Tomasz Zdanowicz Uniwersytet Mikołaja Kopernika w Toruniu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tomasz Zdanowicz Uniwersytet Mikołaja Kopernika w Toruniu"

Transkrypt

1 DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolse emnarum Nauowe 4 6 wrześna 007 w Torunu Kaedra Eonomer as Unwerse Mołaja Koperna w Torunu Tomasz Zdanowcz Unwerse Mołaja Koperna w Torunu Porównane własnośc prognoscznch model dwulnowch model ARMA z błędam GARCH o nelascznch rozładach.wsęp Modele ARMA należą do las eonomer dnamcznej. Jedna ch zasosowane w opse szeregów fnansowch jes dość ogranczone ze względu na własnośc generowanch przez ne procesów. Lnowe modele ne pozwalają na ops sośnośc grubch ogonów lepouroz cz efeu ARCH jae obserwuje sę na rnach fnansowch. Zjawsa e wsępują częso ze względu na nelnowe zachowana uczesnów rnu. W pracach doczącch ego problemu sosuje sę różne nelnowe alernawne modele ae ja (E)TAR NLAR TUR cz L (Granger Terasra 99 Osńsa Wows 997). Modele dwulnowe (L) powsał w podobnm orese ja modele (G)ARCH na przełome la XX weu jedna do chwl obecnej ne zsał sobe aej popularnośc główne ze względu na rudnośc w esmacj. Praca ma na celu porównane możlwośc prognozowana szeregów czasowch prz worzsanu model dwulnowch oraz porównana jaośc chże prognoz z prognozam uzsanm z model ARMA-GARCH.. Podsawowe nformacje doczące model dwulnowch Po raz perwsz modele dwulnowe zosał zaproponowane przez Granger a Andersen a (978) można je zapsać równanem:

2 84 Tomasz Zdanowcz c p q γ ϕ j j j 0 l P Q θ l l () gdze przjmuje sę ϕ 0. Ta zdefnowana lasa model jes dość szeroa raowana jes jao rozszerzene model ARMA. We wspomnanej prac można eż znaleźć lasfację model dwulnowch a wmena sę proces dagonalne gdθl 0 dla l proces naddagonalne gd θl 0 dla <l poddagonalne dla órch mam θl 0 gd >l. Proces dwulnowe posadają szereg ceawch własnośc do órch zalczć można wsępowane zgrupowań warancj óre zwle rozpoznawane są jao efe ARCH. Inną ceawą cechą jes fa że rozpsując odpowedno równane () można orzmać proces z losowm paramerem zdefnowan jao: c γ ν. () Ze względu na opsane własnośc proces dwulnowe bardzo rudno jes odróżnć od procesów GARCH. W leraurze można znaleźć wele esów óre mogą bć pomocne w rozpoznanu danego pu nelnowośc. Jednm z ach esów jes es zaproponowan przez Hncha. asa esowa wznaczana jes na podsawe współcznna boherencj órego esmaor wznacza sę ze wzoru (): ψ ( ω ω ) ( fˆ ˆ ( ωω ) ( ω ) fˆ ( ω ) fˆ ( ω ω ) () gdze ˆ ωω - esmaor bsperum naomas f ˆ ω uśrednon perodogram dla częsoścω. Na ej podsawe wznaczam sasę esową posac: H ψ ω ω ). (4) ) ( ) ( Procedura esowa przebega dwueapowo: najperw esujem normalność procesu a w przpadu odrzucena ej hpoez bada sę aże lnowość procesu. Węcej nformacj na ema esu można znaleźć w Góra Osńsa (005). Kolejnm esem rozparwanm w prac jes es McLeoda L (98). Tes en służ do werfacj hpoez o wsępowanu efeu ARCH w szeregu opar jes na sasce esu Ljunga-oxa dla wadraów badanego procesu. Ze względu na rudność rozróżnena pomędz procesam L GARCH oraz na dużą lczbę specfacj ch osanch prezenowane w prac wn Por. Doman Doman 004. Parz ruzda 00.

3 Porównane własnośc prognoscznch model dwulnowch model ARMA doczą model AR(p) L(p0PQ) z jednm z rzech równań warunowej warancj j.: - GARCH(R): (5) R h h 0 β α α - EGARCH(R): ( ) ( ) (6) j j j R h h h h 0 ln ln β γ γ α - APARCH(R): ( ) R h h 0 δ δ δ β γ α α. (7) W prac zasosowano alernawne do normalnego rozład warunowe óre lepej modelują własnośc rozładów sóp zwrou. Należą do nch: rozład - udena sośn rozład -udena Uogólnon Rozład łędu (GED) oraz GED sośn GED. Funcję gęsośc wmenonch rozładów można zapsać za pomocą funcj gęsośc rozładu GTD ośnego Uogólnonego Rozładu -udena (Theodossou 998) posac: ( ) () ( ) ( ) GTD e e sgn C x f λσ θ (8) gdze: ( ).5 05 σ λ C GTD (8a) ( ) λ θ GTD (8b) ( ) 4 GTD λ λ λ (8c) ( ) λ λ δ GTD. (8d) We wzorach 8-8d przjęo nasępujące oznaczena: ν - paramer onrolujące grubość ogonów urozę ( ) 0 > > ν λ - paramer odpowedzaln za sośność rozładu ( < λ ) σ - paramer sal naomas μ δσ e o odchlene od domnan a - funcja znau. sgn()

4 86 Tomasz Zdanowcz Należ rozróżnć nasępujące przpad: - - orzmujem rozład TD z parameram ν λ σ - oraz λ 0 - orzmujem rozład TD z parameram ν σ - ν - orzmujem rozład GED z parameram λ σ - ν oraz λ 0 - orzmujem rozład GED z parameram σ. Ze względu na specfację model dwulnowch sonm problemem saje sę esmacja paramerów. Najpopularnejsze meod jam można znaleźć szacun paramerów model dwulnowch o Nelnowa Meoda Najmnejszch Kwadraów (NMK) Meoda Najwęszej Wargodnośc (MNW). W publacj ubba Rao Gabr (984) można znaleźć meodę oparą na KMNK. Ideę ej meod można zapsać w lu punach: ) oszacowane najlepszego modelu AR dla badanego szeregu wznaczene weora resz e I (można w m celu zasosować meodę Hannana- Rsannena ) ) oszacowane KMNK modelu: c p q γ ϕ je j j l P Q θ l l e (9) a nasępne wznaczene nowego weora resz e. ) powró do punu. Procedurę powarza sę a długo aż warośc paramerów warancja reszowa usablzują sę. Meoda a daje dobre wn jedna częso zdarza sę ż ne osąga zbeżnośc co prowadz do neodpowednch warośc paramerów. W zwązu z powższm zaleca sę sosowane jej do znalezena warośc sarowch dla MNW. W przpadu gd zbeżność ne zosała osągnęa za warośc sarowe częśc dwulnowej podsawa sę 0. Powższa meoda zasosowana zosała w prac do znalezena warośc sarowch dla MNW. W przpadu paramerów model GARCH za sarowe wbrane zosał szacun danego równana prz założenu modelu AR(p) normalnośc rozładu warunowego. Z ole warośc sarowe paramerów samch rozładów warunowch pochodzł z rozładów dopasowanch do rozładu sóp zwrou badanch szeregów. Esmacj paramerów p Q P R oraz wboru odpowednego równana warancj doonano erując sę rerum chwarza.. Porównane model L ARMA z reszam GARCH dla wbranch szeregów fnansowch Do analz wbrane zosał wbrane ndes gełd śwaowch oraz gełd polsej z oresu od sczna 000 rou do maja 007 rou co daje w zależnośc od gełd od 67 do 86 obserwacj. Pęć osanch obserwacj Zasosowane procedur Hannana-Rsanena proponują Garnger Terasra (99).

5 Porównane własnośc prognoscznch model dwulnowch model ARMA zosało przeznaczonch do ocen prognoz wonanch z model AR(L)- GARCH. Tabela zawera wn esów Hncha oraz Ljunga-oxa. Tabela. Wn esów Ljunga-oxa Hncha dla wbranch szeregów normalność lnowość L(j) [p-al] H p-al R emp λ R eor j j5 AEX [9].58[0.00] EL [0.00] 4.89[0.00] CAC [] 4.0[0.0] DAX [0.] 0.00[0.08] DJIA [0.] 7.40[0.9] FTE [0.0] 8.85[0.00] NIKK [0.8].6[0.660] NDQ [0.04] 0.49[0.00] &P [0.4] 7.57[0.8] WIG [0.046] 6.09 [0.0] Pogruboną czconą zosał wróżnone sone sas. Źródło: oblczena własne. Na podsawe wnów zameszczonch w powższej abel można powedzeć że w węszośc analzowanch szeregów jes ne ma podsaw do odrzucena hpoez o normalnośc rozładów. W przpadu ndesów AEX EL0 es Hncha wsazał na bra normalnośc procesu a w m drugm szeregu dodaowo na snena zwązów nelnowch. Na podsawe esu Ljunga- oxa można swerdzć ż w badanch szeregach wsępuje auoorelacja. Wjąem są ndes DJIA NIKK5 &P500 w órch zjawso auoorelacj ne wsępuje. Nasępne do wbranch szeregów dopasowane zosał modele AR(p) L(p0PQ) z różnm rozładam warunowm równanam warancj. Tabela zawera rera nformacjne sas Q Q QX 4 dla najlepszch model AR(p) oraz dwulnowch. 4 Mar oblczne są wg nasępującch formuł: Q N{ r rˆ > 0}/ N{ r rˆ 0} Q N{ r rˆ > 0 r r < 0}/ N{ r rˆ 0 r r < 0} QX N{ r ( h h ) < 0} / N gdze N{} - lczba obserwacj dla órch spełnon jes warune podan w nawase r rˆ h o emprczne eoreczne sop zworu oraz warancja warunowa. Węcej na ema alernawnch mar dopasowana model można znaleźć w rzeszczńs Kelm (00).

6 88 Tomasz Zdanowcz Tabela. Wn esmacj wbranch model AR(p)-GARCH L(p0PQ)-GARCH z różnm rozładam warunowm 5 zereg Model AIC/C DW Q/Q QX CAC40 DL(0) / /.9454 EGARCH()-TD AR() / 5.477/.9457 EGARCH()-TD DJIA L(0) / 5.808/.967 EGARCH()-TD AR() / 5.644/.977 EGARCH()-TD NIKK5 DL(0044) / 5.984/.00 EGARCH()-TD AR(0) / /.008 EGARCH()-TD NDQ00 NL(0) / /.98 EGARCH()-TD AR() / /.004 EGARCH()-TD &P500 PL(0) / /.95 EGARCH()-TD AR() / 5.9/.977 EGARCH()-TD WIG DL(0.) / 5.04/.988 GARCH()-GED AR() / /.996 GARCH()-GED Źródło: oblczena własne. Dane przedsawone w abel pozwalają swerdzć że we wszsch badanch przpadach model AR-GARCH jes lepsz nż modele L-GARCH. Jes o zgodne z wnam esu Hncha ór dla ch szeregów wsazał normalność procesu. W przpadu szeregów AEX EL0 ne udało sę dopasować modelu dwulnowego o sonch paramerach. posrzeżene o można uzasadnć nną nż dwulnowa zależnoścą nelnową wsępująca we wspomnanch szeregach. Innm ceawm sposrzeżenem jes fa ż paramer częśc dwulnowej w przpadu modelu dwulnowego z reszam heerosedascznm bł w węszośc model slne sone. Naomas po dołączenu do modelu równana warancj duża część z ch paramerów oazała sę nesona. Ta wn może bć spowodowan zależnoścam w warancj jae wsępują w badanch szeregach óre ne są modelowane przez model dwulnow w odpowedn sposób a óre lepej opsują modele z rodzn GARCH. 5 W abel przjęo oznaczena: NL PL DL o proces dwulnowe naddagonalne poddagonalne dagonalne. TD TD GED o oznaczena rozładów warunowch odpowedno sośnego -udena -udena Uogólnonego Rozładu łędu.

7 Porównane własnośc prognoscznch model dwulnowch model ARMA Analzując abelę można dosrzec że w przpadu prawe wszsch szeregów rera chwarza Aae a preferują modele auoregresjne nad modelam dwulnowm za wjąem szeregu NDQ00 w órm e rera są neznaczne lepsze dla modelu L. We wszsch przpadach son oazał sę efe ARCH ór zosał opsan poprzez odpowedne równane warancj warunowej. War podreślena jes eż fa ż w modelach L posadającch dużą lczbę paramerów warośc rerów nformacjnch są zblżone do model auoregresjnch. Na podsawe ch model podjęo próbę zbudowana prognoz na 5 oresów naprzód. Do budow prognoz zasosowano meodę boosrapową dla órej przjęo 0000 replacj. Nasępne jaość prognoz ocenono za pomocą perwasa błędu średnowadraowego (RME) oraz udzału prawdłowch znaów (PC) 6. Wn zameszczono w abel. Tabela. Porównane prognoz uzsanch meodą boosrapową Model RME PC CAC40 DL(0)-EGARCH()-TD AR()-EGARCH()-TD DJIA L(0)-EGARCH()-TD AR()-EGARCH()-TD NIKK5 DL(0044)-EGARCH()-TD AR(0)-EGARCH()-TD NDQ00 NL(0)-EGARCH()-TD AR()-EGARCH()-TD &P500 PL(0)-EGARCH()-TD AR()-EGARCH()-TD WIG DL(0.)-GARCH()-GED AR()-GARCH()-GED Źródło: oblczena własne. Wn zaware w abel pozwalają swerdzć ż prognoz uzsane z model dwulnowch są gorsze od prognoz uzsanch z model auoregresjnch zarówno pod względem warośc prognoz ja erunu zman. Wjąem jes u szereg CAC40 dla órego prognoz z model dwulnowch oazał sę lepsze pod względem erunu nż prognoz z modelu AR. 6 Por. Doman Doman 004.

8 90 Tomasz Zdanowcz 4. Podsumowane W prac przedsawone zosało porównane własnośc prognoscznch model ARMA dwulnowch wraz ze zmenającą sę w czase warancją. Zaprezenowane wn pozwalają swerdzć że pommo swoch neresującch własnośc ach ja aprosmacja z dowolną doładnoścą szeregu w sończonm odcnu czasu lub ops zjawsa supana sę warancj modele dwulnowe ne pozwalają na lepsz ops szeregów fnansowch nż lasczne modele ARMA z reszam GARCH. Wższość ch osanch zosała powerdzona w opse badanch procesów w próbe. Podobne modele dwulnowe ne sprawdzł sę w prognozowanu prognoz oazał sę gorsze pod względem warośc RME ja PC. Można powedzeć że modele dwulnowe mmo swoch zale eorecznch ne dają lepszch rezulaów w modelowanu fnansowch szeregów czasowch nż modele ARMA-GARCH. Leraura ruzda J. (00) Proces dwulnowe proces GARCH w modelowanu fnansowch szeregów czasowch Przegląd sasczn Zesz. rzeszczńs J. Kelm R. (00) Eonomerczne modele rnów fnansowch WIG-Press Warszawa. Doman M. Doman R. (004) Eonomerczne modelowane dnam polsego rnu fnansowego Wd. AE w Poznanu Poznań. Garnger W. J. C. Andersen A. P. (978) An Inroducon o lnear Tme eres Models Göngen: Vandenhoec and Ruprech. Granger W. J. C. Terasra T. (99) Modelng Nonlnear Economc Relaonshps Oxford Unwers Press New Yor Hnch M. J. (98) Tesng for Gaussan and Lnear of a aonar Tme eres Journal of Tme eres Analss McLeod A. L. L W. K. (98) Dagnosc Cheng ARMA Tme seres Models Usng quared Resdual Auocorrelaons Journal of Tme eres Analss Osńsa M. (006) Eonomera fnansowa PWE Warszawa. Osńsa M. Góra J. (005) Idenfacja nelnowośc w eonomcznch szeregach czasowch. Analza smulacjna Dnamczne Modele Eonomerczne Wd. UMK Toruń. ubba Rao T. Gabr M. M. (984) An Inroducon o specral Analss and lnear Tme eres Models Lecure Noes n ascs 4 prnger-verlag. Theodossou P. (998) Fnancal daa and ewed Generalzed T Dsrbuon Managemen cence

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa

Bardziej szczegółowo

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o ˆ

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o ˆ Eonoera Ćwczena Werfacja odelu eonoercznego Maerał poocncze Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz

Bardziej szczegółowo

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

FINANSOWE SZEREGI CZASOWE WYKŁAD 3 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb

Bardziej szczegółowo

Kurtoza w procesach generowanych przez model RCA GARCH

Kurtoza w procesach generowanych przez model RCA GARCH Joanna Górka * Kuroza w procesach generowanych przez model RCA GARCH Wsęp Na przesrzen osanej dekady odnoowuje sę szybk rozwój model nelnowych. Wdoczna jes zwłaszcza różnorodność nelnowych specyfkacj modelowych,

Bardziej szczegółowo

Finansowe szeregi czasowe wykład 7

Finansowe szeregi czasowe wykład 7 Fnansowe szereg czasowe wykład 7 dr Tomasz Wójowcz Wydzał Zarządzana AGH 38 33 28 23 18 13 8 1 11 21 31 41 51 61 71 Kraków 213 Noowana ndeksu WIG w okrese: 3 marca 29 31 syczna 211 55 5 45 4 35 3 25 2

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAICZNE ODELE EKONOETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 7 w Torunu Kaedra Ekonomer Saysyk, Unwersye kołaja Kopernka w Torunu Jacek Kwakowsk Unwersye kołaja Kopernka w Torunu odele RCA

Bardziej szczegółowo

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Monka Kośko Wyższa Szkoła Informayk Ekonom TWP w Olszyne

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 5

Stanisław Cichocki Natalia Nehrebecka. Wykład 5 Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów

EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów EKONOMERIA Wkład : Meoda Najmnejszch Kwadraów dr Doroa Cołek Kaedra Ekonomer Wdzał Zarządzana UG hp://wzr.pl/dc doroa.colek@ug.edu.pl Lnow model ekonomerczn:... zmenna endogenczna, 0 k k u zmenne objaśnające,

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 009 Uniwerse Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saski WŁASNOŚCI

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaa Kopernka w Torunu Unwersye Mkołaa Kopernka w Torunu Ops kurozy rozkładów

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

Konspekty wykładów z ekonometrii

Konspekty wykładów z ekonometrii Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki

PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM Joanna Górka Wdział Nauk Ekonomicznch i Zarządzania UMK w Toruniu Kaedra Ekonomerii i Saski WSTĘP Niesacjonarne proces o średniej zero mogą bć reprezenowane

Bardziej szczegółowo

METODY SZACOWANIA PARAMETRÓW MODELI DWULINIOWYCH

METODY SZACOWANIA PARAMETRÓW MODELI DWULINIOWYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/,, sr. 39 47 METODY SZACOWANIA ARAMETRÓW MODELI DWULINIOWYCH Joanna Górka, Mchał Bernard erzak Kaedra Ekonomer Sask Unwerse Mkołaja Koernka w Torunu e-ma:

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

SEZONOWOŚĆ ZGONÓW W POLSCE W LATACH

SEZONOWOŚĆ ZGONÓW W POLSCE W LATACH Suda Eonomczne. Zeszyy Nauowe Unwersyeu Eonomcznego w Kaowcach ISSN 2083-86 Nr 375 208 Informaya Eonomera 4 Unwersye Eonomczny w Kaowcach Wydzał Zarządzana Kaedra Saysy, Eonomer Maemay zofa.meleca-uben@ue.aowce.pl

Bardziej szczegółowo

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzaa Doman Akademia Ekonomiczna w Poznaniu Modele mikrosrukury rynku Bageho (97) informed raders próbują wykorzysać swoją przewagę informacyjną

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.

Bardziej szczegółowo

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Uniwersye Szczecińsi TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Zagadnienia, óre zosaną uaj poruszone, przedsawiono m.in. w pracach [], [2], [3], [4], [5], [6]. Konferencje i seminaria nauowe

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH

ANALIZA SZEREGÓW CZASOWYCH ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11 Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH

ANALIZA SZEREGÓW CZASOWYCH ANALIZA ZEREGÓW CZAWYCH zereg czasow zbór warosc baanej cech lub warosc baanego zjawska zaobserwowanch w róznch momenach czasu uporzakowan chronologczne. klank szeregu czasowego:. enencja rozwojowa (ren)

Bardziej szczegółowo

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saski, Uniwerse Mikołaja Kopernika w Toruniu Uniwerse Mikołaja Kopernika w Toruniu Idenfikacja

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

(liniowy model popytu), a > 0; b < 0

(liniowy model popytu), a > 0; b < 0 MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę

Bardziej szczegółowo

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 4

Stanisław Cichocki Natalia Nehrebecka. Wykład 4 Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Ocena efektywności restrukturyzacji wybranego sektora gospodarki w Polsce z wykorzystaniem taksonomicznego miernika rozwoju społeczno-gospodarczego

Ocena efektywności restrukturyzacji wybranego sektora gospodarki w Polsce z wykorzystaniem taksonomicznego miernika rozwoju społeczno-gospodarczego Ban Kred 41 (6, 21, 85 14 www.banred.nbp.pl www.banandcred.nbp.pl Ocena efewnośc resruurzac wbranego seora gospodar w Polsce z worzsanem asonomcznego merna rozwou społeczno-gospodarczego Młosz Sansławs*

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

Barbara Pawełek Akademia Ekonomiczna w Krakowie. Normalizacja zmiennych a dopuszczalność prognoz zmiennej syntetycznej

Barbara Pawełek Akademia Ekonomiczna w Krakowie. Normalizacja zmiennych a dopuszczalność prognoz zmiennej syntetycznej Dynaczne Modele Eonoeryczne X Ogólnopolse Senaru Nauowe, 4 6 wrześna 007 w orunu Kaedra Eonoer Saysy, Unwersye Mołaa Koperna w orunu Aadea Eonoczna w Kraowe Noralzaca zennych a dopuszczalność prognoz zenne

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Modele ekonometryczne dzielimy na statyczne i dynamiczne. Cecha charakterystyczną modeli dynamicznych jest jawne uwzględnienie czynnika czasu.

Modele ekonometryczne dzielimy na statyczne i dynamiczne. Cecha charakterystyczną modeli dynamicznych jest jawne uwzględnienie czynnika czasu. PODSTAWY ANALIZY SZEREGÓW CZASOWYCH ZESTAW VII Modele eonomerczne dzielim na saczne i dnamiczne. Cecha charaersczną modeli dnamicznch jes jawne uwzględnienie cznnia czasu. MODELE Z ROZKŁADEM OPÓŹNIEŃ Model

Bardziej szczegółowo

Zbudowany i pozytywnie zweryfikowany jednorównaniowy model ekonometryczny. jest uŝyteczny do analizy zaleŝności między zmiennymi uwzględnionymi w

Zbudowany i pozytywnie zweryfikowany jednorównaniowy model ekonometryczny. jest uŝyteczny do analizy zaleŝności między zmiennymi uwzględnionymi w ROGNOZOWANIE EKONOMERYCZNE (REDYKCJA EKONOMERYCZNA) ZEAW V Zbudowan i pozwnie zwerfikowan jednorównaniow model ekonomerczn je uŝeczn do analiz zaleŝności międz zmiennmi uwzględnionmi w modelu w okreie,

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA * ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE

Bardziej szczegółowo

MODEL TENDENCJI ROZWOJOWEJ

MODEL TENDENCJI ROZWOJOWEJ MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe

Bardziej szczegółowo

1. Szereg niesezonowy 1.1. Opis szeregu

1. Szereg niesezonowy 1.1. Opis szeregu kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Eonomeryczne modele nieliniowe Wyład Doromił Serwa Zajęcia Wyład Laoraorium ompuerowe Prezenacje Zaliczenie EGZAMI 50% a egzaminie oowiązują wszysie informacje przeazane w czasie wyładów np. slajdy. Aywność

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Magdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości

Magdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Szkoła Główna Handlowa Modelowanie zmienności

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 1 Wojciech Waloszek wowal@ei.pg.gda.pl Teresa Zawadzka egra@ei.pg.gda.pl Kaedra Inżyrii Oprogramowania Wydział Elekroniki, Telekomunikacji i Informayki Poliechnika

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

OCENA RYZYKA INWESTYCJI W METALE SZLACHETNE W OKRESIE ŚWIATOWEGO KRYZYSU FINANSOWEGO 2007-2012

OCENA RYZYKA INWESTYCJI W METALE SZLACHETNE W OKRESIE ŚWIATOWEGO KRYZYSU FINANSOWEGO 2007-2012 Elza Buszkowska Unwersye m. Adama Mckewcza w Poznanu, Wydzał Prawa Admnsracj, Kaedra Nauk Ekonomcznych Por Płucennk Unwersye m. Adama Mckewcza w Poznanu, Wydzał Maemayk Informayk, Pracowna Ekonomer Fnansowej

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Piotr Fiszeder Uniwersytet Mikołaja

Bardziej szczegółowo

/ / * ** ***

/ / * ** *** 91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Dane modelu - parametry

Dane modelu - parametry Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3

Bardziej szczegółowo

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych Rozdziaª 4. Jednowymiarowe modele szeregów czasowych MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 4) Modele ARMA 1 / 24 Jednowymiarowe modele szeregów czasowych Jednowymiarowe modele szeregów czasowych:

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

4.2. Statystyki wyższego rzędu. Dr hab. inż. Jacek Jakubowski Narzędzia 1 / 29

4.2. Statystyki wyższego rzędu. Dr hab. inż. Jacek Jakubowski Narzędzia 1 / 29 4.. Saysyk wyżsego rędu Dr hab. nż. Jacek Jakubowsk Naręda / 9 4... Ograncena klasycnej analy wdowej sygnałów losowych Twerdene Wenera-Chncyna [90]: wdowa gęsość ocy PSD S de c ep j Dr hab. nż. Jacek Jakubowsk

Bardziej szczegółowo

ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH

ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH Kaarzyna Zeug-Żebro Unwersye Ekonomczny w Kaowcach ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH Wprowazene Deermnzm ukłaów chaoycznych wskazuje

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo