Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
|
|
- Seweryna Piasecka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk
2 Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj absolutnej, tylko uporządkowaną Przykłady: Oceny konsumencke produktów (IMDB, Amazon, etc.) Skala Lkerta (stopeń braku zgody / zgody z określonym stwerdzenam) Ratng kredytowe (S&P, Moody s, Ftch) Kolejność zawodnków w turneju, zawodach
3 Wybór uporządkowany Model funkcj wskaźnkowej / użytecznośc losowej y = X β +ε X charakterystyk konsumenta Zwykle lnowa specyfkacja funkcj ε składnk losowy, neobserwowalne ndywdualne dosynkratycznośc Rozkład normalny uporządkowany probt Rozkład logstyczny uporządkowany logt Obserwujemy J różnych ocen Interesuje nas estymacja β oraz J-1 progów, które kategoryzują (cenzurują) y * na y < y < + y = 1,..., J y = j dla α < y < α j 1 j
4 Wybór uporządkowany Obserwujemy y y... = 1 dla y α = 2 dla α < y α y = J dla y > α J α 1 α 2 α J 1 + y = 1 y = 2 y = J Jeśl w modelu (X) jest stała, to tak jakby α 1 = 0 (normalzacja)
5 Wybór uporządkowany Model jest nelnowy... ( = 1 X) = F( α1 Xβ) ( = 2 X) = ( α2 Xβ) ( α1 Xβ) P y P y F F ( = X) = 1 ( α J 1 Xβ) P y J F poneważ F (dystrybuanta rozkładu normalnego, logstycznego, ) jest funkcją nelnową Prawdopodobeństwa muszą być dodatne, węc: α < α <... < αj 1 2 1
6 Wybór uporządkowany funkcja ML Z prawdopodobeństw funkcja najwększej warygodnośc lnl N = = 1 ln ( P( y )) Suma logarytmów prawdopodobeństw wybranych wartośc I dalej estymacja normalne
7 Zadane 1. Analza odpowedz na pytana śwatopoglądowe dotyczące Morza Bałtyckego Ahtanen et al. (2013) badane reprezentatywnej próby meszkańców 9 krajów nadbałtyckch (n = 9627) Wśród pytań pytana śwatopoglądowe, m.n.: Martw mne stan środowska Morza Bałtyckego Ja także wpływam na stan środowska Morza Bałtyckego Skala odpowedz: 1 zdecydowane sę ne zgadzam 2 raczej sę ne zgadzam 3 trudno powedzeć 4 raczej sę zgadzam 5 zdecydowane sę zgadzam
8 Zadane 1. Analza odpowedz na pytana śwatopoglądowe dotyczące Morza Bałtyckego 1. Wykorzystaj zbór me.baltc.dta do przeanalzowana, jake charakterystyk respondentów pozwalają wyjaśnć ch odpowedz na pytane o to czy stan środowska Bałtyku ch martw (envw) 2. Znterpretuj wynk jakoścowo 3. Znterpretuj wynk loścowo
9 Jak analzować dane o lczbe wystąpeń jakegoś zjawska? Dane o lczbe zdarzeń (ang. count data) Zmenna objaśnana przyjmuje wartośc całkowte (0,1,2, ) Lczby mają bezpośredną nterpretację Przykłady Lczba wzyt u lekarza, w parku narodowym, na basene Lczba dzec, zachorowań, aresztowań, zabójstw w danym okrese / na jednostce powerzchn Lczba wadlwych sztuk w procese produkcyjnym
10 Regresja Possona Potrzebna metoda, która uwzględn charakter zmennej zależnej Regresja Possona Zmenna zależna y traktowana jak zmenna losowa o rozkładze Possona ( y X ) P Y = = exp ln( λ ) = X β ( ) y λ λ y! Oczekwana lczba zdarzeń w okrese ( y X ) = ( y X ) = λ = ( Xβ) E var exp Slne założene modelu: średna = warancj rozkładu wrócmy do tego
11 Regresja Possona estymacja Model Possona można estymować za pomocą regresj nelnowej, ale proścej za pomocą MNW Funkcja LL suma logarytmów prawdopodobeństw zaobserwowanych lośc Gradent Hesjan ( λ Xβ ( )) lnl= + y ln y! Hesjan ujemne określony dla wszystkch β X Optymalzacja metodą Newtona N = 1 N lnl = X β = 1 2 lnl = ββ ( y λ ) N = 1 λ XX
12 Zadane 2. Lczba podróży nad Morze Bałtycke Ahtanen et al. (2013) badane reprezentatywnej próby meszkańców 9 krajów nadbałtyckch (n = 9627) Pytana dotyczące lczby podróży nad Morze Bałtycke w cągu ostatnch 12 mesęcy szczegółów ostatnej podróży Dystans, środek transportu, czas, 1. Wykorzystaj zbór me.baltc.dta do przeprowadzena regresj Possona lczby wzyt nad morze (TRIPS), wyjaśnając je stałą specyfczną dla kraju kosztem podróży (TC_km) Znterpretuj wynk Jaka jest nadwyżka konsumenta wynkająca z możlwośc wzyt nad Morzem Bałtyckm?
13 Nadwyżka konsumenta Oczekwana lczba podróży jest funkcją m.n. kosztu podróży E ( y X) = exp( Xβ ) Funkcja popytu y= exp( x) Parametr przy koszce jest ujemny, węc funkcja ma tak kształt:
14 Nadwyżka konsumenta Funkcja popytu dana przez Nadwyżka konsumenta to: + exp CS = exp x dx = TC ( β ) ( y X ) = ( Xβ) E exp ( βtc ) Nadwyżka konsumenta na jedną wzytę jest węc dana przez: CS per trp Mnus odwrotność parametru dla kosztu podróży 2. Oszacuj nadwyżkę konsumenta borąc pod uwagę także koszt alternatywny czasu podróży (TC_tme) β = CS = 1 E ( y X ) β
15 Regresja Possona ekwdyspersja Jednym z założeń modelu ekwdyspersja Średna = warancja rozkładu E ( y ) ( ) λ ( X = var y X = = exp βx) To założene może w praktyce ne być spełnone Test nadmernej dyspersj: H : var 0 ( y) = E( y) ( ) = ( ) + ( ) ( ) H : var y E y g E y 2 1 α Prosta regresja lnowa objaśnająca z (warancja mnus średna) przez w (średna): λˆ ( ) 2 ( ) y ˆ λ y g ˆ λ z = w = g( ˆ λ ) = ˆ λ ( ˆ λ ) = ˆ λ 2 lub g ˆ λ ˆ λ średna przewdywana przez model Sprawdzamy stotność współczynnka w regresj bez stałej 3. Sprawdź czy regresja Possona jest w naszym przypadku uzasadnona
16 Model ujemny dwumanowy Model ujemny dwumanowy rozszerzene modelu Possona, polegające na wprowadzenu dodatkowego składnka losowego (neobserwowalnej heterogencznośc) do średnej ln E ( y X ) = Xβ + = ln + lnu ( ) ε λ y (pod warunkem x u ) ma rozkład Possona z warunkową średną warancją µ ( λ )( λ ) (, ) = exp y u u f y X u y! Bezwarunkowy rozkład ( X ) f y ( X ) + exp ( λu )( λu ) ( ) f y = g u du y! 0 y
17 Model ujemny dwumanowy Funkcja gęstośc u determnuje bezwarunkowy rozkład y Wygodne założyć rozkład gamma, E( u ) = 1 θ g( u) u u Γ θ θ 1 = exp( θ ) ( θ ) Wtedy bezwarunkowy rozkład y dany jest przez ( X ) f y = θ y θ λ + y θ θ 1 ( λu)( λu) θ u exp( θu) y! Γ( θ ) + ( ) ( ( ) ( θ ) exp y 1 0 λ θ) θ y θ λ Γ ( θ + y) θ + y ( y 1) ( θ)( λ θ) = + Γ + Γ = Γ + Γ + exp 0 u u du θ + y 1 du
18 Model ujemny dwumanowy Warunkowa średna λ Warunkowa warancja λ 1+ ( 1 ) Uwag: ( θ λ) Ekwdyspersję można przetestować ex post jako 1 θ = 0 Możlwe nne specyfkacje u np. rozkład normalny
19 Zadane 2. Lczba podróży nad Morze Bałtycke 4. Skonstruuj model regresj ujemnej dwumanowej Czy restrykcja 1 θ = 0 jest uzasadnona? Czy zmenły sę oszacowana CS?
20 Model ujemny dwumanowy overdyspersja Jednym z możlwych rozszerzeń modelu modelowane determnant overdyspersj Heterogenczność średnej warancj zawsze ważna dla danych mkroekonomcznych Parametr dyspersj θ wyłapuje ogólne skalowane rozkładu (średna vs. warancja) Ogólne warancja to var ( y X) = λ( 1+ ( 1 θ) λ) Zróbmy węc θ θ ( = exp δz) Teraz θ (a węc ogólnej warancja) funkcją obserwowalnych zmennych charakteryzujących respondentów Z 5. Skonstruuj model regresj ujemnej dwumanowej z różnym pozomem overdyspersj dla różnych krajów De facto jest to próba lepszego dopasowana rozkładów trochę nny rozkład lczby wyceczek dla każdego kraju
21 Zero nflated models Częstym problemem jest duża lczba obserwacj przyjmująca wartość 0 Znane rozkłady, take jak Posson czy ujemny dwumanowy, ne przewdują ponadproporcjonalnej lośc obserwacj 0, węc źle pasują Możlwym rozwązanem są tzw. Zero Inflated Models Załóżmy, że mamy dwa typy konsumentów Uczestnków rynku robą lczbę wyceczek zależną od kosztu (w tym możlwe 0 wyceczek) Neuczestnków rynku nezależne od kosztu tak ne pojadą nad Bałtyk Oba segmenty pownny być modelowane osobno, a ne jako jeden cągły rozkład
22 Zero nflated models 0 w danych może sę pojawć z dwóch powodów Ktoś jest uczestnkem rynku, ale tak sę zdarzyło, że w ostatnm roku ne pojechał an razu Ktoś ne jest uczestnkem rynku, węc pojechał 0 razy Prawdopodobeństwo pojechana k razy będze wtedy dane przez ( ) ( ) ( ) ( ) ( ) p = Z + 1 p Z F y X jeśl y 0 P Y= y X, Z = ( 1 p( Z) ) F( y X) jeśl y 0 Gdze p( Z) to prawdopodobeństwo byca poza rynkem, zazwyczaj modelowane bnarnym logtem albo probtem F( y X) to p-stwo zaobserwowana danej lczby zdarzeń, opsane np. modelem Possona albo Ujemnym dwumanowym
23 Zero nflated models 6. Dokonaj estymacj modelu Zero Inflated Negatve Bnomal Porównaj dopasowane do danych ze wcześnejszym modelam
24 :56:55 Praca domowa ME.10 (grupy 2 lub 3-osobowe) 1. Wykorzystaj projekt me.baltc.dta do przeanalzowana, jake charakterystyk respondentów pozwalają wyjaśnć ch ocenę własnego wpływu na środowsko Bałtyku (env) 1. Wyberz najlepszą, Twom zdanem, specyfkację 2. Znterpretuj wynk używając nterpretacj jakoścowej oraz loścowej (wykorzystując efekty krańcowe) 2. Wykorzystując projekt me.usahealth.dta skonstruuj model lcznośc zdarzeń objaśnający lczbę wzyt u lekarza (mdu) 1. Wyberz najlepszą, Twom zdanem, postać funkcyjną specyfkację Uwzględnj zmenne socjodemografczne, wskaźnk stanu zdrowa oraz udzał własny w kosztach opek medycznej 2. Znterpretuj wynk używając nterpretacj jakoścowej oraz loścowej (wykorzystując efekty krańcowe)
Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Wybór uporządkowany Wybór uporządkowany (ang. ordered choce) Wybór jednej z welkośc na podanej skal Skala wartośc są uporządkowane Przykłady: Oceny konsumencke
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 12 Mkołaj Czajkowsk Wktor Budzńsk Modele bnarne heterogenczność parametrów Heterogenczność stałej (model efektów stałych) lub warancj składnka losowego (model efektów losowych) można uznać
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Mikroekonometria 15. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 15 Mkołaj Czajkowsk Wktor Budzńsk Mkroekonometra podsumowane kursu Zagadnena ogólne NLOGIT Metoda maksymalzacj funkcj ML Testy statystyczne Metody numeryczne, symulacje Metody wyceny nerynkowej
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 6 Mkołaj Czajkowsk Wktor Budzńsk 'Netypowe' zmenne objaśnane Problemy mkroekonometryczne często zmenna objaśnana ne jest cągła lub jej wartość ne ma bezpośrednej nterpretacj loścowej Zmenną
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Mikroekonometria 7. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 7 Mkołaj Czajkowsk Wktor Budzńsk Testowane hpotez 4 podstawowe testy Przedzał ufnośc Parametry mają asymptotyczny rozkład normalny Znamy błąd standardowy Czy parametr jest statystyczne różny
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Matematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Natalia Nehrebecka. Dariusz Szymański
Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
Stanisław Cichocki. Natalia Nehrebecka. Wykład 11
Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:
.. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
Regresja liniowa i nieliniowa
Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego
Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa
Bonformatyka - rozwój oferty edukacyjnej Unwersytetu Przyrodnczego we Wrocławu projekt realzowany w ramac Programu Operacyjnego Kaptał Ludzk współfnansowanego ze środków Europejskego Funduszu Społecznego
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1
Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa
Dobór zmiennych objaśniających
Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia
EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK
Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)
Trzecie laboratoria komputerowe ze Staty Testy
Trzece laboratora komputerowe ze Staty Testy Korzystać będzemy z danych dane_3.dta. Chcemy (jak zwykle ) oszacować model zarobków. Tym razem nteresująca nas postać modelu to: p0 = β + β pd0 + β pl08 +
Nieparametryczne Testy Istotności
Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:
Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych
Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Uogolnione modele liniowe
Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
IID = 2. i i i i. x nx nx nx
Zadane Analzujemy model z jedną zmenną objaśnającą bez wyrazu wolnego: y = β x + ε, ε ~ (0, σ ), gdze x jest nelosowe.. Wyznacz estymator MNK parametru β oraz oblcz jego warancję. (4 pkt) y. Zaproponowano
Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 9 Mikołaj Czajkowski Wiktor Budziński Wielomianowy model logitowy Użyteczność konsumenta i z wyboru alternatywy j spośród J i alternatyw X wektor cech (atrybutów) danej alternatywy Z wektor
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 9 Mikołaj Czajkowski Wiktor Budziński Wielomianowy model logitowy Uogólnienie modelu binarnego Wybór pomiędzy 2 lub większą liczbą alternatyw Np. wybór środka transportu, głos w wyborach,
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
mę, nazwsko, nr ndeksu: Ekonometra egzamn 1//19 1. Egzamn trwa 9 mnut.. Rozwązywane zadań należy rozpocząć po ogłoszenu początku egzamnu a skończyć wraz z ogłoszenem końca egzamnu. Złamane tej zasady skutkuje
( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Regresja kwantylowa W standardowej Metodzie Najmniejszych Kwadratów modelujemy warunkową średnią zmiennej objaśnianej: E( yi Xi) = μ ( Xi) Pokazaliśmy,
Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 14 Mikołaj Czajkowski Wiktor Budziński Symulacje Analogicznie jak w przypadku ciągłej zmiennej zależnej można wykorzystać metody Monte Carlo do analizy różnego rodzaju problemów w modelach
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
STATYSTYKA. Zmienna losowa skokowa i jej rozkład
STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra
Markowa. ZałoŜenia schematu Gaussa-
ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
będą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4
Ntl Natala Nehrebecka Darusz Szymańsk Zajęca 4 1 1. Zmenne dyskretne 3. Modele z nterakcjam 2. Przyblżane model dlnelnowych 2 Zmenne dyskretne Zmenne nomnalne Zmenne uporządkowane 3 Neco bardzej skomplkowana
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E bedze zborem zdarzen elementarnych danego doswadczena. Funcje X(e) przyporzadowujaca azdemu zdarzenu elementarnemu e E jedna tylo jedna lczbe X(e)x nazywamy ZMIENNA
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH
PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Metody predykcji analiza regresji
Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..
Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją
Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q
Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16
Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene