MODELOWANIE DYNAMIKI LOTU POCISKÓW ARTYLERYJSKICH O WYDŁUŻONYM ZASIĘGU
|
|
- Izabela Kujawa
- 7 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE INŻYNIERSKIE ISNN X 3, s , Gliwice 006 MODELOWANIE DYNAMIKI LOTU OCISKÓW ARTYLERYJSKICH O WYDŁUŻONYM ZASIĘGU LESZEK BARANOWSKI Instytut Elektomechaniki, Wojskowa Akademia Techniczna Waszawa Steszczenie. W atykule pzedstawiono ównania uchu pocisku atyleyjskiego o wydłużonym zasięgu, któy jest stailizowany ootowo i odznacza się statecznością dynamiczną. Równania umożliwiają symulacje lotu pocisku atyleyjskiego zawieającego gazogeneato (ang. ase-un) w zeczywistych waunkach atmosfeycznych. 1. WSTĘ Jednym ze sposoów zwiększania zasięgu klasycznych pocisków atyleyjskich stailizowanych ootowo jest stosowanie gazogeneatoa umieszczanego w części tylnej pocisku (ys. 1), zawieającego zapłonnik (ignite) oaz kostkę stałego paliwa (popellant). Rys. 1. zykład ozwiązania konstukcyjnego pocisku atyleyjskiego o wydłużonym zasięgu zaopatzonego w gazogeneato (Baseun) odczas pacy gazogeneatoa spala się ładunek paliwa stałego, a podukty spalania w postaci gazów wydostają się na zewnątz. owoduje to zmniejszenie podciśnienia za dnem pocisku, a w konsekwencji zmniejszenie opou czołowego pocisku i zwiększenie jego zasięgu. Efektywne wykozystanie takich pocisków na polu walki wymaga stosowania do wyznaczenia nastaw (kąta podniesienia i odchylenia lufy działa) dokładnych i szykich systemów kieowania ogniem, wykozystujących w swojej pacy odpowiednie modele matematyczne lotu pocisków atyleyjskich w zeczywistych waunkach atmosfeycznych. Z
2 3 L. BARANOWSKI tego też względu w pacy pzedstawiono metodykę modelowania lotu pocisków atyleyjskich z gazogeneatoem w postaci dodatkowych ównań uzupełniających model matematyczny lotu klasycznego pocisku atyleyjskiego zgodny z natowskim dokumentem standayzacyjnym (Stanag 4355 Ed. 3). Dodatkowe ównania opisują pzede wszystkim zmianę opou dennego pocisku spowodowanego wydatkiem masowym poduktów spalania gazogeneatoa oaz pozwalają oliczyć ieżący wydatek masowy gazogeneatoa z uwzględnieniem jego zależności od chwilowej pędkości wiowania pocisku oaz ciśnienia atmosfeycznego powietza.. OÓR DENNY OCISKU ARTYLERYJSKIEGO Z GAZOGENERATOREM Teoetyczne ozważania o powodach i mechanizmach zmniejszenia opou dennego pocisku atyleyjskiego na skutek pacy gazogeneatoa można znaleźć w pacach Gunnesa, Andessona i Hellgena [] oaz w opacowaniu Danega [1]. Zakładając, zgodnie z powyższymi pacami, iż wypływ poduktów spalania z gazogeneatoa ma wpływ na zmianę ciśnienia tylko w części dennej pocisku, zależność między współczynnikiem opou pocisku z pacującym gazogeneatoem C a współczynnikiem opou pocisku z niepacującym gazogeneatoem C można pzedstawić w następującej postaci D 0 D0 g C = C C (1) D0g D0 D0 gdzie C D jest óżnicą we współczynniku opou dennego wywołaną zmniejszonym 0 podciśnieniem za dnem pocisku, w pzypadku pacującego gazogeneatoa. W konsekwencji siła opou powietza działająca na pocisk atyleyjski z pacującym gazogeneatoem, zgodnie ze Stanagiem 4355 [5], pzyjmuje następującą postać Πρid DF= ( CD C ( ) 0 D + C 0 D De ) v v () Uwzględniając, iż współczynnik opou dennego pocisku wyaża się poniższą zależnością 1 / CD = (3) 0 γ d M d wzó na óżnicę we współczynniku opou dennego pocisku pzyjmuje następującą postać / / p n CD = (4) 0 γ d M d - śednia watość ciśnienia powietza za dnem pocisku, w pzypadku pacującego p gazogeneatoa, - śednia watość ciśnienia powietza za dnem pocisku, w pzypadku n niepacującego gazogeneatoa, - ciśnienia powietza w pzepływie swoodnym (niezakłóconym), γ - współczynnik adiaaty dla powietza, M - licza Macha w pzepływie swoodnym (niezakłóconym), d - śednica pocisku, d - śednica pzekoju dennego pocisku.
3 MODELOWANIE DYNAMIKI LOTU OCISKÓW ARTYLERYJSKICH O WYDŁUŻONYM Siła opou powietza działająca na pocisk atyleyjski z pacującym gazogeneatoem, pzyjmuje wówczas następującą postać Πρid / / p n DF= CD C ( ) 0 D De v + v (5) γ d M d W dalszej części pacy óżnicę między stosunkami ciśnień ( / / p n ) ędziemy oznaczać jako B. Badania doświadczalne w tunelu aeodynamicznym pzepowadzone pzez Danega [1] wykazały, iż w pzypadku typowych gazogeneatoów B może yć wyażona jako liniowa zależność od ezwymiaowego współczynnika stosunku wydatków masowegych I zdefiniowanego następująco mf I = & (6) ρva gdzie m& f jest wydatkiem masowym paliwa spalanym w gazogeneatoze a ρ va jest masowym natężeniem pzepływu stumienia swoodnego (niezakłóconego) pzez powiezchnię pzekoju dennego pocisku A. Uwzględniając powyższe oaz oliczenia numeyczne wykonane pzez Nietuicza i Sahu z wykozystaniem ównań Navie-Stokesa [4], B można wyazić następująco d ( / ) B= f( I) = I di I= 0 (7) d ( / ) δb) gdzie pochodna oznaczana często jako di I= 0 δi jest funkcją tylko liczy macha M. Natomiast siłę opou powietza działająca na pocisk atyleyjski z pacującym gazogeneatoem daje się wyazić następującą zależnością m& f δb id ρ va δ Πρ I DF= CD C ( ) 0 D De v + v γ d M d () 3. MODEL MATEMATYCZNY RUCHU OCISKU ARTYLERYJSKIEGO ZAWIERAJĄCEGO GAZOGENERATOR Model matematyczny (zgodny ze Stanagiem 4355) pzestzennego uchu pocisku atyleyjskiego stailizowanego ootowo zawieającego gazogeneato wypowadza się pzy następujących założeniach: - pocisk jest stateczny dynamicznie, - uwzględnia się tylko najadziej istotne siły i ich momenty działające na pocisk, - pomija się pocesy pzejściowe w uchu oscylacyjnym pocisku dookoła jego śodka masy wskutek zastąpienia zeczywistego kąta nutacji - kątem nutacji ównowagi dynamicznej e (ang. yaw of epose), - dla skompensowania efektów poczynionych założeń upaszczających odnośnie kąta nutacji i pacy gazogeneatoa stosuje się współczynniki dopasowania (paamety wyównawcze)
4 34 L. BARANOWSKI uwzględnianych w modelu sił aeodynamicznych: f( i BB, MT ) - współczynnik dopasowania opou czołowego, D - współczynnik dopasowania opou indukowanego, f L - współczynnik dopasowania siły odchylającej oaz M współczynnik dopasowania siły Magnusa, f oaz f - współczynniki dopasowania czasu pacy gazogeneatoa (czasu B B wypalenia się paliwa). Zgodnie z II zasadą dynamiki Newtona, uwzględniając wyżej poczynione założenia, ównanie uchu pocisku atyleyjskiego z gazogeneatoem można zapisać następująco u DF LF MF u& = g+ Λ (9) m m m 3.1. Wektoowa postać sił działających na pocisk atyleyjski z gazogeneatoem Siły występujące w ównaniu uchu (9) definiowane są następująco: - siła opou aeodynamicznego m& f δ B Πρid ρva δi DF= CD f( i ( ) 0 BB, MT) C D De v + v γ d M d 3 f( i ) = i + ( MT 1) + ( MT 1) + ( MT 1) - siła nośną - siła Magnusa - siła ciężkości BB, MT BB( MT = 1) 1 3 Πρ p& = = X R - siła Coiolisa 4 d pvcspin I x ( 3 ) Πρd f uu L LF = CL + CL e v e 3 u ΠρdM pc uu mag f MF = v ( e ) - pzyspieszenia kątowe pocisku wzdłuż osi podłużnej X1/ R 3 mg= mg0( R / ) = mg 0 1 X/ R X3/ R - wekto położenia pocisku względem śodka masy Ziemi, R = [m] pomień Ziemi, g 0 = [ cos(lat)] [m/s ], lat szeokość geogaficzna. mλ= m ω u ( ) (10) (11) (1) (13) (14)
5 MODELOWANIE DYNAMIKI LOTU OCISKÓW ARTYLERYJSKICH O WYDŁUŻONYM Ω cos( lat)cos( AZ ) ω = sin( lat) Ω - składowe wekto pędkości kątowej Ziemi, Ωcos( lat)sin( AZ ) Ω = [ad/s] - moduł pędkości kątowej Ziemi. Kąt ównowagi dynamicznej (yaw of epose) występujący w wyażeniach na siły aeodynamiczne wyznaczany jest z zależności uu I x p( ν u & ) e = (15) 3 4 Π ρd ( CM + CM 3 e ) v gdzie v = u w - wekto pędkości pocisku względem powietza. 3.. Równania dodatkowe wynikające ze zmiany masy pocisku Równania opisujące wydatek masowy paliwa spalanego w gazogenetoze zależą od paametów lotu pocisku i w funkcji czasu lotu wyażają się następująco: w chwili t = 0 m= m 0 oaz m & = 0 dla 0 < t < t DI dla t DI t < t dla t t B B m& = m / t (16) DI DI m& = m& f (17) * * tb t () t * m& f = m& f tb t ( t ) (1) * * t * B t() t t& () t = t t (19) B( t) p& & t& B = ( t ) ( t) B t f ( t) BT + f p BT p (0) & = = u t X (1) m= m = m m m () B 0 DI f m & = 0 (3) m& * = F t * - standadowy wydatek masowy okeślony dla standadowej f ( ) tempeatuy paliwa MT, standadowej pędkości ootowej pocisku standadowego ciśnienia atmosfeycznego, t oliczany ieżący czas lotu pocisku, * t - pseudo-czas pacy gazogeneatoa. Bieżące położenie śodka masy pocisku wyznacza się z zależności ( XCG X )( 0 CG B m m0 ) XCG = XCG + 0 m0 m B p i (4)
6 36 L. BARANOWSKI Bieżący osiowy moment ezwładności pocisku opisuje ównanie ( IX I )( 0 X B m m0) IX = IX + 0 m0 m (5) B Bieżący współczynnik momentu wywacającego pocisk opisuje ównanie * ( XCG XCG )( C ) 0 D + C 0 L CM = C M + d (6) Współczynniki sił i momentów aeodynamicznych oaz ich pochodne występujące w modelu ( CD, C,,,,, 0 D C L CL C 3 mag f CM C M ) pzedstawia się w funkcji liczy Macha w 3 postaci wielomianu czwatego stopnia C = a am + am + am + am (7) 4. ODSUMOWANIE I WNIOSKI KOŃCOWE i zedstawiony w pacy model matematyczny lotu pocisku atyleyjskiego z gazogeneatoem może yć z powodzeniem stosowany w systemach kieowania ogniem atyleii naziemnej oaz do zestawiania tael stzelniczych. Należy jednak zwócić uwagę na fakt, iż paktyczne wykozystanie modelu wymaga pzepowadzenia odpowiednio opzyządowanych, specjalistycznych stzelań poligonowych (szczegółowo opisanych w Stanagu 4144 Ed. ) celem identyfikacji współczynników sił i momentów aeodynamicznych występujących w modelu oaz współczynników dopasowania. Zagadnienia omówione w atykule jak i stosowane oznaczenia - są w pełni zgodne z postanowieniami Stanagu 4355 Ed. 3. aca naukowa finansowana ze śodków Komitetu Badań Naukowych w latach jako pojekt adawczy 0T00B0017 LITERATURA 1. Daneeg J. E.: Analysis of the Flight efomance of the 155 mm M64 Base Bun ojectile. U.S. Amy Ballistic Reseach Laoatoy, Aedeen oving Gound, MD, Apil Gunnes N. E., Andesson K., Hellgen R.: Base-Bleed Systems fo Gun ojectiles. ogess in Astonautics and Aeonautics Gun opulsion Technology. Chapte 16, Volume 109, Dated Kayse L. D., Kuzan J. D., Vazquez D. N.: Gound Testing fo Base-Bun ojectile Systems. U.S. Amy Ballistic Reseach Laoatoy, Aedeen oving Gound, MD, Noveme Nietuicz C. J., Sahu J.: Navie-Stokes Computations of Base Bleed ojectiles. Fist Intenational Symposium on Special Topics in Chemical opulsion: Base Bleed. Athens, Noveme The Modified oint Mass Tajectoy Model, STANAG 4355 (Edition 3). THE MODELING OF FLIGHT DYNAMIC OF EXTENDED RANGE ARTILLERY ROJECTILES Summay. In the pape was intoduced the equations of motion of a spinstailized, dynamically stale, extended ange atilley pojectiles, possessing at least tigonal symmety. The equations of motion enale simulation the flight of ase-un pojectiles in eal atmospheic conditions.
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.
Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO
XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226
Wyznaczanie współczynnika wzorcowania przepływomierzy próbkujących z czujnikiem prostokątnym umieszczonym na cięciwie rurociągu
Wyznaczanie współczynnika wzocowania pzepływomiezy póbkujących z czujnikiem postokątnym umieszczonym na cięciwie uociągu Witold Kiese W pacy pzedstawiono budowę wybanych czujników stosowanych w pzepływomiezach
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Elementarne przepływy potencjalne (ciąg dalszy)
J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
METODA WYZNACZENIA WARTOŚCI WSPÓŁCZYNNIKA AERODYNAMICZNEGO POCISKÓW STABILIZOWANYCH OBROTOWO
mgr inż. Tadeusz KUŚNIERZ Wojskowy Instytut Techniczny Uzbrojenia METODA WYZNACZENIA WARTOŚCI WSPÓŁCZYNNIKA AERODYNAMICZNEGO POCISKÓW STABILIZOWANYCH OBROTOWO Streszczenie: W artykule przedstawiono empiryczną
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
MOBILNE ROBOTY KOŁOWE WYKŁAD 04 DYNAMIKA Maggie dr inż. Tomasz Buratowski. Wydział Inżynierii Mechanicznej i Robotyki Katedra Robotyki i Mechatroniki
MOBILNE ROBOY KOŁOWE WYKŁD DYNMIK Maggie d inż. oasz Buatowski Wydział Inżynieii Mechanicznej i Robotyki Kateda Robotyki i Mechatoniki Modeowanie dynaiki dwu-kołowego obota obinego W odeowaniu dynaiki
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki i Lotnictwa podpis prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... NAZWA PRZEDMIOTU: Kod przedmiotu: Podstawowa jednostka organizacyjna (PJO):
Symulacja ruchu układu korbowo-tłokowego
Symulacja uchu układu kobowo-tłokowego Zbigniew Budniak Steszczenie W atykule zapezentowano wykozystanie możliwości współczesnych systemów CAD/CAE do modelowania i analizy kinematycznej układu kobowo-tłokowego
BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO
LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami
rozwarcia 2α porusza sie wzd luż swojej osi (w strone
Zadanie Pocisk w kszta lcie stożka o polu podstawy S i kacie ozwacia 2α pousza sie z pedkości a v wzd luż swojej osi w stone wiezcho lka) w badzo ozzedzonym jednoatomowym gazie. Tempeatua gazu jest na
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego
Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,
Siły oporu prędkość graniczna w spadku swobodnym
FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.
LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady
EKSPERYMENTALNA WERYFIKACJA MODELU MATEMATYCZNEGO LOTU RAKIETY NADDŹWIĘKOWEJ
Prof. dr hab. inż. Bogdan ZYGMUNT Dr inż. Krzysztof MOTYL Wojskowa Akademia Techniczna Dr inż. Edward OLEJNICZAK Instytut Techniczny Wojsk Lotniczych Mgr inż. Tomasz RASZTABIGA Mesko S.A. Skarżysko-Kamienna
Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)
inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska
Wyznaczanie temperatury i ciśnienia gazu z oddziaływaniem Lennarda Jonesa metodami dynamiki molekularnej
Pojekt n C.4. Wyznazanie tempeatuy i iśnienia gazu z oddziaływaniem Lennada Jonesa metodami dynamiki molekulanej Wpowadzenie Fizyka Rozważamy model gazu zezywistego zyli zbió atomów oddziaływująyh z sobą
Wykład 10. Reinhard Kulessa 1
Wykład 1 14.1 Podstawowe infomacje doświadczalne cd. 14. Pąd elektyczny jako źódło pola magnetycznego 14..1 Pole indukcji magnetycznej pochodzące od nieskończenie długiego pzewodnika z pądem. 14.. Pawo
ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
REZONATORY DIELEKTRYCZNE
REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego
PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa
Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości
Daniel WACHOWIAK Zbigniew KRZEMIŃSKI Politechnika Gdańska Wydział Elektotechniki i Automatyki Kateda Automatyki Napędu Elektycznego doi:1015199/48017091 Wpływ błędów paametów modelu maszyny indukcyjnej
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Grzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
Wykład 5: Dynamika. dr inż. Zbigniew Szklarski
Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,
PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM
PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,
CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
TECHNIKI INFORMATYCZNE W ODLEWNICTWIE
ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej
Odpowiednio [4] zużycie liniowe zębów koła ślimakowego w ciągu jednego obrotu oblicza się według wzoru
Postępy Nauki i Tecniki n 5, 0 Mion Czeniec, Jezy Kiełbiński, Jui Czeniec METODA NA OSZACOWANIE WPŁYWU ZUŻYCIA NA WYTRZYMAŁOŚĆ STYKOWĄ ORAZ TRWAŁOŚĆ PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA Steszczenie.
IV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych
FIZYKA BUDOWLI zagadnienia cieplno-wilgotnościowe pzegód budowlanych 1 wilgoć w pzegodach budowlanych pzyczyny zawilgocenia pzegód budowlanych wilgoć technologiczna związana z pocesem wytwazania i podukcji
Fizyka dla Informatyki Stosowanej
Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady
OCZYSZCZANIE POWIETRZA Z LOTNYCH ZWIĄZKÓW ORGANICZNYCH
DZIŁ HMIZN POLITHNIKI RSZSKIJ ZKŁD THNOLOGII NIORGNIZNJ I RMIKI Laboatoium PODST THNOLOGII HMIZNJ Instukcja do ćwiczenia pt. OZSZZNI POITRZ Z LOTNH ZIĄZKÓ ORGNIZNH Powadzący: d inŝ. ogdan Ulejczyk STĘP
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH
KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH Janusz ROMANIK, Kzysztof KOSMOWSKI, Edwad GOLAN, Adam KRAŚNIEWSKI Zakład Radiokomunikacji i Walki Elektonicznej Wojskowy Instytut Łączności 05-30
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
P O L I T E C H N I K A W A R S Z A W S K A Instytut Telekomunikacji Zakład TSO. Michał Rezulski. materiały pomocnicze do ćwiczenia
P O L I T E C H N I K A W A R S Z A W S K A Instytut Telekomunikacji Zakład TSO Michał Rezulski Odbió sygnałów satelitanych w zakesie mikofal mateiały pomocnicze do ćwiczenia LABORATORIUM SYSTEMÓW RADIOKOMUNIKACYJNYCH
BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1
Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.
POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM
Zagadnienie odwrotne balistyki zewnętrznej i algorytm wyznaczania parametrów modeli ruchu pocisków artyleryjskich
BIULETYN WAT VOL. LVI, NR 4, 007 Zagadnienie odwrotne balistyki zewnętrznej i algorytm wyznaczania parametrów modeli ruchu pocisków artyleryjskich LESZEK BARANOWSKI, MAREK ANDRZEJ KOJDECKI* Wojskowa Akademia
Wzmacniacze tranzystorowe prądu stałego
Wzmacniacze tanzystoo pądu stałego Wocław 03 kład Dalingtona (układ supe-β) C kład stosowany gdy potzebne duże wzmocnienie pądo (np. do W). C C C B T C B B T C C + β ' B B C β + ( ) C B C β β β B B β '
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka
należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
Podstawowe konstrukcje tranzystorów bipolarnych
Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Weryfikacja modelu matematycznego lotu 35 mm pocisku przeciwlotniczego na podstawie tabel strzelniczych
PROBLEMY MECHATRONIKI. UZBROJENIE, LOTNICTWO, INŻYNIERIA BEZPIECZEŃSTWA ISSN 081 5891 (), 010, 35-49 Weryfikacja modelu matematycznego lotu 35 mm pocisku przeciwlotniczego na podstawie tabel strzelniczych
WYKŁAD 15 ELEMENTY TEORII PRZEPŁYWÓW TURBULENTNYCH
WYKŁAD 15 ELEMENTY TEORII PRZEPŁYWÓW TURBULENTNYCH Genealna zasada: kiedy liczba Reynoldsa dla pewnego pzepływu laminanego ośnie, pzepływ stae się coaz badzie skomplikowany. Powyże pewne watości liczby
Lista zadań nr 1 - Wektory
Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)
WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha,
XXI OLIMPIADA FIZYCZNA (97-97). Stopień III zadanie teoetyczne. Źódło: XXI i XXII OLIMPIADA FIZYCZNA WSiP Waszawa 975 Auto: Nazwa zadania: Działy: Słowa kluczowe: Andzej Szyacha Dwa ciała i spężynka Dynaika
Mechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne.
Więzy z tacie Mechanika oólna Wykład n Zjawisko tacia. awa tacia. awa tacia statyczneo Couloba i Moena Siła tacia jest zawsze pzeciwna do występująceo lub ewentualneo uchu. Wielkość siły tacia jest niezależna
Model klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
Teoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Składowe przedmiotu MECHANIKA I MECHATRONIKA. mechanika techniczna podstawy konstrukcji maszyn mechatronika
Składowe pzedmiotu MECHANIKA I MECHATRONIKA mechanika techniczna podstawy konstukcji maszyn mechatonika mechanika techniczna mechanika ogólna (teoetyczna): kinematyka (badanie uchu bez wnikania w jego
OBWODY PRĄDU SINUSOIDALNEGO
aboatoium Elektotechniki i elektoniki Temat ćwiczenia: BOTOM 06 OBODY ĄD SSODEGO omiay pądu, napięcia i mocy, wyznaczenie paametów modeli zastępczych cewki indukcyjnej, kondensatoa oaz oponika, chaakteystyki
ANALIZA PORÓWNAWCZA WYBRANYCH MODELI RUCHU CZĄSTKI SFERYCZNEJ W JEDNOWYMIAROWYM PRZEPŁYWIE DWUFAZOWYM
MOELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 387-394, Gliwice 008 ANALIZA PORÓWNAWCZA WYBRANYCH MOELI RUCHU CZĄSTKI SFERYCZNEJ W JENOWYMIAROWYM PRZEPŁYWIE WUFAZOWYM ANRZEJ J. PANAS, TOMASZ FAFIŃSKI Instytut
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
Równania Lagrange a II r.
Mechania Analityczna i Dgania Równania Lagange a II. pzyłay Równania Lagange a II. pzyłay mg inż. Sebastian Pauła Aaemia Góniczo-Hutnicza im. Stanisława Staszica w Kaowie Wyział Inżynieii Mechanicznej
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 44, s. 49-56, Gliwice 0 WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W SAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA KRZYSZO DRAPAŁA, KRZYSZO DZIEWIECKI, ZENON MAZUR,
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
KINEMATYCZNE WŁASNOW PRZEKŁADNI
KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej
Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1
XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:
15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie
15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH 15.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie na stanowisku podstawowyc zależności caakteyzującyc funkcjonowanie mecanizmu amulcowego w szczególności
Nierelatywistyczne równania ruchu = zasady dynamiki Newtona
DYNAMIKA: siły ównania uchu uch Nieelatywistyczne ównania uchu zasady dynaiki Newtona Pojęcia podstawowe dla punktu ateialnego Masa - iaa bezwładności Pęd iaa ilości uchu v v p v p v v v Siła wywołuje
Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy