Wyznaczanie temperatury i ciśnienia gazu z oddziaływaniem Lennarda Jonesa metodami dynamiki molekularnej
|
|
- Filip Leszczyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pojekt n C.4. Wyznazanie tempeatuy i iśnienia gazu z oddziaływaniem Lennada Jonesa metodami dynamiki molekulanej Wpowadzenie Fizyka Rozważamy model gazu zezywistego zyli zbió atomów oddziaływująyh z sobą siłami dwuząstkowymi wynikająymi z potenjału Lennada-Jonesa, któy ma postać: ϕ () A = + B 6. () gdzie A i B są stałymi dodatnimi, zaś jest odległośią pomiędzy atomami. Potenjał () zapisujemy zęsto w innej, wygodniejszej postai: ϕ () σ σ = 6 4 A 6, σ =, = B A 4B. () Potenjał ten nazywany jest też potenjałem 6-. Wykładnik potęgi ówny 6 wynika z pzyiągająego oddziaływania Van de Waalsa pomiędzy wyindukowanymi dipolami elektyznymi neutalnyh atomów. Natomiast wybó wykładnika potęgi ównego w potenjale odpyhająym nie posiada spejalnego fizyznego uzasadnienia, poza wymogiem analityznej postoty i żądaniem, aby był większy od 6. Okazuje się, że dla tak wybanego potenjału udaje się zadowalająo opisać własnośi temodynamizne, np. gazów szlahetnyh o niewielkih gęstośiah, odpowiednio dobieają paamety oaz σ dla każdego odzaju gazu. Watośi lizbowe tyh paametów podane są w Tabeli.
2 Tabela A atom /k B [K] σ [nm] H He C N O F Ne S Cl A B K Potenjał Lennada-Jonesa posiada następująe własnośi (Rys. ):. haakte pzyiągająy i spadek jak / 6 dla dużyh odległośi między atomami;. dla małyh odległośi pojawia się silnie odpyhająy dzeń o pomieniu = σ [ϕ(σ)=0];. paamet jest miaą enegii pzyiągania (inazej jest to głębokość minimum potenjału, któe występuje dla = /6 σ) 4. haakte kótkozasięgowy, tzn. potenjał 6- jest zaniedbywalnie mały dla >.5 σ. φ/,0 0,8 0,6 0,4 0, 0,0-0, /σ 0-0,4-0,6-0,8 -,0 Rys.. Potenjał Lennada-Jonesa (odległość jest miezona w jednostkah σ, natomiast potenjał ϕ w jednostkah ).
3 Numeyka Zgodnie z dynamiką molekulaną wyznazamy podstawowe własnośi temodynamizne gazu kozystają z ozwiązań ównań uhu Newtona dla układu wielu atomów. Równanie Newtona dla pojedynzego atomu ma postać ma = Φ i j ij, () gdzie Φ = ϕ( ). ij ij Równanie uhu dla każdego atomu możemy ozwiązać za pomoą algoytmu Veleta w fomie pędkośiowej. Odpowiednie ozwiązania mają postać: ( ) n n v n t a n t + = + + v v n n a n a t + = + ( + ) n + (4) W elu wygodnego zobazowania uhu atomów na ekanie monitoa wystazy ozważyć składowe x oaz y wektoów położenia i pędkośi. Siły działająe pomiędzy paami ząstek uwzględniane są dla odległośi mniejszej niż o (pomień obięia oddziaływań). Dla odległośi większej od o zakładamy, że siły i potenjały dwuząstkowe pzyjmują watość ówną zeo. W elu zahowania ałkowitej enegii układu atomów należy wpowadzić tzw. potenjał pzesunięty, któy zapobiega nieiągłośi enegii potenjalnej dla =. Jeśli oznazymy ϕ = ϕ( o ), to potenjał użyty do oblizania ałkowitej enegii będzie wyażony wzoem: ϕ ( ) ϕ ( ) ϕ = 0 (5) > s Pomimo zastosowania pomienia obięia oddziaływań istnieje jednak wpływ atomów będąyh w odległośi większej niż o. Wpływ ten uwzględniamy za pomoą dalekozasięgowyh popawek do potenjału i iśnienia E P LRC LRC = N ρ π N ρ π (6) πρ πρ (7) 9 = Wielkośi z gwiazdką są to tzw. wielkośi zedukowane, wyażone w jednostkah utwozonyh za pomoą paametów σ oaz, zyli:
4 4 k T E Pσ B T =, E =, P =, f =, ρ = ρσ (8) Żądamy, aby układ atomów spełniał tzw. peiodyzne waunki bzegowe. W tym elu zakładamy, że ozważana komóka entalna otozona jest identyznymi eplikami tej samej komóki (Rys. ). Oznaza to, że ozważana ząstka i oddziaływuje jedynie z najbliżej położoną epliką ząstki j. Jest to tzw. zasada najbliższego obazu, któa jest zgodna z pzyjętym obięiem oddziaływań pod waunkiem, że pomień obięia jest mniejszy niż L/. Wtedy dla danej ząstki i istnieje dokładnie jeden obaz ząstki j (może być to ząstka j w komóe entalnej lub w jej eplie), któego odległość od ząstki i jest mniejsza niż L/. fσ Rys.. Pzykład peiodyznyh waunków bzegowyh w dwu wymiaah. Oddziaływanie między ząstkami i zgodne z zasadą najbliższego obazu jest pokazane pogubioną linią. Zasada najbliższego obazu wymaga dokonania następująej tansfomaji odległośi ząstek: pzez () i oznazymy położenie ząstki i, a pzez = ( i) ( j) wekto wzajemnego położenia ząstek i oaz j. Jeżeli > L/, to sgn( ) L, jeżeli s < L/, to + sgn( ) L.
5 5 Zadania do wykonania. Pzyjąć lizbę atomów N (od kilkunastu do kilkudziesięiu) oaz ozmiay komóki entalnej L (od 0 do 40σ ).. Zadać waunki pozątkowe dla położeń i pędkośi atomów, np. położenia pozątkowe w węzłah postokątnej siatki, a pędkośi pozątkowe ówne zeo.. Dla koku zasowego t = ozwiązać ównania uhu za pomoą algoytmu Veleta. Stosować pzy tym zasadę najbliższego obazu. 4. Dla każdego koku zasowego wyznazać hwilowe watośi enegii ałkowitej, enegii kinetyznej, tempeatuy i iśnienia oaz ih śednie temodynamizne po wielu kokah zasowyh. 5. Tajektoie atomów pzedstawiać gafiznie. Liteatua [] N.W. Ashoft, N.D. Memin, Fizyka iała stałego [] H. Gould, J. Tobohnik, An Intodution to Compute Simulation Methods [] M. P. Allen, D. J. Tildesley, Compute Simulation of Liquids
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
PODSTAWY MODELOWANIA MOLEKULARNEGO
PODSTAWY MODELOWANIA MOLEKULARNEGO Mechanika molekulana Dynamika molekulana Symulacje Monte Calo Teoia funkcjonału gęstości Liteatua Metody komputeowe w fizyce, T. Pang, PWN, Waszawa, 1. Podstawy symulacji
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste
9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Atom wodoru w mechanice kwantowej
Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy
WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
9. 1. KOŁO. Odcinki w okręgu i kole
9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.
Komputerowa symulacja doświadczenia Rutherforda (rozpraszanie cząstki klasycznej na potencjale centralnym
Pojekt n C.8. Koputeowa syulacja doświadczenia Ruthefoda (ozpaszanie cząstki klasycznej na potencjale centalny (na podstawie S.. Koonin "Intoduction to Coputational Physics") Wpowadzenie Cząstka o asie
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa
11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków
..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Teoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności
SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego
Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
TERMODYNAMIKA PROCESOWA. Wykład V
ERMODYNAMIKA PROCESOWA Wykład V Równania stanu substancji czystych Równanie stanu gazu doskonałego eoia stanów odpowiadających sobie Równania wiialne Pof. Antoni Kozioł, Wydział Chemiczny Politechniki
WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA
Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie
Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki
Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
INSTRUKCJA DO ĆWICZENIA
NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.
rozwarcia 2α porusza sie wzd luż swojej osi (w strone
Zadanie Pocisk w kszta lcie stożka o polu podstawy S i kacie ozwacia 2α pousza sie z pedkości a v wzd luż swojej osi w stone wiezcho lka) w badzo ozzedzonym jednoatomowym gazie. Tempeatua gazu jest na
Model klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując
Wykład z fizyki. Piotr Posmykiewiz 63 s = ma s = m v f vi = mvi 7- f W równaniu powyŝszym zastosowano równanie Porównują równania 7-0 i 7- otrzymamy: i a s = v f v i v f = 0 ( Patrz równanie -). f s =
Własności falowe cząstek. Zasada nieoznaczoności Heisenberga.
Własnośi falowe ząstek. Zasada nieoznazonośi Heisenberga. Dlazego ząstka o określonej masie nie moŝe oruszać się z rędkośią równą rędkośi światła? Relatywistyzne równanie określająe energię oruszająego
ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH
ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego
Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość
METEMATYCZNY MODEL OCENY
I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień
BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
MOBILNE ROBOTY KOŁOWE WYKŁAD 04 DYNAMIKA Maggie dr inż. Tomasz Buratowski. Wydział Inżynierii Mechanicznej i Robotyki Katedra Robotyki i Mechatroniki
MOBILNE ROBOY KOŁOWE WYKŁD DYNMIK Maggie d inż. oasz Buatowski Wydział Inżynieii Mechanicznej i Robotyki Kateda Robotyki i Mechatoniki Modeowanie dynaiki dwu-kołowego obota obinego W odeowaniu dynaiki
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
Aerotriangulacja metodą niezaleŝnych wiązek
KP FC - aeo 27 Dwa zasanize etap pomiaow pomia wkonuje się na autogaie owm lub analitznm wkonuje się oientaję wewnętzną la kaŝego zjęia miez się współzęne tłowe otopunktów i punktów wiąŝąh oblizeniow blizenie
Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka
TECHNIKI INFORMATYCZNE W ODLEWNICTWIE
ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej
Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.
Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa
1. Metoda tabel semantycznych
1. Metoda tabel semantycznych Udowodnić pawdziwość fomuły metodą tabel semantycznych: (A B) ( B A) ZALECAMY podkeślanie analizowanych fomuł, W celu zbadania pawdziwości fomuły należy zanegować fomułę i
Pracownia komputerowa
Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...
WPROWADZENIE. Czym jest fizyka?
WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.
Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej
Przewodnictwo jonowe ( )
Konspekt ykładu: Pzeodnito jonoe () 1. Szybkość jonó oztoze (v). Wyznazanie szybkośi jonó oztoze 3. Ruhliość jonó (u) 4. Pzeodnito jonoe () 5. Metoda pomiau pzeodnit oztou (mostek Wheatstone`a) 6. Pzeodnito
Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.
Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem
Początki fizyki współczesnej
Pozątki fizyki współzesnej 1 Plan 1.1. Promieniowanie iała doskonale zarnego 1.. Foton 1.3. Efekt fotoelektryzny 1.4. Efekt Comptona 1 Trohę historii Gustav Kirhhoff (184-1887) W 1859 rozpozyna się droga
Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18
Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej
Składowe odpowiedzi zasowej. Wyznazanie maierzy podstawowej Analizowany układ przedstawia rys.. q (t A q 2, q 2 przepływy laminarne: h(t q 2 (t q 2 h, q 2 2 h 2 ( Przykładowe dane: A, 2, 2 2 (2 h2(t q
Zależność natężenia oświetlenia od odległości
Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów
Prawo Gaussa. Potencjał elektryczny.
Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla
Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.
Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które
KINEMATYCZNE WŁASNOW PRZEKŁADNI
KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej
Model wiązania kowalencyjnego cząsteczka H 2
Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami
ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
Matematyka ubezpieczeń majątkowych r.
Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
Grzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.
Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem
Rama płaska metoda elementów skończonych.
Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni
EDWARD WŁODARCZYK, MARIUSZ ZIELENKIEWICZ*
BIULETYN WAT VOL. LVII, NR 1, 8 Radialne dgania gubościennej kulistej osłony balistycznej wymuszone wewnętznym ciśnieniem poduktów natychmiastowej detonacji mateiału wybuchowego (MW) EDWARD WŁODARCZYK,
ELEKTROMAGNETYCZNE DRGANIA WYMUSZONE W OBWODZIE RLC. 1. Podstawy fizyczne
Politechnika Waszawska Wydział Fizyki Laboatoium Fizyki I Płd. Maek Kowalski ELEKTROMAGNETYZNE RGANIA WYMUSZONE W OBWOZIE RL. Podstawy fizyczne gania są zjawiskiem powszechnie występującym w pzyodzie i
{ 1, 2,, n } Ponadto wówczas mówimy, że formuła: oraz równoważna jej formuła:
RCHUNEK ZDŃ 6 Do ozstzygania, któe fomuły achunku zdań są tautologiami, czyli pawami logiki, stosować możemy tzy odzaje metod: 1) metodę matycową (zeo-jedynkową), 2) metodę założeniową, 3) metodę aksjomatyczną.
Wykład 17 Strumień pola przyspieszeń grawitacyjnych w teorii Newtona.
Wykład 17 Stumień pola pzyspieszeń gawitayjnyh w teoii Newtona. W tym miejsu logizny wywód powadząy do zozumienia istoty gawitaji à la Einstein, muszę pzewać i omówić zagadnienie ważne, ale poste i hyba
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Plan wykładu 6. Hanna Pawłowska Elementy termodynamiki atmosfery i fizyki chmur Wykład 6
Plan wykłau 6 emoynamika związana z uhem ionowym Poe euo-aiabatyzny emeatua ekwiwalentna, temeatua ekwiwalentno-otenjalna, liqui wate otential temeatue Gaient wilgotno-aiabatyzny Hanna Pawłowka Elementy
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Energia w geometrii Schwarzshilda
Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą
Równanie Schrödingera dla elektronu w atomie wodoru
Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =
Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l
Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej
WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH
LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN Wydział Budowy Maszyn i Zaządzania Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n 4 WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH Cel ćwiczenia:
Dobór zmiennych do modelu ekonometrycznego
Dobó zmiennych do modelu ekonometycznego Metody dobou zmiennych do modelu ekonometycznego opate na teście F Model zedukowany ya 0 +a x+a x+.+a x Model pełny ya 0 +a x+a x+.+a x +a + x + + +a k x k Częściowy
Zastosowanie algorytmu Euklidesa
Zatoowanie algoytmu Euklidea Pzelewanie wody Dyonujez dwoma czeakami o ojemnościach 4 i 6 litów, utym ojemnikiem o nieoganiczonej objętości i nieoganiczoną ilością wody Podaj oób naełnienia ojemnika 14
PRĘDKOŚCI KOSMICZNE OPRACOWANIE
PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza
POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ
POMAR PĘTL STEREZ MAGNETZNEJ 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DDAKTKA FZKA ĆZENA LABORATORJNE.. Opis układu pomiaowego Mateiały feomagnetyczne (feyt,
Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.
Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata
Początki fizyki współczesnej
Pozątki fizyki współzesnej Plan.. Promieniowanie iała doskonale zarnego.. Foton.. Efekt fotoelektryzny.4. Efekt Comptona Trohę historii Gustav Kirhhoff (84-887) W 859 rozpozyna się droga do mehaniki kwantowej
CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU
Jezy PIETRZYKOWSKI CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU STRESZCZENIE Okeślono haakteystyki użytkowe szeokopasmowyh mieników nadfioletu oaz ih klasyfikaję. Podano
Definicja szybkości reakcji
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia