DYNAMICZNE MODELE EKONOMETRYCZNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "DYNAMICZNE MODELE EKONOMETRYCZNE"

Transkrypt

1 DYNAICZNE ODELE EKONOETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 7 w Torunu Kaedra Ekonomer Saysyk, Unwersye kołaja Kopernka w Torunu Jacek Kwakowsk Unwersye kołaja Kopernka w Torunu odele RCA w bayesowskm modelowanu prognozowanu ndeksu WIG. Wprowadzene odele auoregresyjne z losowym parameram (RCA, ang. Random Coeffcen Auoregressve są uogólnenem klasycznych model auoregresyjnych. Ze względu na nelnową posać warunkowej warancj, wpsują sę w popularny w ekonomer fnansowej nur model nelnowych. ożna równeż doparzyć sę zwązków mędzy modelam częścowo sacjonarnym, a modelam RCA. odele ze sochasycznym perwaskem jednoskowym (STUR, służące do opsu procesów częścowo znegrowanych, są szczególnym przypadkem model RCA. Własnośc model RCA szczegółowo omawają Ncholls Qunn (98. Ich bayesowska analza zosała wsępne przedsawona przez orren Safád (. W pracy ej auorzy omawają warunkowe gęsośc a poseror oraz przedsawają pobeżne gęsośc predykywne. Przedsawony arykuł jes sonym rozszerzenem bayesowskej analzy ej klasy model. Po perwsze uwzględnono resrykcje nałożone na paramery, ak aby zapewnć sacjonarność modelu. Po druge zaprezenowano, poprzez bayesowske esowane konkurencyjnych model, esowane sałośc paramerów auoregresyjnych. Dodakowo, w arykule omówono równeż bayesowske prognozowane model RCA. Badana doyczą dzennych logarymcznych sóp zman ndeksu WIG w okrese od syczna do 8 luego 7. Układ arykułu jes nasępujący: w częśc drugej przedsawono posać oraz warunk sacjonarnośc modelu RCA. W częśc rzecej omówono bayesowską esymację, prognozowane esowane model RCA. Część czwara zawera badana empryczne. Część pąa zawera wnosk.

2 98 Jacek Kwakowsk. Posać własnośc modelu RCA Dla procesu y, model z losowym współczynnkam auoregresyjnym rzędu p możemy przedsawć w nasępującej posac (Ncholls, Qunn, 98: p + ( φ + β + ε y = φ y. ( Przyjmjmy nasępujące założena doyczące modelu ( (por. Górka, 7: a. { ε, =,,..., N} jes cągem zmennych losowych o nezależnych denycznych rozkładach normalnych z zerową waroścą oczekwaną E( ε = warancją ( ε = σ E, b. współczynnk auoregresj φ dla c. β ( β,..., β T p =,..., p są sałe w czase, = jes losowym wekorem, kórego każda współrzędna jes zmenną losową o średnej zero ( = =,..., p =,..., N, E β warancj E( ω d. zmenne losowe β,..., β p są wzajemne nezależne, β = dla e. proces reszowy ε losowe paramery są względem sebe nezależne; ε β s, s, =,..., p. Dla modelu ( orren Safád ( wyprowadzają warunkowe gęsośc a poseror. W celu znalezena brzegowych gęsośc a poseror ch charakerysyk sosują algorym Gbbsa. Inną alernaywną posać modelu RCA przedsawł Tsay (987. a ona klka zale. Umożlwa sosunkowo prose całkowana numeryczne meodą one Carlo z funkcją ważnośc. Dodakowo posada cekawą nerpreację ze względu na posać warunkowej warancj możlwośc dokonywana porównań z powszechne sosowanym modelam GARCH. Oznaczmy przez ψ zbór nformacj dosępnych w okrese. odel RCA (p możemy przedsawć w nasępującej posac (Tsay, 987: p y = φ + φ y + ε ψ ~ N (, h p = σ + ω, ( ε, ( h y. (4 W modelu RCA dynamkę warunkowej warancj opsuje warancja procesu ε oraz loczyny warancj paramerów serwacj. h β opóźnonych kwadraów ob-

3 odele RCA w bayesowskm modelowanu Warunk koneczne dosaeczne sacjonarnośc procesu RCA(p przedsawają Andel (976 oraz Ncholls Qunn (98. Oznaczmy przez macerz kwadraową sopna p : p I p p = T, (5 φ p φ p gdze p jes ( p - wymarowym wekorem zerowym, I p jes macerzą jednoskową sopna ( p oraz φ ( T p = φ p,..., φ. Proces auoregresyjny z losowym parameram jes sacjonarny w szerszym sense jeżel:. warośc własne macerzy leżą wewnąrz koła jednoskowego, T. ω a <, gdze ω = ( ω,..., ω p jes wekorem, kórego współrzędne są warancjam losowych współczynnków auoregresj β, naomas ( jes osaną kolumną macerzy I. Symbol oznacza loczyn Kroneckera. Przykładowo, proces RCA(, czyl ak w kórym wysępuje ylko jeden losowy paramer, jes sacjonarny w szerszym sense jeżel φ (, oraz ω + φ <.. Bayesowska analza model RCA odelowanem objęo szereg { y =,,..., N + k} (,, orzymany według formuły y = ln x / x, gdze N oznacza lczbę obserwacj, k jes horyzonem prognozy, naomas x oznacza dzenne noowana ndeksu WIG w chwl. Do analzy przyjmjmy najbardzej ogólną posać modelu, manowce RCA(. Pozosałe modele orzymujemy poprzez nałożene resrykcj na poszczególne paramery. Dzęk emu możemy esować rząd auoregresj oraz badać sałość paramerów. odel RCA( zakłada dla warunkowy (względem całej przeszłośc procesu rozkład normalny o średnej warancj h = σ + ω y. Przyjmjmy za ( φ, φ, φ, φ, ω, ω, ω σ, y a μ = φ + φ y θ = wekor neznanych paramerów. Dodakowo nech y ( y,..., y N regu czasowego do dna N, naomas = ( y..., y = oznacza obserwowany fragmen sze- y f N + N + k, oznacza fragmen szeregu podlegający prognozowanu. Gęsość rozkładu prawdopodobeńswa wekora obserwacj przy usalonych paramerach warunkach począkowych (kóre ne są uwzględnone w noacj ma posać:

4 Jacek Kwakowsk N + k N + k ( f ( = N ( p y, y θ = p y ψ, θ f y μ h, (6, f N ( z c, w w. Przyjmujemy, że łączny rozkład a pror ( θ gdze oznacza gęsość rozkładu normalnego o średnej c warancj p jes loczynem nezależnych rozkładów a pror jego współrzędnych. Dla warancj ω losowych paramerów β oraz dla warancj reszowej ( p Φ, σ przyjęo rozkłady wykładncze o średnej odchylenu sandardowym równym odpowedno. Dla współczynnków auoregresj założono welowymarowy rozkład normalny o zerowym wekorze średnch dagonalnej macerzy kowarancj, z elemenam na głównej przekąnej równym. Rozkład en T określony jes na zborze = φ, φ φ C, gdze oznacza obszar sacjonarnośc procesu AR(. Dla parameru φ przyjęo rozkład normalny o średnej równej zero warancj. Przesrzeń paramerów dodakowo ucęa T jes przez warunek ogranczający ω a <. Tabela. Bayesowske modele auoregresyjne ze sałym losowym parameram odel Esymowane paramery odel Esymowane paramery ( φ 5,σ ( φ, φ, σ 6 ( φ, φ, φ, σ 7 4 ( φ, φ, φ, φ, σ C p ( φ, φ, ω σ, ( φ, φ, φ, ω, ω σ, ( φ, φ, φ, φ, ω, ω, ω σ, Przyjęe rozkłady a pror są rozkładam właścwym, bardzo rozproszonym odzwercedlają neprecyzyjną wedzę badacza na ema ch prawdzwych warośc. Rozkład a poseror wekora paramerów θ ne jes żadnym znanym rozkładem. Dlaego eż jego charakerysyk, a akże momeny rozkładu predykywnego dla ( y +,..., y + N oraz hsogramy orzymane są za pomocą meody one Carlo z funkcją ważnośc. W abel przedsawono specyfkacje wszyskch model opsujących dynamkę sóp zwrou. odel opsuje brak jakejkolwek zależnośc auoregresyjnej. odele,, 4 o sandardowe modele auoregresj od rzędu perwszego, aż do rzecego. odele 5, 6, 7 o modele RCA, w kórych srukura auoregresyjna jes opsana zarówno przez paramery losowe oraz nelosowe.

5 odele RCA w bayesowskm modelowanu... W celu porównana mocy objaśnającej konkurujących model, należy określć ch prawdopodobeńswa a pror. W naszym przypadku mamy sedem konkurujących ze sobą model próbkowych. Prawdopodobeńswa a pror defnuje sę ak aby były jednakowe dla każdego modelu. Na ema możlwośc sosowalnośc bayesowskego esowana model psze m.n. Osewalsk (. 4. Wynk esymacj rozkłady predykywne odele auoregresyjne z losowym parameram zasosowano do opsu zmennośc ndeksu gełdowego najwększych spółek noowanych na warszawskej Gełdze Paperów Waroścowych (WIG. Celem badana był szereg logarymcznych sóp zman (w procenach. Badanem objęo szereg z okresu od.. do składający sę z N = 5 obserwacj. Prognozowanem objęo sopy zman oblczone na podsawe rzech kolejnych dzennych noowań w okrese od Wynk dla model 7 orzymano wykorzysując 5 ys. losowań one Carlo z funkcją ważnośc równą gęsośc (maksymalne 8-wymarowego rozkładu -Sudena o sopnach swobody. Tabela zawera warośc oczekwane odchylena sandardowe a poseror paramerów wszyskch model. W modelach 7, współczynnk auoregresj szacowane są ze sosunkowo małą precyzją, co wskazuje na brak sonej auokorelacj sóp zman. Wnosek en znajduje powerdzene w wynkach zameszczonych w abel, kóra zawera prawdopodobeńswa a poseror. Najbardzej prawdopodobnym modelem jes model, kóry ne uwzględna srukury auoregresyjnej. Skupa on ponad 64 procen całej masy prawdopodobeńswa. Drugm modelem, z prawdopodobeńswem równym.97, jes AR(. Trzec model o RCA(. Jego prawdopodobeńswo o.6. Czynnk Bayesa, oblczony mędzy AR( RCA( jes równy.85. Oznacza o, że przy jednakowych prawdopodobeńswach a pror obu model sandardowy model auoregresyjny rzędu perwszego jes prawe dwa razy bardzej prawdopodobny a poseror nż model RCA(. Sosunkowo dobry wynk modelu RCA( może wynkać z ego, że przy mało sonych współczynnkach auoregresj, jego posać zblżona jes do modelu ARCH(. Wynk bayesowskego porównana są mało wrażlwe na zmanę warośc paramerów w rozkładze a pror.

6 Jacek Kwakowsk Tabela. Warośc oczekwane odchylena sandardowe (podane w nawase parame-,, rów w modelach AR ( RCA (, φ φ φ.9 ( (.4 ( (.8.84 (.4.8 (.4.9 (.9. (. 4 Paramery φ ω 5 6, ω (..6 (..6 (..6 (.4.64 (. Źródło: oblczena własne (.. ( ( (. -.4 (. -.5 ( (.7.4 (.7.47 ( (..4 (.4 ω σ.76 (.7.7 (.7.7 (.68.7 ( ( (.4 (.88.9 (.96 Tabela. Prawdopodobeńswa a poseror model AR RCA oblczone dla logarymcznych sóp zman ndeksu WIG odel Prawdopodobeńswa a poseror p y ( Źródło: oblczena własne.,647,976 8,49.,67 Tabela 4 zawera warośc oczekwane błędy sandardowe rozkładów predykywnych sopy zman ndeksu WIG, uzyskane w modelu RCA(. Jak wdać rozproszene rozkładów predykywnych rośne wraz ze wzrosem horyzonu prognozy. Tabela 4. Warośc oczekwane błędy sandardowe gęsośc predykywnych w modelu RCA( dla logarymcznych sóp zman ndeksu WIG RCA( y N + y N + y N + Warość oczekwana Odchylene sandardowe Źródło: oblczena własne.

7 odele RCA w bayesowskm modelowanu... p( y N + ( y 7 p N +,,,4,4-9, - - -,, 9, -9, - - -,, 9, p( y N + ( y 7 p N +,,,4,4-9, - - -,, 9, -9, - - -,, 9, p( y N + ( y 7 p N +,,,4,4-9, - - -,, 9, -9, - - -,, 9, Wykres. Hsogramy brzegowych rozkładów predykywnych logarymcznych sóp zman ndeksu WIG oblczone w oparcu o model RCA( - 7 AR( - Źródło: opracowane własne.

8 4 Jacek Kwakowsk Na wykrese przedsawono hsogramy oraz realzacje sopy zman dla prognozy dokonanej na rzy okresy poza próbą, orzymane w oparcu o model RCA( AR(. Jak wdać, przy podobnej lokalzacj gęsośc predykywnych, rozproszene jes wększe w przypadku modelu RCA(. Wększe odchylene sandardowe rozkładów predykywnych wynka z faku przyjęca warunkowej warancj. Rzeczywse warośc sóp zman, zaznaczone są na rysunkach czarnym punkam. 5. Podsumowane Przedsawone wynk wskazują, że modele RCA ne wnoszą znaczących nformacj do opsu szeregu WIG. Sosunkowa duże prawdopodobeńswo a poseror dla modelu RCA( może wynkać z faku, że przy mało sonych współczynnkach auoregresj jego posać jes bardzo zblżona do klasycznego modelu ARCH(. Ze względu na denyczną posać warunkowej średnej w modelach RCA AR, gęsośc predykywne, uzyskane przy pomocy model auoregresyjnych z losowym parameram, charakeryzują sę w porównanu z klasycznym modelam auoregresyjnym wększym rozproszenem. Prezenowana publkacja zawera analzę ylko jednego szeregu, rudno węc określć sopeń przydanośc model RCA. Uwzględnene zależnośc pomędzy losowym procesam może jednak poprawć przydaność ego ypu model do opsu zmennośc fnansowych sóp zwrou. Leraura Andel, J. (976, Auoregressve Seres wh Random Parameers, ahemasche Operaonsforschung und Sascs, Seres Sascs, 7, Górka, J. (7, odele auoregresyjne z losowym parameram, w: Osńska. (red., Procesy STUR. odelowane zasosowane do fnansowych szeregów czasowych, Wydawncwo TNOK, Toruń. oren, P.A., Safád, T. (, A Bayesan Analyss of Auoregressve odels wh Random Normal Coeffcens, Journal of Sascal Compuaon and Smulaon, 7, 8, Ncholls, D.F., Qunn, B.G. (98, Random Coeffcen Auoregressve odels: An Inroducon, Sprnger-Verlag, New York. Osewalsk, J. (, Ekonomera bayesowska w zasosowanach, Wyd. AE w Krakowe, Kraków. Tsay, R.S. (987, Condonal Heeroscedasc Tme Seres odels, Journal of he Amercan Sascal Assocaon, 8, 98.

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Finansowe szeregi czasowe wykład 7

Finansowe szeregi czasowe wykład 7 Fnansowe szereg czasowe wykład 7 dr Tomasz Wójowcz Wydzał Zarządzana AGH 38 33 28 23 18 13 8 1 11 21 31 41 51 61 71 Kraków 213 Noowana ndeksu WIG w okrese: 3 marca 29 31 syczna 211 55 5 45 4 35 3 25 2

Bardziej szczegółowo

Kurtoza w procesach generowanych przez model RCA GARCH

Kurtoza w procesach generowanych przez model RCA GARCH Joanna Górka * Kuroza w procesach generowanych przez model RCA GARCH Wsęp Na przesrzen osanej dekady odnoowuje sę szybk rozwój model nelnowych. Wdoczna jes zwłaszcza różnorodność nelnowych specyfkacj modelowych,

Bardziej szczegółowo

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Monka Kośko Wyższa Szkoła Informayk Ekonom TWP w Olszyne

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

FINANSOWE SZEREGI CZASOWE WYKŁAD 3 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaa Kopernka w Torunu Unwersye Mkołaa Kopernka w Torunu Ops kurozy rozkładów

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego

Bardziej szczegółowo

MODEL DWUMIANOWY II RZĘDU I SKOŚNY ROZKŁAD STUDENTA W ANALIZIE RYZYKA KREDYTOWEGO *

MODEL DWUMIANOWY II RZĘDU I SKOŚNY ROZKŁAD STUDENTA W ANALIZIE RYZYKA KREDYTOWEGO * Jacek Osewalsk, Jerzy Marzec, Kaedra Ekonomer Badań Operacyjnych, Unwersye Ekonomczny w Krakowe MODEL DWUMIANOWY II RZĘDU I SKOŚNY ROZKŁAD STUDENTA W ANALIZIE RYZYKA KREDYTOWEGO * Jacek Osewalsk e-mal:

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Podstawowe algorytmy indeksów giełdowych

Podstawowe algorytmy indeksów giełdowych Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca

Bardziej szczegółowo

w łącznej analizie zmiennych licznikowych

w łącznej analizie zmiennych licznikowych F O L I A O E C O N O M I C A C R A C O V I E N S I A Vol. LIII PL ISSN 7-674X Dwuwymarowy model TYPU ZIP-CP w łącznej analze zmennych lcznkowych Jerzy Marzec Kaedra Ekonomer Badań Operacyjnych Unwersyeu

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

HSC Research Report. Principal Components Analysis in implied volatility modeling (Analiza składowych głównych w modelowaniu implikowanej zmienności)

HSC Research Report. Principal Components Analysis in implied volatility modeling (Analiza składowych głównych w modelowaniu implikowanej zmienności) HSC Research Repor HSC/04/03 Prncpal Componens Analyss n mpled volaly modelng (Analza składowych głównych w modelowanu mplkowanej zmennośc) Rafał Weron* Sławomr Wójck** * Hugo Senhaus Cener, Wrocław Unversy

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.

Bardziej szczegółowo

OCENA RYZYKA INWESTYCJI W METALE SZLACHETNE W OKRESIE ŚWIATOWEGO KRYZYSU FINANSOWEGO 2007-2012

OCENA RYZYKA INWESTYCJI W METALE SZLACHETNE W OKRESIE ŚWIATOWEGO KRYZYSU FINANSOWEGO 2007-2012 Elza Buszkowska Unwersye m. Adama Mckewcza w Poznanu, Wydzał Prawa Admnsracj, Kaedra Nauk Ekonomcznych Por Płucennk Unwersye m. Adama Mckewcza w Poznanu, Wydzał Maemayk Informayk, Pracowna Ekonomer Fnansowej

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998)

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998) 3. Dwa modele pooku ruchu (eorokolejkowe) 3. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,998) 3.. Model Hagha Isneje wele prac z la powojennych, w kórych wysępują próby modelowana kolejek ruchowych

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Katarzyna Osiecka Politechnika Warszawska Józef Stawicki Uniwersytet Mikołaja Kopernika w Toruniu

Katarzyna Osiecka Politechnika Warszawska Józef Stawicki Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE X Oólnopolske Semnarum Naukowe, 4 6 wrześna 27 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Kaarzyna Osecka Polechnka Warszawska Józef Sawck Unwersye

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

(estymator asymptotycznej macierzy kowariancji estymatora nieliniowej MNK w MNRN)

(estymator asymptotycznej macierzy kowariancji estymatora nieliniowej MNK w MNRN) W ypowym zadanu z regresj nelnowej mamy nasępujące eapy: Esymacja (uzyskane ocen punkowych paramerów), w ym: 1. Dobór punków sarowych.. Kolejne eracje algorymu Gaussa Newona. 3. Zakończene algorymu Gaussa

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 Jacek Kwiakowski Uniwersye Mikołaja Kopernika w Toruniu Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 WSTĘP Powszechnie wiadomo, że podsawowymi własnościami procesów finansowych

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Mateusz Ppeń Unwersytet Ekonomczny w Krakowe MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Wprowadzene W analzach emprycznych przeprowadzonych z wykorzystanem welorównanowych

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Modelowanie równowagi cenowej na Giełdzie Papierów Wartościowych w Warszawie w okresach przed i po wejściu Polski do Unii Europejskiej

Modelowanie równowagi cenowej na Giełdzie Papierów Wartościowych w Warszawie w okresach przed i po wejściu Polski do Unii Europejskiej Sansław Urbańsk * Modelowane równowag cenowej na Gełdze Paperów Waroścowych w Warszawe w okresach przed po wejścu Polsk do Un Europejskej Wsęp Praca nnejsza sanow konynuację badań doyczących wyceny akcj

Bardziej szczegółowo

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu Juliusz Preś Politechnika Szczecińska

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu Juliusz Preś Politechnika Szczecińska DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 2007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaa Kopernka w Torunu Por Fszeder Unwersye Mkołaa Kopernka w Torunu Julusz

Bardziej szczegółowo

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzaa Doman Akademia Ekonomiczna w Poznaniu Modele mikrosrukury rynku Bageho (97) informed raders próbują wykorzysać swoją przewagę informacyjną

Bardziej szczegółowo

OBSERWACJE ODSTAJĄCE NA RYNKU ENERGII ELEKTRYCZNEJ

OBSERWACJE ODSTAJĄCE NA RYNKU ENERGII ELEKTRYCZNEJ Suda Ekonomczne. Zeszyy Naukowe Unwersyeu Ekonomcznego w Kaowcach ISSN 083-86 Nr 88 06 Informayka Ekonomera 5 Alcja Ganczarek-Gamro Unwersye Ekonomczny Wydzał Informayk Komunkacj Kaedra Demograf Saysyk

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Karolina Kluth Uniwersytet Mikołaja Kopernika w Toruniu. Konwergencja gospodarcza w zakresie kryteriów Traktatu z Maastricht analiza ekonometryczna

Karolina Kluth Uniwersytet Mikołaja Kopernika w Toruniu. Konwergencja gospodarcza w zakresie kryteriów Traktatu z Maastricht analiza ekonometryczna DYAMICZE MODELE EKOOMETRYCZE X Ogólnopolske Semnarum aukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Karolna Kluh Unwersye Mkołaja Kopernka w Torunu Konwergencja

Bardziej szczegółowo

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym UNIWERSYTET SZCZECIŃSKI Zeszyy Naukowe nr 858 Wspó łczesne Problemy Ekonomczne n r 11 ( 2 0 1 5 DOI: 10.18276/wpe.2015.11-18 Sebasan Porowsk* Model CAPM z ryzykem płynnośc na polskm rynku kapałowym Słowa

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Magdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości

Magdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Szkoła Główna Handlowa Modelowanie zmienności

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym UNIWERSYTET SZCZECIŃSKI Z e s z y y Naukowe nr 858 Współczesne Problemy Ekonomczne DOI: 10.18276/wpe.2015.11-18 Sebasan Porowsk* odel CAP z ryzykem płynnośc na polskm rynku kapałowym Słowa kluczowe: eora

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Inne kanały transmisji

Inne kanały transmisji Wykład 4 Inne kanały ransmsj Plan wykładu. Ceny akywów 3. Ceny akywów Wzros sopy procenowej powoduje spadek cen domów akcj. gdze C warość kuponu, F warość nomnalna gdze dywdenda, g empo wzrosu dywdendy

Bardziej szczegółowo

EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów

EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów EKONOMERIA Wkład : Meoda Najmnejszch Kwadraów dr Doroa Cołek Kaedra Ekonomer Wdzał Zarządzana UG hp://wzr.pl/dc doroa.colek@ug.edu.pl Lnow model ekonomerczn:... zmenna endogenczna, 0 k k u zmenne objaśnające,

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń: .. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE Pior Fiszeder UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE. Wprowadzenie Rynki kapiałowe na świecie są coraz silniej powiązane. Do najważniejszych

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH

ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH Kaarzyna Zeug-Żebro Unwersye Ekonomczny w Kaowcach ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH Wprowazene Deermnzm ukłaów chaoycznych wskazuje

Bardziej szczegółowo

MAKSYMALNY OCZEKIWANY CZAS PRZEBYWANIA PORTFELA INWESTYCYJNEGO W ZADANYM OBSZARZE BADANIA EMPIRYCZNE

MAKSYMALNY OCZEKIWANY CZAS PRZEBYWANIA PORTFELA INWESTYCYJNEGO W ZADANYM OBSZARZE BADANIA EMPIRYCZNE Danel Iskra Unwersye Ekonomczny w Kaowcach MAKSYMALNY OCZEKIWANY CZAS PRZEBYWANIA PORTFELA INWESTYCYJNEGO W ZADANYM OBSZARZE BADANIA EMPIRYCZNE Wprowadzene Wraz z rozwojem eor nwesycj fnansowych, nwesorzy

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Krzysztof Piontek Akademia Ekonomiczna we Wrocławiu. Modelowanie warunkowej kurtozy oraz skośności w finansowych szeregach czasowych

Krzysztof Piontek Akademia Ekonomiczna we Wrocławiu. Modelowanie warunkowej kurtozy oraz skośności w finansowych szeregach czasowych DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Modelowanie

Bardziej szczegółowo

XXXV Konferencja Statystyka Matematyczna

XXXV Konferencja Statystyka Matematyczna XXXV Konferencja Saysyka Maeayczna MODEL OTOWOŚCI SYSTEMU TECHNICZNEO Karol J. ANDRZEJCZAK karol.andrzejczak@pu.poznan.pl Polechnka Poznańska hp://www.pu.poznan.pl/ PRORAM REERATU 1. WPROWADZENIE 2. ORMALIZACJA

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Zbigniew Palmowski. Analiza Przeżycia

Zbigniew Palmowski. Analiza Przeżycia Zbgnew Palmowsk Analza Przeżyca Wrocław 9 Zbgnew Palmowsk Docendo dscmus (Ucząc nnych, sam sę uczymy) Seneka Mos of he me I fnd myself workng n heorecal problems, because I am neresed n applcaons. I also

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Krakowie Modelowanie

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje

Bardziej szczegółowo

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki PIOTR FISZEDER, JACEK KWIATKOWSKI Kaedra Ekonomerii i Saysyki DYNAMICZNA ANALIZA ZALEŻNOŚCI POMIĘDZY OCZEKIWANĄ STOPĄ ZWROTU A WARUNKOWĄ WARIANCJĄ Sreszczenie: W badaniu zasosowano modele GARCHM ze sałym

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339

Bardziej szczegółowo

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa

Bardziej szczegółowo

Rozdział 2. Zasady budowy prognoz

Rozdział 2. Zasady budowy prognoz Rozdzał. Zasady budowy prognoz Rozdzał. Zasady budowy prognoz (z ksążk A. Mankowsk, Z. arapaa, Prognozowane symulacja rozwoju przedsęborsw, Warszawa 00) Kopowane za zgodą auorów.. Rodzaje prognoz... Klasyfkacje

Bardziej szczegółowo

Dokładność wybranych metod prognozowania wynagrodzeń i liczby pracujących w Polsce

Dokładność wybranych metod prognozowania wynagrodzeń i liczby pracujących w Polsce Bank Kredy 45(2), 24, 63 96 Dokładność wybranych meod prognozowana wynagrodzeń lczby pracujących w Polsce Jan Acedańsk *, Jolana Bernas #, Adranna Masalerz-Kodzs Nadesłany: 6 kwena 23 r. Zaakcepowany:

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo