Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór

Wielkość: px
Rozpocząć pokaz od strony:

Download "Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór"

Transkrypt

1 ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli f f ( ),,, o można ją przedsawić jao szereg ouriera, o posaci * j ω f =, = e gdzie ω = pulsacja podsawowa, + = = ± ±, jω jθ e d e współczynnii rozwinięcia w szereg ouriera = f = uncja oresowa jes w sposób jednoznaczny oreślona przez przeliczalny zbiór współczynniów rozwinięcia w szereg ouriera, co będziemy symbolicznie oznaczać f Po przeszałceniach, szereg ouriera można przedsawić również jao szereg rygonomeryczny f ( ) = + cos( ω + θ ) = jes warością średnią funcji f() i jes nazywane sładową sałą przebiegu, naomias, wysępujące pod znaiem sumy, przebiegi sinusoidalne nazywane są sładowymi harmonicznymi przebiegu f() { } i θ możemy raować jao funcje ω, órych dziedziną jes dysreny zbiór ω, = ±, ±, uncje e nazywa się odpowiednio: dysrenym widmem ampliudowym i dysrenym widmem fazowym Własności szeregów ouriera Załóżmy, że f ( ) i g ( ) są funcjami oresowymi o aim samym oresie Oznaczmy: f ( ), g ( ) G Liniowość a f + a g a + a G Przesunięcie w dziedzinie czasu j ( τ ) e f ω τ * Z maemaycznego punu widzenia przedsawienie aie isnieje, jeżeli funcja spełnia zw waruni Dirichlea Ponieważ wszysie funcje, opisujące przebiegi fizyczne, waruni aie spełniają, więc zagadnieniem ym nie będziemy się uaj zajmować

2 ema 6 sr Różniczowanie d f f = jω d Uwaga w punach nieciągłości funcji f ( ) należy obliczyć pochodne dysrybucyjne! Własności e, w wielu przypadach, pozwalają na bardzo ławe wyznaczenie współczynniów rozwinięcia funcji oresowej w szereg ouriera (bez porzeby obliczania jaicholwie całe!), i dlaego waro je zapamięać więc czyli Rozwińmy w szereg ouriera przebieg oresowy δ = δ( n ) Ponieważ n= = { δ } = ( jω) = δ( ω ω ), = = j δ { ( j )} { δ( )} e ω = ω = ω ω =, = dla dowolnego Idenyczny wyni można orzymać obliczając + jω jω δ e d δ e d = = = Waro zapamięać: δ, lub ogólniej, po uwzględnieniu własności, δ jωτ e ( τ ) Zad Znaleźć współczynnii rozwinięcia w szereg ouriera przebiegu oresowego órego wyres poazano na rys f A f, κ ( κ + ) < κ < A Rys Naszicować widmo ampliudowe i fazowe dla wybranych warości κ

3 ema 6 sr Meoda I (bezpośrednia) + κ jω jω jω e d e d e d = f = A + ( A) = A e + e e = + = jω jω jω κ κ κ jωκ jω jωκ jω jω e e A j Po uwzględnieniu ω =, e = i po uporządowaniu orzymujemy: jκ jκ jκ e e e jκ sin κ jκ e κ e, = A = A = A j j κ jes warością średnią przebiegu, czyli = Aκ A( κ ) = ( κ ) A Meoda II Po zróżniczowaniu (dysrybucyjnym!) funcji f (rys a) orzymujemy przebieg sładający się z dwóch oresowych ciągów złożonych z dysrybucji Diraca, aich ja na f = Aδ Aδ κ A szereg ouriera aiego przebiegu już rys b, czyli znamy A f ( κ ) κ A (a) f ( ) Aδ( ) ( κ ) κ ω A A j j e ω = κ (b) Aδ( κ ) Rys Dla orzymujemy więc jωκ jκ e e sin κ jκ κ e jω j κ = A = A = A

4 ema 6 sr należy wyznaczyć oddzielnie, a ja w meodzie I Przyładowe dysrene widma: ampliudowe i fazowe dla κ =, przedsawiono na rys 5 6 θ 5 6 Rys Zagada na deszczowe dni: Pochodną funcji f() możemy również zapisać jao δ δ ( ) f = A A + κ Czy orzymamy wówczas inne współczynnii rozwinięcia w szereg ouriera? Zad Znaleźć współczynnii rozwinięcia w szereg ouriera przebiegu oresowego f ( ), órego wyres poazano na rys f Rys Oresem funcji jes =, czyli ω = Współczynnii szeregu ouriera wyznaczymy sosując meodę II z zad ym razem wymagane będzie dwurone zróżniczowanie funcji f ( ) Sposób posępowania zosał zilusrowany na rys

5 ema 6 sr 5 f 5 f ( ) 5 jω f 5 = + jω jω ω e e Rys Po dwuronym zróżniczowaniu funcji f ( ) orzymujemy więc przebieg oresowy, złożony z rzech ciągów dysrybucji Diraca, czyli f = δ δ δ + +, órego szereg ouriera znamy Po podsawieniu danych liczbowych orzymujemy (przy założeniu ): j j j j e e e e sin + = = = j należy wyznaczyć oddzielnie, jao warość średnią przebiegu f ( ) Orzymujemy = Waro u zwrócić uwagę, że wszysie orzymane współczynnii rozwinięcia w szereg ouriera są liczbami rzeczywisymi Będzie a zawsze, gdy rozwijana w szereg funcja jes f = f funcją parzysą, czyli gdy

6 ema 6 sr 6 Zad Znaleźć współczynnii rozwinięcia w szereg ouriera funcji oresowej wyres poazano na rys f "połówa" sinusoidy f, órej Oresem funcji jes =, czyli ω = Spróbujemy wypróbowanego sposobu, polegającego na olejnym różniczowaniu funcji f ( ) Uzysany efe poazano na rys Rys f sin f cos jω f δ( + ) δ( ) δ( ) δ( ) ω sin Rys Ja widać, ym razem po dwuronym zróżniczowaniu funcji nie orzymaliśmy przebiegu złożonego wyłącznie z dysrybucji Diraca Dalsze różniczowanie, w sposób oczywisy, również nie doprowadzi do aiej syuacji Ale, ja ławo zauważyć, druga pochodna zawiera dwa ciągi dysrybucji Diraca (a!!! oresem funcji jes = ) f, czyli i przesalowanego przebiegu δ δ f = + f

7 ema 6 sr 7 Orzymujemy więc j e ω ω = +, sąd, po uporządowaniu i podsawieniu danych liczbowych orzymujemy j ( + ) e ( ) =, a nasępnie, przy założeniu, j + e + cos + = = = Współczynni wyliczymy oddzielnie, jao = f e d = sin e d = e d = j j Osaecznie jω j j ( ), =, j = + ( ), ( ) Zad Znaleźć współczynnii rozwinięcia w szereg ouriera przebiegu oresowego f ( ), órego wyres poazano na rys f Rys Oresem funcji jes = 5, czyli ω = Po zróżniczowaniu funcji 5 f ( ) orzymujemy przebieg sładający się z dwóch ciągów dysrybucji Diraca i część funcyjną g ( ) Po wydzieleniu współczynniów odpowiadających sładniom dysrybucyjnym różniczujemy ylo część funcyjną g ( ) Dalsze posępowanie jes już sandardowe wyznaczamy G g ( ), a nasępnie Cała procedura zosała zilusrowana na rys

8 ema 6 sr 8 f f ( ) G g 7 8 jω jω e e jω = + G g 7 8 jω G jω jω e e = Rys Kolejno obliczamy: jω jω e e sin G 5 = =, (przy założeniu ) jω cos sin j 5 5 = +, 5 5 cos 5sin j 5 5 =,, = Ja ławo zauważyć, wszysie współczynnii rozwinięcia są liczbami urojonymi jes f jes nieparzysa, zn f = f ( ) o regułą, gdy funcja Zad 5 Poazać, że funcja cos sin, f = jes funcją oresową Wyznaczyć jej ores, pulsację podsawową i współczynnii rozwinięcia w szereg ouriera Zapiszmy funcję f ( ) za pomocą wzorów Eulera j j j, j, j, j, j, j, e + e e e e + e e e f = = = sin, + sin, j j Jes więc ona sumą przebiegów sinusoidalnych o pulsacjach ω =, i ω =, ω Sosune ych pulsacji ω =, czyli jes liczbą wymierną, a ich najwięszy wspólny

9 ema 6 sr 9 dzielni jes równy ω =, Przebieg f ( ) jes więc przebiegiem oresowym, o pulsacji podsawowej ω i oresie = = Można ją zapisać jao ω = j ω j e j e j ω j e j ω j e j ω f Jes o szereg ouriera ej funcji, czyli = j, = j, = j, = j, a pozosałe współczynnii rozwinięcia są równe Szereg ouriera jes więc szeregiem sończonym Można również zauważyć, że w widmie ej funcji nie ma sładowej harmonicznej o częsoliwości podsawowej gdzie Zasosowania szeregów ouriera Niech f ( ) oznacza funcję oresową, czyli f = f ( ), = ±, ±, ±, Moc i efeywna szeroość pasma Moc przebiegu oresowego definiujemy jao: + P f d uncję f można przedsawić w posaci szeregu ouriera, = = jω e = = + cos ω + θ f + jω jθ ω =, = f e d = e Wówczas + d P = f = = + = = Powyższa zależność nosi nazwę równości Parsevala Można ją również przepisać w posaci: gdzie ( ), P = + = P + P P harmonicznej = = = jes mocą sładowej sałej, naomias P = = mocą -ej s

10 ema 6 sr Jeżeli ograniczymy się do sończonej liczby olejnych harmonicznych w szeregu ouriera, wówczas moc zawara w ych harmonicznych n n = n = [ n] P = = + P Efeywną szeroością pasma przebiegu f ( ) nazywa się pasmo najmniejszą liczbą całowią, dla órej spełniona jes nierówność: n n κ = n = [ n] P = = + P, nω, gdzie n jes W powyższej nierówności κ < jes założoną częścią całowiej mocy przebiegu Zwyle przyjmuje się κ = (,9,99) Pobudzenia oresowe w obwodach SLS p( ) r gdzie Jeżeli p = p ( ), = ±, ±,, o = jω e e, j ω p = P r = R = ( ω ) ( ω ) R = H j P, H j = H s s= jω Zad 6 Obliczyć, w jaim paśmie częsoliwości zaware jes a) 95%, b) 99% mocy całowiej przebiegu oresowego, órego wyres poazano na rys 6 Rys 6 W przedziale, funcja f = cos Całowią moc przebiegu wyznaczymy jao: + d cos d cos τ dτ, 5 f ćwiara sinusoidy P = f = = = = =, ms

11 ema 6 sr Moc zawarą w sładowej sałej i w n pierwszych harmonicznych można wyznaczyć z zależności [ n] P = + n = Należy więc znaleźć najmniejszą warość n, aą aby n [ n] P = + κ, = gdzie κ =,95 w przypadu a) i κ =,99 w przypadu b) Współczynnii rozwinięcia w szereg ouriera funcji f ( ) mają posać = + j ( ) Wyznaczone warości [ n] P dla olejnych warości n zesawiono w abeli n [ n] P [ n] P P,,58,9,8556,9,968,5,9,865,956 5,7,9695 6,8,9687 7,,979 8,,976 9,66,9786,57,9867,559,986,59,9877,6,9898,65,986 5,67,9869 6,69,9877 7,7,988 8,76,989 9,7,9896,75,99 Z wyniów przedsawionych w abeli wynia, że 95% mocy jes zaware w sładowej sałej i pierwszych czerech harmonicznych, naomias 99% mocy wymaga uwzględnienia harmonicznych Ponieważ rad, s ω = czyli f = Hz, więc w przypadu a) wymagane jes pasmo częsoliwości od do Hz, zaś w przypadu b) od do Hz

12 ema 6 sr Zad 7 W obwodzie przedsawionym na rys 7a pobudzeniem jes oresowy przebieg e, poazany na rys 7b Wyznaczyć współczynnii wyładniczego szeregu napięciowy ouriera napięcia u ( ) e Rys 7 Wyznaczamy operaorową ransmiancję uładu H s L s U ( s) R R s s LC + s C L R R R R R R RR + + R R = = = E s s s Oznaczmy przebiegu e( ) są równe E cos = ( ) e E i u U Współczynnii rozwinięcia w szereg ouriera Oresem pobudzenia jes =, czyli ω = Orzymujemy więc j cos U = H ( j ω ) E = j7 ( ) + ( ) Zad 8 Wyznaczyć warość sueczną rzeciej harmonicznej prądu przedsawionym na rys 8a Przebieg pobudzenia oresowego i rys 8b R R L C R u (a) R = Ω, R = Ω, R = Ω, L = H, C = e 5 (b) z połówi sinusoidy i w obwodzie przedsawiono na iz C L i R L = mh, C =,5µ, R = Ω, i z, ma,8,8, ms Rys 8 (a) (b)

13 ema 6 sr Operaorowa ransmiancja uładu ma posać: I ( s) H ( s) = = Iz ( s) s LC + src +, a współczynnii rozwinięcia w szereg ouriera przebiegu i ( ) sin,8 j,8 z e I =,, Iz =,8 (Ponieważ ineresująca nas ransmiancja jes bezwymiarowa, więc nie ma znaczenia w jaich jednosach wyrażany jes prąd W naszym przyładzie wygodnie będzie wszysie wielości o wymiarze prądu wyrażać w ma) Ponieważ liczbowych orzymujemy = ms, więc pulsacja podsawowa sin,8 I = H I z =, + j, j,8 ( j ω ) e Poszuiwana warość sueczna I s z rad s sin, = I =,686 ma,8 +, 9 ω = Po podsawieniu danych

Szeregi Fouriera (6 rozwiązanych zadań +dodatek)

Szeregi Fouriera (6 rozwiązanych zadań +dodatek) PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω

Bardziej szczegółowo

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA Ćwiczenie Zmodyfiowano 7..5 Prawa auorsie zasrzeżone: Kaedra Sysemów Przewarzania Sygnałów PWr SZEREGI OURIERA Celem ćwiczenia jes zapoznanie się z analizą i synezą sygnałów oresowych w dziedzinie częsoliwości.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Analityczne reprezentacje sygnałów ciągłych

Analityczne reprezentacje sygnałów ciągłych Analiyczne reprezenacje sygnałów ciągłych Przedsawienie sygnału w posaci analiycznej: umożliwia uproszczenie i unifiację meod analizy, pozwala na prosszą inerpreację nieórych jego cech fizycznych. W eorii

Bardziej szczegółowo

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji

Bardziej szczegółowo

LABORATORIUM SYGNAŁÓW I SYSTEMÓW. Ćwiczenie 1

LABORATORIUM SYGNAŁÓW I SYSTEMÓW. Ćwiczenie 1 POLIECHNIKA WARSZAWSKA INSYU RADIOELEKRONIKI ZAKŁAD RADIOKOMUNIKACJI LABORAORIUM SYGNAŁÓW I SYSEMÓW Ćwiczenie ema: MODELE CZĘSOLIWOŚCIOWE SYGNAŁÓW Opracowała: mgr inż. Kajeana Snope Warszawa Cel ćwiczenia

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny. Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8) Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

Temat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD

Temat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD Laboraoriu Eleroechnii i eleronii ea ćwiczenia: LABORAORIUM 6 GENERAOR UNKCYJNY i OSCYLOSKOP Uład z diodą prosowniczą, poiary i obserwacje sygnałów elerycznych Wprowadzenie Ćwiczenie a za zadanie zapoznanie

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

3. EKSPERYMENTALNE METODY WYZNACZANIA MODELI MATEMATYCZNYCH Sposób wyznaczania charakterystyki czasowej

3. EKSPERYMENTALNE METODY WYZNACZANIA MODELI MATEMATYCZNYCH Sposób wyznaczania charakterystyki czasowej 3. Esperymenalne meody wyznaczania modeli maemaycznych 3. EKSPERYMENALNE MEODY WYZNACZANIA MODELI MAEMAYCZNYCH 3.. Sposób wyznaczania charaerysyi czasowej Charaerysyę czasową orzymuje się na wyjściu obieu,

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Andrzej Leśnicki Uogólniony szereg Fouriera 1/1 SZEREGI FOURIERA. Uogólniony szereg Fouriera. x, gdy ich iloczyn x, y 0. całkowalnego z kwadratem

Andrzej Leśnicki Uogólniony szereg Fouriera 1/1 SZEREGI FOURIERA. Uogólniony szereg Fouriera. x, gdy ich iloczyn x, y 0. całkowalnego z kwadratem ndrzj Lśnici Uoólniony szr Fourira / SZEREGI FOURIER Iloczyn salarny, y b a Uoólniony szr Fourira, y dwóch synałów zspolonych y d, Dla iloczynu salarno zachodzi symria hrmiowsa Dwa synały, y są oroonaln

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jes: przybliżenie zagadnień doyczących pomiarów wielości zmiennych w czasie (pomiarów dynamicznych, poznanie sposobów

Bardziej szczegółowo

Szybkość reakcji chemicznej jest proporcjonalna do iloczynu stężeń. reagentów w danej chwili. n A + m B +... p C + r D +... v = k 1 C A n C B m...

Szybkość reakcji chemicznej jest proporcjonalna do iloczynu stężeń. reagentów w danej chwili. n A + m B +... p C + r D +... v = k 1 C A n C B m... 9 KINETYKA CHEMICZNA Zagadnienia eoreyczne Prawo działania mas. Szybość reacji chemicznych. Reacje zerowego, pierwszego i drugiego rzędu. Cząseczowość i rzędowość reacji chemicznych. Czynnii wpływające

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

LABORATORIUM SYGNAŁÓW I SYSTEMÓW. Ćwiczenie 1

LABORATORIUM SYGNAŁÓW I SYSTEMÓW. Ćwiczenie 1 POLIECHNIKA WARSZAWSKA INSYU RADIOELEKRONIKI ZAKŁAD RADIOKOMUNIKACJI LABORAORIUM SYGNAŁÓW I SYSEMÓW Ćwiczenie ea: MODELE CZĘSOLIWOŚCIOWE SYGNAŁÓW Opracowała: gr inż. Kajeana Snope Warszawa Cel ćwiczenia

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

1. Sygnały i systemy dyskretne (LTI, SLS) (1w=2h)

1. Sygnały i systemy dyskretne (LTI, SLS) (1w=2h) Cyfrowe rzewarzanie sygnałów Jace Rezmer --. Sygnały i sysemy dysrene (LI, SLS (w=h.. Sysemy LI Pojęcie sysemy LI oznacza liniowe sysemy niezmienne w czasie (ang. Linear ime - Invarian. W lieraurze olsiej

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

Rodzaje, przebiegi i widma sygnałów Zniekształcenia Szumy Poziomy logiczne Margines zakłóceń Zasady cyfryzacji sygnałów analogowych

Rodzaje, przebiegi i widma sygnałów Zniekształcenia Szumy Poziomy logiczne Margines zakłóceń Zasady cyfryzacji sygnałów analogowych Sygnały eleroniczne (decybele-bajy) Rodzaje, przebiegi i widma sygnałów Znieszałcenia Szumy Poziomy logiczne Margines załóceń Zasady cyfryzacji sygnałów analogowych Jednym z celów przewodnich realizowanych

Bardziej szczegółowo

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii

Bardziej szczegółowo

Teoria sygna³ów. Wstêp. Wydanie II poprawione i uzupe³nione

Teoria sygna³ów. Wstêp. Wydanie II poprawione i uzupe³nione IDZ DO PRZYK ADOWY ROZDZIA KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG Wydawnicwo Helion ul Chopina 6 44- Gliwice el (32)23-98-63 e-mail: helion@helionpl TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE ONOWOŒCIACH

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Wybrane wiadomości o sygnałach Przebieg i widmo Zniekszałcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Przebieg i widmo analogowego. Sygnał sinsoidalny A ϕ sygnał okresowego

Bardziej szczegółowo

SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ

SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polsiej Aademii Nau w Kaowicac SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ Jadwiga ŚWIRSKA Poliecnia Opolsa,

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA DODATEK A POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI ĆWICZENIE NR 1 CHARAKTERYSTYKI CZASOWE I CZĘSTOTLIWOŚCIOWE PROSTYCH UKŁADÓW DYNAMICZNYCH PRACOWNIA SPECJALISTYCZNA

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 7. Typowe obiekty i regulatory

PODSTAWY AUTOMATYKI 7. Typowe obiekty i regulatory Poliechnia Warszawsa Insy Aomayi i Roboyi Prof. dr hab. inż. Jan Maciej Kościelny PODSAWY AUOMAYKI 7. yowe obiey i reglaory Obie reglacji 2 Dwojai sens: - roces o oreślonych własnościach saycznych i dynamicznych,

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Zbigniew Starczewski. Drgania mechaniczne

Zbigniew Starczewski. Drgania mechaniczne Zbigniew Sarczewsi Drgania mechaniczne Warszawa Poliechnia Warszawsa Wydział Samochodów i Maszyn Roboczych Kierune "Eduacja echniczno informayczna" -5 Warszawa, ul. Narbua 8, el () 89 7, () 8 8 ipbmvr.simr.pw.edu.pl/spin/,

Bardziej szczegółowo

4. Modulacje kątowe: FM i PM. Układy demodulacji częstotliwości.

4. Modulacje kątowe: FM i PM. Układy demodulacji częstotliwości. EiT Vsemesr AE Układy radioelekroniczne Modulacje kąowe 1/26 4. Modulacje kąowe: FM i PM. Układy demodulacji częsoliwości. 4.1. Modulacje kąowe wprowadzenie. Cecha charakerysyczna: na wykresie wskazowym

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

Przybliżenie elektronów prawie swobodnych; metoda pseudopotencjału

Przybliżenie elektronów prawie swobodnych; metoda pseudopotencjału Przybliżenie eleronów prawie swobodnych; meoda pseudopoencjału Sieć pusa gdzie: Weor G gra uaj role indesu pasma. Warosci własne energii wyrażają się wzorem: Przybliżenie eleronów prawie swobodnych Ażeby

Bardziej szczegółowo

Drgania elektromagnetyczne obwodu LCR

Drgania elektromagnetyczne obwodu LCR Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41 Ćwiczenie I4 Poliechnika Białosocka Wydział Elekryczny Kaedra Elekroechniki Teoreycznej i Merologii Spis reści Insrukcja do pracowni specjalisycznej INFORMTYK Kod zajęć ESC 9 Tyuł ćwiczenia ZSTOSOWNIE

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

dla małych natężeń polaryzacja podatność elektryczna natężenie pola elektrycznego

dla małych natężeń polaryzacja podatność elektryczna natężenie pola elektrycznego OPTYKA NILINIOWA W zaresie opyi liniowej naężenia promieniowania emiowane z onwencjonalnych źródeł świała są niewielie (0-0 3 V/cm) i oddziałując z maerią nie zmieniają jej własności miro- i marosopowych,

Bardziej szczegółowo

Zagadnienia współczesnej elektroniki Elektroakustyka

Zagadnienia współczesnej elektroniki Elektroakustyka Zagadnienia współczesnej eleronii Eleroasya Andrzej Dobrci Kaedra Asyi Insy Teleomniacji,Teleinformayi i Asyi Poliechnia Wrocławsa Terminy 5.3 A. Dobrci (pomiary w eleroasyce z życiem współczesnych meod

Bardziej szczegółowo

Regulacja ciągła i dyskretna

Regulacja ciągła i dyskretna Regulacja ciągła i dysrena Andrzej URBANIAK Regulacja ciągła i dysrena () W olejnym wyładzie z zaresu serowania i regulacji zajmiemy się sroną funcjonalno-sprzęową. Analizę odniesiemy do uładów regulacji

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

MGR 2. 2. Ruch drgający.

MGR 2. 2. Ruch drgający. MGR. Ruch drgający. Ruch uładów drgających (sprężyny, guy, brzeszczou, ip.). Badanie ruchu ciała zawieszonego na sprężynie. Wahadło aeayczne. Wahadło fizyczne. Rezonans echaniczny. Ćw. 1. Wyznaczanie oresu

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych 7--3 Przewarzanie sygnałów biomedycznych Człowie- nalepsza inwesyca Proe współfinansowany przez Unię Europesą w ramach Europesiego Funduszu Społecznego Wyład I Przewarzanie sygnałów biomedycznych prof.

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999. Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1

Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1 Poliechnia Poznańsa, Kaedra Serowania i Inżynierii Sysemów Wyłady 3,4, sr. 5. Charaerysyi logarymiczne (wyresy Bodego) Lm(ω) = 20 lg G(jω) [db = decybel] (20) (Lm(ω) = [db] 20 lg G(jω) = G(jω) = 0 /20,22

Bardziej szczegółowo

ROZDZIAŁ 5 ROZDZIAŁ 5

ROZDZIAŁ 5 ROZDZIAŁ 5 ROZDZIAŁ 5 ROZDZIAŁ 5 75 J. German: PODSTAWY MECHAIKI KOMPOZYTÓW WŁÓKISTYCH ROZDZIAŁ 5 PODSTAWOWE TYPY LAMIATÓW WARSTWOWYCH LAMIATY SYMETRYCZE I ATYSYMETRYCZE Podane w poprzednim rozdziale posacie unormowanej

Bardziej szczegółowo

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Uniwersye Szczecińsi TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Zagadnienia, óre zosaną uaj poruszone, przedsawiono m.in. w pracach [], [2], [3], [4], [5], [6]. Konferencje i seminaria nauowe

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 2014, 313(76)3, 137 146 Maria Szmuksa-Zawadzka, Jan Zawadzki MODELE WYRÓWNYWANIA WYKŁADNICZEGO W PROGNOZOWANIU

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Przetwarzanie sygnałów z czasem ciągłym

Przetwarzanie sygnałów z czasem ciągłym Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

Ćwiczenie 13. Stanisław Lamperski WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI ORAZ ENTROPII I ENTALPII AKTYWACJI

Ćwiczenie 13. Stanisław Lamperski WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI ORAZ ENTROPII I ENTALPII AKTYWACJI Ćwiczenie 3 Sanisław Lampersi WYZNACZANIE SAŁEJ SZYBKOŚCI REAKCJI ORAZ ENROPII I ENALPII AKYWACJI Zagadnienia: Pojęcie szybości reacji, liczby posępu reacji. Równanie ineyczne, rzędowość a cząseczowość

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Wpływ niedokładności w torze pomiarowym na jakość regulacji

Wpływ niedokładności w torze pomiarowym na jakość regulacji Urzędniczo H., Subis T. Insyu Merologii, Eleronii i Auomayi Poliechnia Śląsa, Gliwice, ul. Aademica Wpływ niedoładności w orze pomiarowym na jaość regulacji. Wprowadzenie Podsawowe sruury sosunowo prosych,

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo