1 R 1 1 R 2 + n 2 d (d s i1 )s i1 szkło o współczynniku załamania n i powietrze: = n 1 1 s o s i R 1 R 2
20 cienka soczewka, 2 F 1 f n 1 n f F 2 Położenia ognisk = n 1 1 f i R 1 R f o = n R 1 R 2 F 1 n n 1 F 2 Ogniskowa cienkiej soczewki 1 f = n 1 1 R 1 1 R 2 f f
21 cienka soczewka, 3 Soczewki skupiające (f > 0) Soczewki rozpraszające (f < 0) dwuwypukła (R 1 > 0, R 2 < 0) dwuwklęsła (R 1 < 0, R 2 > 0) płasko-wypukła (R 1 =, R 2 < 0) płasko-wklęsła (R 1 =, R 2 > 0) menisk wypukły (R 1 > 0, R 2 > 0) menisk wklęsły (R 1 > 0, R 2 > 0)
22 cienka soczewka - ogniskowanie Ogniskowanie wiązki promieni równoległych F o F i f płaszczyzna ogniskowa
23 cienka soczewka konstrukcja obrazu Fo obraz rzeczywisty Fi P y i Formuła Gaussa 1 s o + 1 s i = 1 f y o S x f f xi o s o s i Formuła Newtona x o x i = f 2 P obraz pozorny S powiększenie poprzeczne M T y i y o M T = s i s o = x i f = f x o y i y o s i F o f s o f F i powiększenie podłużne M L ds i ds o = f 2 s o f 2
24 cienka soczewka, 4 symetrie Odbicie: góra-dół, prawo-lewo Skrętność zachowana
25 lustro sferyczne SC CP SA PA S C P i F r V A ale SC = s o R = s o + R CP = s i + R Jeśli zastosujemy przybliżenie przyosiowe to SA s o, PA s i f co daje s i s o R s o +R s o = s i+r s i czyli lustro paraboliczne off-axis 1 s o + 1 s i = 2 R Ogniskowa lustra sferycznego f = R 2
26 symetrie obrazy w lustrze płaskim
27 układy soczewek? po kolei?
28 Punkty i płaszczyzny kardynalne ogniska (foci) F, F o i S H o F i F o H i P punkty główne (principal points) H o, H i a N o Ni F i F o a punkty węzłowe (nodal points) N o, N i
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
Optyka instrumentalna
Optyka instrumentalna wykład 7 11 kwietnia 2019 Wykład 6 Optyka geometryczna Równania Maxwella równanie ejkonału promień zasada Fermata, zasada stacjonarnej fazy (promienie podążają wzdłuż ekstremalnej
Optyka geometryczna MICHAŁ MARZANTOWICZ
Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych
Moc optyczna (właściwa) układu soczewek Płaszczyzny główne układu soczewek: - płaszczyzna główna przedmiotowa - płaszczyzna główna obrazowa Punkty kardynalne: - ognisko przedmiotowe i obrazowe - punkty
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017
Optyka Wykład X Krzysztof Golec-Biernat Zwierciadła i soczewki Uniwersytet Rzeszowski, 20 grudnia 2017 Wykład X Krzysztof Golec-Biernat Optyka 1 / 20 Plan Tworzenie obrazów przez zwierciadła Równanie zwierciadła
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Rodzaje obrazów. Obraz rzeczywisty a obraz pozorny. Zwierciadło. Zwierciadło. obraz rzeczywisty. obraz pozorny
Rodzaje obrazów Obraz rzeczywisty a obraz pozorny cecha sposób powstania ustawienie powiększenie obraz rzeczywisty pozorny prosty odwrócony powiększony równy pomniejszony obraz rzeczywisty realna obecność
Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia
- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.
Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017
Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej
Optyka instrumentalna
Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego
OPTYKA INSTRUMENTALNA
OPTYKA INSTRUMENTALNA Wykłady 2 i 3: ABERRACJE: odwzorowanie stygmatyczne; eikonał; aberracje geometryczne III rzędu (Seidla): sferyczna, koma, astygmatyzm i krzywizna pola; dystorsja; aberracje chromatyczne:
Promienie
Teoria promienia Promienie Zasada Fermata Od punktu źródłowego Z do punktu obserwacji A, światło rozchodzi się po takiej drodze na której, lokalnie rzecz biorąc, czas przejścia światła jest ekstremalny.
Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej
Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK Temat: Soczewki. Zdolność skupiająca soczewki. Prowadzący: Karolina Górska Czas: 45min Wymagania szczegółowe podstawy programowej (cytat): 7.5) opisuje (jakościowo)
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
OPTYKA GEOMETRYCZNA Własności układu soczewek
OPTYKA GEOMETRYCZNA Własności układu soczewek opracował: Dariusz Wardecki Wstęp Soczewką optyczną nazywamy bryłę z przezroczystego materiału, ograniczoną (przynajmniej z jednej strony) zakrzywioną powierzchnią
Optyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
+OPTYKA 3.stacjapogody.waw.pl K.M.
Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w
Problemy optyki geometrycznej. Zadania problemowe z optyki
. Zadania problemowe z optyki I LO im. Stefana Żeromskiego w Lęborku 3 lutego 2012 Zasada Fermata Sens fizyczny zasady Zasada, sformułowana przez Pierre a Fermata w 1650 roku dotyczy czasu przejścia światła
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Fizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.
Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:
34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1
Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja
ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl
1 ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl DZIAŁ 3 Optyka geometryczna i elementy optyki falowej. Budowa materii. 3.1. Optyka
Propagacja światła we włóknie obserwacja pól modowych.
Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
WOJSKOWA AKADEMIA TECHNICZNA
1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,
Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku
Wykłady z Fizyki. Optyka
Wykłady z Fizyki 09 Optyka Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ WADY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi wadami soczewek i pomiar aberracji sferycznej, chromatycznej i astygmatyzmu badanych soczewek. 2. Zakres wymaganych
ŚWIATŁO I JEGO ROLA W PRZYRODZIE
ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny
SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach
Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III
Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:
Pytania do ćwiczeń na I-szej Pracowni Fizyki
Ćw. nr 5 Oscylator harmoniczny. 1. Ruch harmoniczny prosty. Pojęcia: okres, wychylenie, amplituda. 2. Jaka siła powoduje ruch harmoniczny spręŝyny i ciała do niej zawieszonego? 3. Wzór na okres (Studenci
4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2)
204 Fale 4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2) Celem ćwiczenia jest pomiar ogniskowych soczewek skupiających i rozpraszających oraz badanie wad soczewek: aberracji sferycznej,
Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką
LABORATORIUM OPTYKI GEOMETRYCZNEJ I INSTRUMENTALNEJ (specjalność optometria) WADY SOCZEWEK
LABORATORIUM OPTYKI GEOMETRYCZNEJ I INSTRUMENTALNEJ (specjalność optometria) Wydział Fizyki, Uniwersytet Warszawski WADY SOCZEWEK I. Cel ćwiczenia Zapoznanie z niektórymi wadami soczewek i pomiar aberracji
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja
TEST nr 1 z działu: Optyka
Grupa A Testy sprawdzające TEST nr 1 z działu: Optyka imię i nazwisko W zadaniach 1. 17. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. klasa data 1 Gdy światło rozchodzi się w próżni, jego prędkć
17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
FIZYKA KLASA III GIMNAZJUM
2016-09-01 FIZYKA KLASA III GIMNAZJUM SZKOŁY BENEDYKTA Treści nauczania Tom III podręcznika Tom trzeci obejmuje następujące punkty podstawy programowej: 5. Magnetyzm 6. Ruch drgający i fale 7. Fale elektromagnetyczne
Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie
Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński Zwierciadła niepłaskie Obrazy w zwierciadłach niepłaskich Obraz rzeczywisty zwierciadło wklęsłe Konstrukcja obrazu w zwierciadłach
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
LABORATORIUM Z FIZYKI
Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
III. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Rozdział 9. Optyka geometryczna
Rozdział 9. Optyka geometryczna 206 Spis treści Optyka geometryczna i falowa - wstęp Widzenie barwne Odbicie i załamanie Prawo odbicia i załamania Zasada Fermata Optyka geometryczna dla soczewek Warunki
Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki
Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Metody analizy i kształtowania wiązki laserowej Źródło: Beyer Wiązka gaussowska Natężenia promieniowania poprzecznie do kierunku propagacji
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 22, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład, 18.05.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie oddziaływanie
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
Korekcja wad wzroku. zmiana położenia ogniska. Aleksandra Pomagier Zespół Szkół nr1 im KEN w Szczecinku, klasa 1BLO
Korekcja wad wzroku zmiana położenia ogniska Aleksandra Pomagier Zespół Szkół nr im KEN w Szczecinku, klasa BLO OKULISTYKA Dział medycyny zajmujący się budową oka, rozpoznawaniem i leczeniem schorzeń oczu.
ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II
ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie